
1. Introduction
Sarcomas are a heterogeneous group of mesenchymal 
tumors. The recent WHO (World Health Organization) 
classification of tumors categorizes sarcomas in more 
than 50 entities based on their histopathological and 
genetic data (1). Sarcomas are malignant tumors that 
occur in both sexes and in almost every age of life, 
affecting people mainly of the 2nd to the 6th decade of life 
(2, 3). Treatment of sarcomas is still based on surgery 
and total resection of the tumor (4). Systemic treatment 
and/ or radiotherapy are mostly used in metastatic or 
high stage disease. However, to date no sarcoma-
targeted therapies have been approved and traditional 
chemotherapy, namely doxorubicin and ifosfamide remain 
the most effective drugs available in our armamentarium 
(5). The benefit from systematic chemotherapy remains 
poor with PFS (progression-free survival) of 5-7 months 
and overall survival for metastatic sarcomas of about 11-
13 months (6-8). The recent publication of a clinical trial 
phase Ib-II showed that the combination of Doxorubicin 
with Olaratumab - a PDGFRa inhibitor - has offered a 
benefit of 11.8 months in the median overall survival to 
the patients who received the doublet compared to those 

who received Doxorubicin monotherapy (9). NCCN 
(National Comprehensive Cancer Network) and ESMO 
(European Society of Medical Oncology) guidelines 
included this combination in their recent versions, 
with the ESMO experts commenting on the unknown 
mechanism of action of Olaratumab and the fact that the 
doublet was compared to Doxorubicin monotherapy and 
not to Doxorubicin plus Ifosfamide which is the standard 
of treatment in Europe (10, 11).

2. Hippo Pathway elements and 
regulation

Hippo signaling pathway is a developmental pathway 
discovered recently in Drosophila melanogaster. Hippo 
pathway controls organ size, tissue regeneration, wound 
healing and maintenance of tissue specific stem cells 
in mammals’ development (12, 13). Hippo signaling 
pathway modulates mesenchymal stem cell fate like 
normal bone (osteogenic differentiation), adipocyte 
(adipogenic differentiation) and muscle (myogenic 
differentiation), which are the origins of the most common 
sarcomas (14). 
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Hippo signaling cascade includes MST1/2 and 
LATS1/2, two kinases which phosphorylate YAP and 
TAZ co-transcription factors. The phosphorylated 
forms of YAP and TAZ shuttle from the nucleus to 
the cytoplasm via their binding to 14-3-3 proteins. 
Ultimately, the cytoplasmic faith of pYAP and pTAZ is 
proteasomal degradation. The unphosphorylated forms 
of YAP and TAZ are rescued from 14-3-3 binding and 
cytoplasmic shuttling and remain in the nucleus. Thus, 
nuclear YAP and TAZ regulate their function through 
TEAD transcription factors (15, 16) (Figure 1). 

Hippo signaling pathway is regulated through 
several mechanisms. Plasma membrane proteins like 
G protein coupled receptor ligands (GPCRs) have 
been identified as regulators of Hippo signaling (17).  
Upstream intracellular adaptor proteins such as NF2, 
RASSFs and KIBRA interact with MST1/2 and LATS1/2 
alter their function and subsequently YAP and TAZ 
localization (18-20). Cytoskeletal remodeling is caused 
by mechanical changes which facilitate YAP and TAZ 
to emerge as important factors linking extracellular 
matrix signals to transcriptional outputs that regulate 
cell behavior (21, 22). Furthermore, there are many 
publications reporting cross-talk of Hippo with other 
pathways like Wnt/ b-Catenin, TGFb, PI3K, MAPK and 
Jak/Stat (23-26). Activation of Wnt/ b-Catenin pathway 
decreases Hippo pathway activity. YAP and TAZ 
dissociate from the proteasomal degradation complex 
resulting to dysregulation of Hippo signaling (23). JNK 
(Janus kinase pathway) cross-talks with Hippo pathway, 

through colocalization of AP1 (dimmer of JUN and 
FOS proteins) with YAP and TAZ in TEAD transcription 
factors (24, 27). Furthermore, Ajuba proteins inhibit 
LATS1/2 function and activate Hippo pathway (28). PI3K 
activation leads to Hippo pathway inhibition conferring 
antagonism between contact inhibition and growth 
promotion (29). 

3. Hippo pathway in cancer

Recent data have shown that Hippo signaling pathway 
is frequently altered in several solid tumors, indicating 
a possible implication in their pathogenesis (12, 
13). In details, comprehensive genomic analysis 
of Mesotheliomas has shown the presence of 
chromosomal translocations involving genes of the 
Hippo pathway as well as frequent mutations of these 
genes (30, 31). Of importance, fusion transcripts 
of Hippo pathway lead to inactivation of their tumor 
suppressor function promoting carcinogenesis (30). 
Also in Mesotheliomas strong dysregulation of Hippo 
pathway increases the transcription levels of cell cycle 
promoting genes like CyclinD1 (32).  YAP and TAZ 
in Hepatocellular carcinoma contribute to disease 
progression by conferring stem cell-like properties (33). 
In Gastric cancer the downregulation of MST1/2 and 
LATS1/2 result to YAP,TAZ nuclear localization and 
Hippo pathway activation (34). YAP overexpression 
is related to shorter overall survival and TNM stage 
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Figure 1: Hippo pathway proteins’ localization and regulation.  

12



Anastasios Kyriazoglou et al.

in human Colorectal cancer patients (34). In Oral 
Squamus cell carcinoma YAP and TAZ are shown to 
drive protumorigenic signals (35). Hippo pathway is also 
engaged in Breast cancer, promoting several functions 
such as epithelial to mesenchymal transition, stem cell 
generation and therapeutic resistance (36). 

4. Hippo pathway in sarcomas

Deregulation of Hippo pathway is also implicated 
in pathogenesis of sarcomas. This was initially 
demonstrated in preclinical models. Transgenic Hippo 
mouse models frequently develop sarcomas (37-39). 
Mouse models developing Rhabdomyosarcomas reveal 
the importance of YAP in this fatal sarcoma type (40). 

In clinical samples, translocations with Hippo 
pathway genes have been detected in various 
sarcomas. In epithelioid hemangioendotheliomas YAP 
and TAZ create fusion genes resulting in YAP-TFE3 and 
TAZ-CAMTA1 respectively (41, 42). Clear cell sarcoma 
of the kidney and endometrial stromal sarcomas are 
characterized by the presence of the fusion gene 
YWHAE-FAM22. This fusion gene creates a nuclear 
fusion protein with a 14-3-3 element which interacts 
with YAP and TAZ (43, 44). Copy number alterations 
of YAP and TAZ have been reported in sarcomas, 
though mutations of these genes are not very common 
(45-47). Epigenetic regulation of Hippo elements have 
been shown in Ewing sarcomas and Osteosarcomas 
(48-50). FOXM1 interacts with YAP and promotes cell 
proliferation and tumorigenesis in a subset of soft tissue 
sarcomas (47). Despite all this descriptive evidence, a 
mechanistic biological understanding of Hippo pathway 
involvement in sarcomas is remarkably lacking.

In Rhabdomyosarcoma the characteristic PAX-
FOXO1 fusion oncogene interacts with Hippo 
pathway to drive tumor development (40). Embryonal 
Rhabdomyosarcomas (eRMS) present with Ras 
activating mutations, while YAP is upregulated in eRMS. 
In Ras mutated RMS cell lines and in murine xenografts 
YAP promotes cell proliferation, decreases apoptosis 
and disrupts myogenic differentiation. Pharmacologic 
depletion of YAP with verteporfin decreased cell growth, 
showing that this molecular lesion is an early step in 
RMS tumorigenesis (51). TAZ, the second effector 
of Hippo pathway acts as an oncogene in eRMS. Its 
expression is correlated to Myf5 upregulation, an eRMS 
stem cell factor. TAZ is associated with poor survival in 
eRMS (52).

YAP is stabilized in Ewing sarcoma through the 
interaction of BMI-1 (53). In this sarcoma type YAP is 
expressed in tumor samples tested, however there is 

not a clear connection of survival and YAP expression. 
On the other hand, Akt expression in the same tumor 
samples was statistically related to survival, conferring 
a possible interaction of Hippo with Akt signaling (54). 

In Osteosarcoma (OS) tumor samples YAP/TAZ 
and b-integrin were associated with prognosis. YAP 
and TAZ were independent prognostic factors for 
PFS (progression free survival) (55). Experiments 
looking for the molecular targets of Hippo signaling in 
Osteosarcoma revealed TEAD1 transcription factor to 
be the main Hippo effector. Cyr61 and PTGS2 were the 
downstream targets overexpressed in osteosarcoma 
cell lines (56). TAZ overexpression is accompanied 
by miR-224 overexpression, a TAZ phenocopy which 
inhibits tumor suppressor SMAD4, thus facilitating 
proliferation and migration of OS cells (57). 

5. Hippo pathway and Drugs

Hippo pathway deregulation has been implicated 
in resistance to chemotherapeutic drugs (58). 
Overexpression of YAP and TAZ in BRAF V600E mutant 
melanoma cells confers resistance to BRAF inhibitors 
(59). In BRAF V600E mutant lung cells YAP expression 
correlates with resistance to MEK and RAF inhibitors 
(60). TAZ is shown to mediate resistance to taxol in 
Breast cancer cells (61). 

Hippo pathway can be used as a target for therapeutic 
intervention. Small molecules like Verteporfin, statins 
and biphosphonates are being evaluated as putative 
treatment options (62, 63). There are few published 
reports of drug studies targeting Hippo pathway in 
sarcoma cells (64). Clinical trials of Phase I, II and III 
with drugs inhibiting Hippo pathway are still on-going 
(65-67). 

In osteosarcoma cell lines YAP was reported 
to participate in chemoresistance. MG63 cells 
overexpressing YAP showed accelerated proliferation 
compared to YAP knocked out cells and presented 
resistance to high concentrates of chemotherapeutic 
drugs such as methotrexate and doxorubicin (68). 

6. Conclusions and future challenges 

Since Hippo signaling pathway constitutes a recently 
identified pathway, there are yet many critical aspects 
understudied. The oncogenic function of Hippo pathway 
is a “hot spot” of current cancer research efforts. Hippo 
pathway plays a crucial role in sarcoma stem cell 
formation, proliferation and resistance to chemotherapy 
regimens. Hippo pathway cross-talks with several other 
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molecular pathways and confers new insights in the 
complexity of the molecular cascades of sarcomas’ 
tumorigenesis and evolution. Targeting Hippo pathway 
in sarcomas, where there is a great need of targeted 
therapies, could potentially improve prognosis and 
outcome in patients suffering from these lethal tumors.
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