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Abstract

Three of the most frequently used sigmoidal growth curves from the Richards family are the logistic model, Gompertz 
model and Richards model. They are used in the analysis of organismal growth over time in many disciplines/studies 
and were proposed in many parameterisations. Choosing the right parameterisation is not easy. The correct param-
eterisation of the model should take into account such parameters that are useful to describe the analysed growth 
phenomenon and are biologically relevant without additional calculations. In addition, each parameter of the model 
only affects one shape characteristic of each growth curve, which makes it possible to determine standard errors and 
confidence intervals using statistical software.

Growth curves in germination dynamics studies should provide information on topics such as the length of the 
lag in onset of germination, the maximum germination rate and, when it occurs, the time at which 50% of seeds will 
germinate and the final germination proportion. In this article, we present three parameterisations of the logistic, 
Gompertz and Richards models and indicate two parameterisations for each model, corresponding to the above-
mentioned issues. Our proposition is parameterisation by taking into account the maximum absolute growth rate. 
Parameterisations indicated as useful for germination dynamics are characterised by the fact that each parameter has 
the same meaning in every model, so its estimates can be compared directly amongst the models. We also discussed 
the goodness-of-fit measures for nonlinear models and in particular measures of nonlinear behaviour of a model’s 
individual parameters as well as overall measures of nonlinearity.

All described models were used to study the dynamics of the epicotyl emergence of pedunculate oak. After 
checking the close-to-linear behaviour of the studied model parameters and by taking into account the criteria of 
model selection (AICc of each growth curve and the residual variance [RV]), the best model describing the dynamics 
of epicotyl appearance of pedunculate oak was the Richards curve.
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Introduction

Growth curves are used to model the growth of an indi-
vidual/organism or population (plants or animals) over 
time. Growth measurements (dependent variable) can be 
body mass, body length or mass/length of different parts 
of the body. Growth curves can have various growth pat-
terns. If there is an upper limit, for example, because of 
environmental resources, growth proceeds sigmoidally 
and asymptotically. In the initial phase, growth is rela-
tively slow but accelerates thereafter and decreases in the 
final phase, approaching the upper asymptote (Fig.  1). 
The processes taking place in trees can be described us-
ing this type of growth (Kramer and Kozlowski 1979).

There are numerous studies that used sigmoid (S-
shaped) curves in growth analyses, and many growth 
models have been proposed. Amongst the most fre-
quently used are logistic, Richards and Gompertz mod-
els. However, these models have been applied in various 
fields in many different notations and parameterisations 

(Tjørve and Tjørve 2010, 2017a), making it difficult to 
choose the correct model for growth data analysis and 
to compare the results of a study with those already pub-
lished. Tjørve and Tjørve (2010, 2017a, 2017b) reviewed 
a  number of re-parameterisations of the Gompertz 
model and Richards model family and discussed their 
usefulness.

Some forms of growth curves are described by 
parameters that are not meaningful in the biological 
sense (Zwietering et al. 1990). To find the biological 
meaning of the parameter, an additional calculation is 
necessary. For example, for the logistic function given 
in the form 

( ) ( )=
+ −

Y t A
B Ct1 exp

where Y(t) and t are variables and A, B and C are pa-
rameters, parameter B has no direct biological mean-
ing and can be used to calculate the time at inflection: 
ti = B/C. 
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Figure 1. Shape characteristics of sigmoidal growth curve describing germination dynamics: A, upper asymptote; µi, 
maximum absolute growth rate represented by the tangent at an inflection – slope at an inflection (dashed line); Ti, time at an 
inflection; Tλ, lag time
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The parameters of the growth function are estimat-
ed using various estimation methods and statistical soft-
ware. However, it is difficult to calculate standard errors 
or the confidence intervals for the biological parameters 
if they are not estimated directly in the equation (Zwiet-
ering et al. 1990). Moreover, when determining param-
eters using statistical software, it is necessary to enter 
their initial values. It is difficult to estimate start values 
for the parameters if they have no biological meaning.

The basic feature describing the quality of seeds 
is the germination of seeds, that is, the percentage of 
seeds that germinate under the temperature and hu-
midity conditions appropriate for a  given species. 
Seed germination dynamics, that is, the germination 
process of woody plant seeds over time, is examined 
less frequently (Ashton and Larson 1995; Struve 1998; 
García-De La Cruz 2016; Hawkins 2018). The dynam-
ics of germination as a function of the number of seeds 
germinated in a  given unit of time can be described 
by a bell-shaped function. In this case, the cumulative 
germination capacity can be modelled using sigmoid 
growth curves. In the case of oak species belonging to 
the white oaks sections (Lepidobalanus), apart from 
germination, epicotyl emergency dynamics is also cru-
cial. In the field, the appearance of the epicotyl (shoot) 
above the soil surface is the first sign that germination 
has occurred (Fenner and Thompson 2005). Analysis 
of germination dynamics (epicotyl emergence dynam-
ic) provides answers to the following questions (the 
properties or parameters of the growth curves corre-
sponding to the given stage of the germination process 
are given in brackets; Fig. 1):
1.	 How much time is needed to start the process of 

germination, that is, how large is the lag in the on-
set of germination (lag time)?

2.	 What is the maximum germination rate (slope at 
inflection)?

3.	 When does this occur (time at inflection)?
4.	 At what time will 50% of the seeds germinate (T50)?
5.	 What is the final germination proportion, that is, 

germination capacity (upper asymptotic value)?
In this context, the purpose of this study is to pre-

sent growth curves from the Richards family, with par-
ticular regard to those parameterisations/forms that are 
useful for modelling germination dynamics. We will 
present such growth model forms whose parameters 
can be comparable across models. Amongst the dis-

cussed models, three models are proposed by us. The 
proposed models will be applied to study the dynamics 
of the epicotyl emergence of pedunculate oak (Quercus 
robur L.).

Material and methods

Sigmoid growth curves

Logistic function

A logistic curve describing the population growth was 
proposed and named by P. F. Verhulst (Verhulst 1838, 
1845) to describe the growth in the size of a population 
or organ. One of the most frequently used forms of the 
logistic model is (k form; Model 1):

	 ( ) ( )=
+ − − 

CG t A
k t T1 exp i

	 1

where:
CG(t) 	– �the expected cumulative percentage germina-

tion at time t,
A 	 – �the upper asymptote (theoretical maximum for 

CG(t)),
k 	 – the growth-rate coefficient, shape parameter,
Ti 	 – the time at an inflection.

The position of the inflection point, that is, the 
time at which germination reaches the maximum 
rate of Ti, is given directly in the model. Parameter 
Ti is a location parameter that shifts the growth curve 
horizontally without changing it shape. Logistic func-
tion is very similar to the cumulative normal distri-
bution, that is, unskewed and perfectly symmetrical. 
It is symmetrical about the point of inflection, whose 
coordinates are (Ti, A/2). This means that Ti indi-
cates the germination time of 50% of seeds (T50) from 
those that germinate (Tab. 1). For growth models, the 
growth-rate coefficient k is always positive, and larger 
values indicate a quicker rise from zero to the upper 
asymptote A. In many studies of organismal growth, 
parameter k is used as the relative growth rate at in-
flection, thus the maximum relative growth rate (i.e. at 
inflection and relative to maximum GC value). Tjørve 
and Tjørve (2017a) indicated that this is an incorrect 
interpretation of parameter k. To find the maximum 
relative growth rate, parameter k should be divided by 
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4 (k/4) and the maximum absolute growth rate can be 

calculated as 
Ak
4

.

To avoid recalculation of the k parameter to obtain 
the biological meaning, we propose re-parameterisation 
of the logistic model in the following form (µi form; 
Model 2):

	
µ

( )
( )

=
+ − −





CG t A

A
t T1 exp 4 i

i

	 2

In Model 2, instead of k, it is 
µ
A

 4 i . The parameter µi 
represents the maximum absolute growth rate, that is, 
the slope of the tangent at the inflection point, whilst 
the meaning of the other parameters is analogous to 
that of Model 1. An important advantage of this re-
parameterisation is that the upper asymptote A  does 
not affect parameter µi. This means that this parameter 
shows the maximum percentage of germinated seeds 
per unit of time without reference to the final percent-
age of germinated seeds, which is given by A. This 
makes it possible to compare the germination rates of 
different data sets.

The third parameterisation of the logistic model, 
which may be useful for studying germination dynam-
ics, is the model proposed by Zwietering et al. (1990) in 
the following form (Tλ form; Model 3):

	
µ

( )
( )

=
+ − − +



λ

CG t A

A
t T1 exp 4 2i

	 3

in which, instead of time at inflection Ti, there is param-
eter Tλ, termed ‘lag time’ and describing the transition 
from the low period of germination (lag period), after 
which the germination rate considerably increases. The 
lag time Tλ occurs for t = Tλ when 

( ) =
+

CG t A
e1 2

that is, always falls at 11.92% of the upper asymptote A.

Gompertz function

Actuary B. Gompertz, presenting his law of human mor-
tality (Gompertz, 1825), proposed using the exponential 
function to describe the relationship between increasing 
death rate and age. Gompertz presented only the prob-

ability density function, whilst Makeham (1873) stated 
the well-known cumulative form of this model. In the 
literature, numerous forms of the Gompertz model can 
be found, and a detailed review of the Gompertz model 
was presented by Tjørve and Tjørve (2017a). One of the 
most used forms of the model is (k form; Model 4):

	 { }( ) ( )= ⋅ − − − CG t A k t Texp exp i 	 4

The meaning of the parameters is the same as for 
Models 1 and 2. The shape parameters A and k change 
the curve shape but leave the value of the location pa-
rameter Ti unaltered. The parameter Ti controls the time 
at which the inflection occurs. The Gompertz model is 
not symmetrical about the point of inflection, whose co-
ordinates are (Ti, A/e), which means that by the time Ti, 
36.8% of the germinating seeds will germinate, whilst 
A/2 seeds will germinate until time t = Ti – log(log(2))/k =  
= Ti + 0.3665/k (Tab. 1). Maximum relative growth rate 
and maximum absolute growth rate µi can be calculated 
from Model 4 by dividing k by the base of the natural 
logarithm k/e and kA/e, respectively. To obtain µi direct-
ly from the Gompertz model, we propose re-parameter-
isation, which is given as (µi form; Model 5)

	 µ( ) ( )= ⋅ − − −














CG t A e
A
t Texp exp i

i 	 5

in which parameter k is replaced by 
µe
A
i . As in Equation 2, 

each parameter of Model 5 controls one curve charac-
teristic. The third form of the model, including the Tλ 
parameter (Zwietering et al. 1990), can be given as (Tλ 
form; Model 6)

	 µ( ) ( )= ⋅ − − − +














λCG t A e
A
t Texp exp 1i 	 6

Here, Tλ falls when ( ) ( )= ⋅ −CG t A eexp , that is, 
a  lag time always occurs at the 6.6% of the upper as-
ymptote A (Tjørve and Tjørve 2017a).

Richards function

The Richards model (Richards 1959), also called as 
generalised logistic function, allows for flexibility in 
the asymmetry by including an additional parameter, 
d, which controls which asymptote is nearest to the 
inflection point. The form of the model that is useful 
for studying the dynamics of germination is as follows 
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(parameters are the same as for Models 1, 2, 4 and 5) 
(k form; Model 7):

	
{ }

( )
( )

=
+ ⋅ − − 

CG t A

d k t T1 exp i
d1/ 	 7

When testing germination dynamics according to 
Model 7, parameter d will have positive values. The in-
flection point is floating and can be given as a propor-
tion of the upper asymptote A. This proportion is deter-
mined by the parameter d and falls at A/(1+d)1/d (Tjørve 
and Tjørve 2010). When d < 1, less than half of the seeds 
will germinate before time Ti (e.g. as in the Gompertz 
curve); when d = 1, half of the seeds will germinate be-
fore Ti and half afterwards (i.e. as in the logistic curve); 
when d > 1, more than half of the seeds will germinate 
before Ti. Also, A/2 seeds (T50) will germinate until time

( )
=

− −



t

kT d

k

log 2 1 /i
d

 

(Tab. 1).
The Richards model, taking into account the maxi-

mum absolute growth rate µi, derived from Model 7, has 
the following form (µi form; Model 8):
	

µ
( )

( ) ( )
=

+ ⋅ − + −













( )+

CG t A

d
A

d t T1 exp 1i d
i

d
1 1/

1/ 	 8

Parameter k in Model 7 is replaced by 
µ ( )+ ( )+

A
d1i d1 1

. 
The Richards model, taking into account the param-
eters µi and Tλ (Zwietering et al. 1990), is given as (Tλ 
form; Model 9):

	

µ

( )
( )
( ) ( )

=
+ ⋅ + ⋅

⋅ − + −




















λ

( )+

CG t A

d d

A
d t T

1 exp 1

exp 1i d

d

1 1/

1/
	 9

All growth models presented above (1–9) represent 
the Richards model family (Tjørve and Tjørve 2010, 
2017a, 2018). Models 7–9 have the most general form 
amongst the models presented in these studies. Mod-
els 1–6 can be derived from Models 7–9. With d = 1, 
Models 7–9 become the logistic Models 1–3, respec-
tively. The Gompertz model is also a special case of the 
Richards model (Seber and Wild 1989). However, the 
Richards model is not reduced to the Gompertz model 
by simply substituting a given value for d (Tjørve and 
Tjørve 2010). When d → 0 but d ≠ 0, Models 7–9 con-
verge towards the Gompertz Models 4–6.

The advantage of re-parameterisations presented as 
Models 2–3, 5–6 and 8–9 is that their parameter esti-
mates are comparable between these models. The maxi-
mum absolute growth rate µi is comparable amongst all 
mentioned models; Ti is comparable amongst Models 2, 

Table 1. Formulas allowing to determine T50 (A/2) based on the considered parameterisations of growth curves; m1–m9 refer to 
Models 1–9; log, the natural logarithm  

Logistic Gompertz Richards

k form m1 Ti m4 ( )
− = +T

k
T k

log log 2
0.3665i i

m7






−
−

kT
d

k

log
2 1

i

d

µi form m2 Ti m5
( )

=
µ µ

− +T
A

e
T

Alog log 2
0.1348i

i
i

i

m8
( )

( )







µ

µ

+ −
−

+

( )

( )

+

+

A
d T

d

A
d

1 log
2 1

1

i d
i

d

i d

1 1/

1 1/

Tλ form m3
µ

+ λ
A

T
2 i

m6
µ

( )−  = +
µ

+ λλ T A1 log log 2
0.5027T

A

e ii

m9
( )

( )







µ

µ

+ + + −
−

+

( )

( )

λ
+

+

d
A

d T
d

A
d

1 1 log
2 1

1

i d
d

i d

1 1/

1 1/



Folia Forestalia Polonica, Series A – Forestry, 2019, Vol. 61 (1), 30–41

Sigmoid growth curves, a new approach to study the dynamics of the epicotyl emergence of oak 35

5 and 8; and Tλ is comparable amongst Models 3, 6 and 
9. In addition, achieving the maximum relative growth 
rate is easy from any of Models 2–3, 5–6 and 8–9. The 
µi value should be divided by the value of the upper 
asymptote A. The value A/2 = T50 can be determined 
based on each of the 1–9 models, using the formulas 
in Table 1. The k parameter is not directly comparable 
amongst the most frequently used traditional models, 
that is, Models 1, 4 and 6.

Estimation of the model parameters

The estimation of growth curves is performed using the 
nonlinear least squares method according to one of the 
algorithms: Gauss–Newton, Newton, steepest descent 
(gradient) and Levenberg–Marquardt (Marquardt 1963; 
Dennis and Schnabel 1983). The nonlinear least squares 
method is an iterative method, and therefore the appro-
priate initial values of the parameters of the model must 
be chosen so that the algorithm converges. There is no 
standard procedure for obtaining initial estimates. The 
most obvious and easiest method is to find the crude 
initial values based on a scatterplot of the growth data. 
The upper asymptote A can be estimated this way. The 
coordinates of the point of inflection can then provide 
starting values for Ti. The value of parameter µi can be 
found as the largest difference between the percentage 
of germinated seeds between two consecutive measure-
ments, that is, days. When testing germination dynam-
ics, the parameter d > 0 and its value depend on the 
point of inflection. The initial value of this parameter 
can be determined by checking if half of the seeds (A/2) 
germinated before time Ti (then d Î (0; 1), in time Ti 
(then d = 1) or after time Ti (then d > 1). In turn, the ini-
tial value of Tλ can be taken for time t when the percent-
age of germinated seeds is between 6% and 12% of the 
upper asymptote A, depending on the growth function 
one wants to use.

Goodness-of-fit measures of nonlinear 
behaviour

The least squares parameter’s estimators in linear re-
gression models are unbiased, are normally distributed 
and achieve the minimum possible variance. Such prop-
erties are generally agreed on to be the most desirable 
properties that an estimator can possess (Seber and 
Wild 1989). In nonlinear regression models, the least 
squares estimators may not have the aforementioned 

properties of a  good estimator, especially with very 
small sample sizes. Nonlinear behaviour of model pa-
rameters is undesirable because the parameter estimates 
and their standards errors will be biased, leading to in-
correct inferences (Ratkowsky 1983, 1990; Ratkowsky 
and Reddy 2017). Ratkowsky (1983) proposed the term 
‘close-to-linear’ for model estimators that achieve the 
desirable properties.

Amongst nonlinearity measures, one can distin-
guish nonlinear measures used for testing of nonlinear 
behaviour, focusing on the model’s individual param-
eters as well as global measures of nonlinearity. The 
first group includes Box’s bias (b) (Box 1971) and Hou-
gaard’s skewness (h) (Hougaard 1982, 1985) of the least 
squares parameter estimates, and the second group in-
cludes curvature measures of nonlinearity (Bates and 
Watts 1980). According to Ratkowsky, the value of the 
Box’s bias for the close-to-linear parameter estimator 
should not exceed 1% (Ratkowsky 1983). In turn, the 
measure of skewness indicates a  close-to-linear be-
haviour of the parameter if its value is less than 0.25, 
whereas, if the measure is greater than 1, a  consider-
able nonlinear behaviour is present (Ratkowsky 1990). 
Haines et al. (2004) suggested that the model is reason-
ably close-to-linear if the absolute value of h does not 
exceed 0.15. In turn, Ratkowsky (2017) proposed a com-
promise cut-off criterion, where the absolute value of 
the skewness measure |h| ≤ 0.2 indicates ‘good’ behav-
iour, 0.2 < |h| ≤ 0.5 indicates ‘moderate’ nonlinearity 
and |h| > 0.5 indicates ‘bad’, that is, far-from-linear be-
haviour.

The second type of measures, overall measures of 
nonlinearity, consists of two components: the intrinsic 
and the parameter-effects curvatures (Bates and Watts 
1980). The intrinsic curvature is measured using the 
root-mean-square intrinsic (RMS IN) and cannot be 
affected by re-parameterisation of the model. How-
ever, the parameter-effects curvature expressed as 
root-mean-square parameter-effects (RMS PE) can be 
affected by altering the parameterisation of the model. 
Ratkowsky examined that RMS IN is typically smaller 
than RMS PE (Ratkowsky 1983). These parameters are 
assessed using a  critical curvature value (Bates and 
Watts 1980), which is a function of the sample size, the 
number of parameters of the model and a significance 
level α.
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Model selection

When several growth models are fitted to the same data 
set, model selection is carried out based on the mod-
el-fit criteria. One of the more frequently used ones is 
the Akaike information criterion (AIC; Akaike 1974), 
which can be used when all candidate models have the 
same number of parameters and the sample size is large 
enough. Burnham and Anderson (2002) suggested us-
ing the AIC when the ratio n/K (n is the sample size, K 
is the number of parameters) is about 40. If the models 
are compared with different numbers of parameters, 
the AICc criterion takes into account the number of pa-
rameters, and penalising models with more parameters 
should be used.

Epicotyl emergence experiment

For the epicotyl emergence experiment, acorns from 
a selected seed stand of pedunculate oak (Q. robur L.) 
were collected. The stand is located in the Strzelce For-
est District (southeastern Poland), IV Nature-Forestry 
Country. In 2016, from underneath 10 sample trees, we 

harvested circa 5 kg of acorns. For the experiment, 60 
acorns were randomly chosen and sown into the plastic 
boxes filled with sand. Before sowing, the acorns were 
stored at 3°C for 14 days (cold stratification to epicotyl 
dormancy break). The pots were placed in a germina-
tion room with constant air temperature (21°C). After 2 
weeks, only acorns with a visible radicle (<2 cm) were 
selected and transferred into pots containing a mixture 
of peat and sand (ratio 1:2); the radicle was not damaged. 
Pots were placed in growing chambers with simulated 
growth conditions for April, May and June (average and 
forecasted values considering predicted changes in the 
climate). Epicotyl emergence was recorded every day 
for a period of 74 days.

The data obtained in the experiment and used to 
analyse the epicotyl emergence dynamics were present-
ed as an observed cumulative fraction epicotyls CG(t), 
which have emerged until day t. Growth curves (Mod-
els 1–9) and measures of nonlinear behaviour of model 
parameters were obtained using the NLIN procedure of 
SAS/STAT ® 14.3 (SAS Institute Inc. 2017).
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Figure 2. Fitted growth curves from the Richards family and experimental data describing the dynamics of the epicotyl 
emergence of pedunculate oak
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Results

Growth curves from the Richards family were de-
termined for the studied data set of pedunculate oak 
(Fig. 2; Tab. 2 and 3). All tested models were signifi-
cant (p < 0.001). The best-fitting model was the Rich-
ards model, as its AICc value, as well as RV, was lower 
than that for the other two models (Tab. 2). The values 
of RMS IN and RMS PE allow the investigation of an 
overall nonlinearity measure of the full set of parame-
ters in each model. All models had nonsignificant RMS 
IN and RMS PE values, meaning that all tested models 
showed in general close-to-linear behaviour in model/
data set combination (Ratkowsky 1983, 2017).

To assess the estimation efficiency of each param-
eter of the model separately, Hougaard’s measure of 
skewness h and Box’s measure of bias b were deter-
mined (Tab. 3). For almost all parameters of the tested 
models, |h| ≤ 0.2, indicating linear behaviour of these 
parameters. Only the parameter k in Model 7 had |h| ≥ 
0.2, indicating moderate nonlinearity. Even considering 
the more conservative cut-off proposed by Haines et al. 
(2004) of |h| ≤ 0.15 for linear behaviour, only one pa-
rameter exceeded this cut-off (d in the Richards model). 
Linear behaviour of the parameters of the tested data 
set was also found with Box’s bias b, whose values for 
all parameters, except one, were less than 1%. Only for 
parameter d in the Richards model, b slightly exceeded 
1% (Tab. 3).

The parameters estimated for Models 1–9, given in 
Table 3, are comparable amongst the models. The high-
est value of the upper asymptote A was obtained for the 

Gompertz model and the smallest for the logistic model. 
However, based on the confidence intervals for param-
eter A, it can be observed that the differences between 
A values were not significant. The values of maximum 
absolute growth rate µi and lag time Tλ were similar 
for all models. When comparing Ti values, it should be 
remembered that they show time at inflection, whose 
location results from the properties of a  given model. 
For the same data, values for the Gompertz model (in-
flection point for CG(Ti)= A/e =0.368A) will always 
be smaller than those for the logistic model (inflection 
point for CG(Ti) = A/2). For the Richards model, the in-
flection point was between the Gompertz and logistic 
models because for the analysed data set, A/(1+d)1/d = 
= 0.433A. On the basis of the fitted growth functions, 
the time until 50% of seeds germinate (T50) was deter-
mined (Tab. 3). The T50 values are very similar, and the 
difference between them did not exceed 0.3 days. The 
largest value of the parameter k was obtained for the 
logistic model and the smallest for the Gompertz model. 
The confidence interval for this parameter in the logis-
tic model did not overlap with the confidence intervals 
determined for other models. It should be noted, how-
ever, that the parameter k is not readily interpretable be-
cause it does not directly answer any of the character-
istics of the growth curve, which is directly relevant to 
the germination dynamics analysis, that is, answering 
questions 1–5 referred to in the Introduction section. To 
obtain the maximum absolute growth rate, additional 
calculations have to be carried out, which are different 
for each of the tested models (see Subsection 1 in the 
Methods section).

Table 2. Goodness of fit of the models: AICc and residual variance (RV) and assessment of nonlinear behaviour: intrinsic 
(RMS IN) and parameter-effects (RMS PE) curvatures of the models as well as curvature critical value Pc; m1–m9 refer 
to Models 1–9 

Parameter m1 m2 m3 m4 m5 m6 m7 m8 m9
AICc

a −206.17 −209.37 −214.00
RVab 0.0797 0.0763 0.0706
RMS INa 0.0328 ns 0.0378 ns 0.0814 ns

RMS PE 0.0646 ns 0.0592 ns 0.1100 ns 0.0832 ns 0.0727 ns 0.1174 ns 0.3754 ns 0.3642 ns 0.1945 ns

Pc 0.6048c 0.6321d

a Models 1–3, 4–6 and 7–9 gave the same results for AICc, RV and RMS IN.
b RV values were multiplied by 102.
ns Not significant.
c Critical value for models with three parameters (Models 1–6).
d Critical value for models with four parameters (Models 7–9).
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After checking the close-to-linear behaviour of 
the parameters of the growth models studied (Tab. 2 
and 3) and taking into account the AICc as well as the 
RV values (Tab. 2), the best model describing the dy-
namics of the epicotyl appearance of pedunculate oak 
is the Richards curve (Fig. 2). To describe the dynam-
ics and answer questions 1–5 asked in Introduction 
section, Models 8 and 9 were most suitable. The time 
until intensive epicotyl emergence (lag time, Tλ) was 
25.9 days. The maximum absolute growth rate of epi-
cotyl emergence (µi) was about 4.5% and was achieved 
in Ti = 34.7 days. The time until 50% of epicotyls ap-
peared (T50) was 36 days. Total epicotyl emergence 
capacity was 91.4%. Approximate standard errors 
and confidence intervals for the parameters described 
above are given in Table 3.

Discussion

All the presented growth models (Models 1–9) belong 
to the Richards model family. As indicated in the Meth-
ods section, Models 7–9 can be derived from Models 
1–3 as well as from Models 4–6. In addition, the models 
proposed by us, that is, Models 2, 5 and 8, are equiva-
lent to models from the unified Richards family pro-
posed by Tjørve and Tjørve (2010, 2017b), that is, Model 
2 is equivalent to the Ti form of the U-logistic model, 
Model 5 to the Ti form of the U-Gompertz model and 
Model 8 to the Ti form of the U-Richards model. Us-
ing the aforementioned models for a given data set, we 
obtained the same upper asymptote A and time at inflec-
tion Ti. The difference is that, instead of the maximum 
absolute growth rate µi, which occurs in our models, in 
Ti forms of the U-models, the maximum relative growth 

Table 3. Parameter estimates, their standard errors (SE), confidence intervals and parameter measures of nonlinearity (h, 
absolute values of the Hougaard’s skewness; b, Box’s bias [%]) as well as T50 values calculated from model parameters, m1–m9 
refer to Models 1–9

Model Parameter Estimate Approximated SE Approximate 95% 
Confidence Limits h b

m1
A 0.903 0.006 0.891 0.916 0.028 0.008
k 0.203 0.007 0.189 0.217 0.144 0.110
Ti 36.219 0.198 35.824 36.614 0.012 0.003

m2a µi 0.046 0.001 0.043 0.049 0.145 0.110

m3a
Tλ 26.378 0.348 25.683 27.073 0.041 0.003
T50 36.219

m4
A 0.924 0.007 0.909 0.939 0.061 0.012
k 0.134 0.005 0.124 0.143 0.129 0.110
Ti 33.176 0.187 32.804 33.549 0.005 0.006

m5b µi 0.045 0.001 0.043 0.048 0.135 0.100

m6b
Tλ 25.690 0.324 25.044 26.336 0.044 0.001
T50 35.920

m7

A 0.914 0.007 0.899 0.929 0.116 0.030
k 0.160 0.013 0.135 0.186 0.280 0.370
d 0.410 0.170 0.071 0.749 0.189 1.080
Ti 34.665 0.575 33.518 35.811 0.121 0.040

m8c µi 0.045 0.001 0.042 0.048 0.131 0.230

m9c
Tλ 25.870 0.349 25.175 26.566 0.004 0.045
T50 36.044

a Other parameters in Models 2 and 3 are the same as in Model 1.
b Other parameters in Models 5 and 6 are the same as in Model 4.
c Other parameters in Models 8 and 9 are the same as in Model 7.
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rate is kU. To obtain Ti forms, proposed by Tjørve and 
Tjørve (2017b), from our model forms, it is sufficient to 
divide µi by the upper asymptote A. Between the Ti form 
of the U-Richards model and the Richards model pro-
posed by us (Model 8), there is also a difference regard-
ing parameter d, which determines when the inflection 
occurs (Vrana et al. 2018). In our model, d > 0, whilst in 
the Ti form of the U-Richards model, d > 1. The param-
eter d, however, has no interpretative meaning.

The sigmoid growth models proposed here (2–3; 
5–6; 8–9) allow an easy interpretation of all model pa-
rameters, because each parameter affects a single char-
acteristic of each growth curve. This is a great advan-
tage of these models (Tjørve and Tjørve 2010, 2017a, 
2017b; Vrana 2018). The parameters µi (affects slope) 
and A (represents upper asymptote) are shape character-
istics, whilst Ti (represents time at inflection) and Tλ (lag 
time) are location parameters. In addition, as we noted 
above, the maximum relative growth rate can easily 
be calculated based on µi. In Methods section, we also 
specified how to determine T50 (time to germination of 
50% of seeds) based on each of Models 1–9 (Tab. 1).

The selection of one of the two parameterisations 
of the growth curves, taking into account the different 
location parameters, that is, parameter Ti (Models 2, 5 
and 8) or parameter Tλ (Models 3, 6 and 9), depends 
on which parameter value is most convenient to discuss 
and to compare between data sets. If both parameters 
are needed, as in the case of studying the dynamics of 
epicotyl emergence of pedunculate oak, both param-
eterisations can be used. The important advantage of 
using a model adequate to the needs, that is, containing 
useful parameters, is the calculation of approximated 
standard errors and confidence intervals for the esti-
mated parameters directly from the model (Zwietering 
et al. 1990). If the purpose of the study is to compare 
the growth curves between data sets (e.g. populations 
originated from environments of various climatic con-
ditions), the computed confidence intervals will allow 
to check the significance of differences between them 
(Tjørve and Tjørve 2017a).

It is worth, or even necessary, to fit more than one 
growth model for the analysed data set (Tjørve and 
Tjørve 2017b). In the U-Richards family, each param-
eter (similar to that in Models 2–3, 5–6 and 8–9) has 
the same meaning in every model and can, therefore, 
be compared directly across all models. Having results 

for several models, we can choose the best model by 
considering not only criteria of model selection, for 
example, AICc or RV, but also, importantly, the linear 
behaviour of parameters. Nonlinear regression models 
differ greatly amongst themselves in the extent to which 
their estimators are close to or far from linearity. The 
growth model with the parameters of important biologi-
cal meaning would be of little practical use if its estima-
tors were grossly biased (Ratkowsky 1993). Therefore, 
choosing the best model should be a  compromise be-
tween the criteria of model selection and the measures 
of the quality of the model parameter estimators.

Conclusions

Answers to the questions posed in the Introduction sec-
tion are very important from the point of view of eco-
physiological research of seeds. The applied growth 
models allow the taking into account of very important 
parameters, apart from the standard ones such as T50 
and cumulative germination capacity A, and also lag 
time Tλ and the maximum absolute growth rate µi, indi-
cating the dynamics of the germination process. Values 
of these parameters vary depending on the growth con-
ditions and can serve as a fitness indicator.

All models analysed showed a  close-to-linear be-
haviour of model parameters, but in the present case 
(epicotyl emergence of oak), the best-fitting model was 
the Richards model. On the basis of the presented re-
search, we believe that the considered growth models 
from the Richards family not only are a useful tool for 
studying the dynamics of the epicotyl emergence of oak 
but also can be successfully used to study the germina-
tion dynamics of trees.
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