Macroelement concentration in leaves of chrysanthemums from the Time group grown in spring and summer-autumn seasons

Open access

Abstract

Three cultivars of chrysanthemums from the Time group were grown in the spring and summer-autumn seasons in 2003 - 2004. Three nutrient solutions with different nitrogen and potassium contents were applied. Samples of healthy, fully developed leaves were taken for chemical analyses when inflorescence buds appeared, and in the phase of full blooming. The concentration of total N, P, K, Ca and Mg in plant tissue was determined. The nutritional status of plants was very similar in spite of the fact that the plants were grown in different light conditions and different nutrient solutions were used. The paper also contains a proposal of more precise guide values for nitrogen (N 4.35-5.53% d.m.) and for potassium (K 6.36-7.97% d.m.).

BAKUŁA T., KAMIEŃSKA W., KARDASZ T., STRAHL A., WALCZAK K., 1972. Metody badań laboratoryjnych w stacjach chemiczno-rolniczych. Cz. II. Badanie materiału roślinnego. IUNG Puławy: 25-83.

BOUMA D., 1983. Diagnosis of mineral deficiencies using plant tests. In: A. Läuchli, R.L. Bielski (eds). Inorganic plant nutrition. 15A Springer Verlag, Berlin, Heidelberg, New York, Tokyo: 120-143.

BREŚ W., SZTUKA A., KOZŁOWSKA A., 2008. Response of chrysanthemums from Time group to differentiated nitrogen and potassium fertilization in controlled cultivation. Acta Sci. Pol. Hort. Cult. 7(1): 27-34.

BREŚ W., TYKSIŃSKI W., RUPRIK B., 2002. Evaluation of nutritional status of chrysanthemum motherplants. Roczn. AR Poznań CCCXLI: 33-40.

BREŚ W., JERZY M., 2004a. Effect of the planting date on the quality of pot chrysanthemums from the Time group in all year-round culture. Folia Hort. 16/2: 119-126.

BREŚ W., JERZY M., 2004b. Effect of the planting date on macronutritional status of pot chrysanthemums from the Time group in all-year-round culture. Folia Hort. 16/2: 127-140.

CABRERA R.I., EVANS R.Y., PAUL J.L., 1995. Cyclic nitrogen uptake by greenhouse roses. Sci. Hort. 63: 57-66.

DE JONG J., 1982. The differential responses of chrysanthemum cultivars to light and temperature. Euphyt. 31/2: 485-492.

JERZY M., BORKOWSKA J., 2004. Photoperiodic response in twelve all year-round production cycles. EJPAU, Hort. 7(2), http://www.ejpau.media.pl/series/volume7/issue2/horticulture/art-07.html.

JOINER J.N., SMITH T.C., 1962. Effects of nitrogen and potassium levels on the growth, flowering responses and foliar composition of Chrysanthemummorifolium “Bluechip”. Proc. Am. Soc. Hort. Sci. 80: 571-580.

KENWORTHY A.L., 1961. Interpreting the balance of nutrient-element in leaves of fruit trees. In: W. Reuther (ed.). Plant Anal. Fert. Problems. Am. Inst. Biol. Sci. 8, Washington DC: 28-43.

KERIJ C., SONNAVELD C., VARMENHOVEN M.G., STRAVER N., 1990. Guide values for nutrient element contents of vegetables and flower under glass. Voedingsoplossingen glastuinbouw 15: 26.

KLEIBER T., 2005. Guide values of nutrient for Anthurium (Anthurium cultorum Schott) grown in expanded clay. Doctor thesis. Univ. Life Sci. Poznań: pp.160.

LUNT O.R., KOFRANEK A.N., 1964. Some critical nutrient levels in Chrysanthemummorifolim cv. Good News. Plant Anal. Fert. Probl. 4: 398-491.

MAGALHAES J.R., WILCOX G.E., 1983a. Tomato growth and mineral composition as influenced by nitrogen and light intensity. J. Plant. Nutr. 6(10): 847-862.

MAGALHAES J.R., WILCOX G.E., 1983b. Tomato growth and nutrient uptake patterns as influenced by nitrogen and light intensity. J. Plant. Nutr. 6(11): 941-956.

MEZIANE D., SHIPLEY B., 2001. Direct and indirect relationships between specific leaf area, leaf nitrogen and gas exchange. Effects of irradiance and nutrient supply. Ann. Bot. 88: 915-927.

REUTER D.J., ROBINSON B., 1988. Plant Analysis: An Interpretation Manual. Melbourne, Australia, Inkata Press.

TREDER J., 2001. The effect of light and nutrition on growth and flowering of oriental lilies. Acta Hort. 548: 523-528.

Folia Horticulturae

The Journal of Polish Society for Horticultural Sciences (PSHS)

Journal Information

Web of Science, IMPACT FACTOR 2017: 0.244
Scopus, SCImago Journal Rank (SJR) 2017: 0.129

CiteScore 2017: 0.29

Source Normalized Impact per Paper (SNIP) 2017: 0.432

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 48 48 15
PDF Downloads 12 12 5