
Extensible Implementation of Reliable Pixel Art Interpolation

Paweł M. Stasik, Julian Balcerek ∗ †

Abstract. Pixel art is aesthetics that emulates the graphical style of old computer
systems. Graphics created with this style needs to be scaled up for presentation on
modern displays. The authors proposed two new modifications of image scaling for
this purpose: a proximity-based coefficient correction and a transition area restriction.
Moreover a new interpolation kernel has been introduced. The presented approaches
are aimed at reliable and flexible bitmap scaling while overcoming limitations of exist-
ing methods. The new techniques were introduced in an extensible .NET application
that serves as both an executable program and a library. The project is designed
for prototyping and testing interpolation operations and can be easily expanded with
new functionality by adding it to the code or by using the provided interface.

Keywords: image processing, pixel art, image upscaling, bitmap interpolation,
proximity measure, proximity-based coefficient correction (PBCC), p-lin interpola-
tion, transition area restriction (TAR)

1. Introduction

Old computer systems, in comparison to modern systems, were heavily restricted
in their graphical capabilities (in the sense of the amount of available colors and
the possible resolutions). Pixel art is an artistic form that was aimed at handling
these limitations, but them should not prevent it from being presented with graphical
possibilities of the modern systems. However, due to its original small size, pixel
art needs to be sized up to be presented on modern high-resolution displays. The
upscaling process has to preserve specific traits of pixel art: important pixel-level
details, limited color palette, and strong contrast. Because of that a scaling method
has to be picked carefully.
∗Faculty of Computing, Poznań University of Technology, Poznań, PL,

pawel.m.stasik@gmail.com, julian.balecerek@put.poznan.pl
† This paper is an expanded and significantly revised version of “Improvements in Upscaling

of Pixel Art” that appeared in SPA 2017 conference proceedings.

F O U N D A T I O N S O F C O M P U T I N G A N D D E C I S I O N S C I E N C E S
Vol. 44 (2019) No. 2

ISSN 0867-6356
e-ISSN 2300-3405DOI: 10.2478/fcds-2019-0011

Pixel art does not only appear nowadays in emulation of the old systems. It is also
aesthetics of choice for new released games that are designed to be played on modern
systems while staying true to the pixel art limitations. A list of few examples of such
games is presented in Table 1.

Table 1. Estimated number of owners for the selected games on the Steam platform
(as of December 1, 2017) [23]

Game Owners Release date Developer
FTL: Faster Than Light 2,925,530± 52,448 Sep 14, 2012 Subset Games

Owlboy 188,162± 13,339 Nov 1, 2016 D-Pad Studio
Papers, Please 1,915,985± 42,489 Aug 8, 2013 3909

Terraria 9,547,040± 94,092 May 16, 2011 Re-Logic
Undertale 3,001,685± 53,122 Sep 15, 2015 tobyfox

While there are standard, well-known ways of displaying pixel art [4, 24, 26],
there is still a room for improvements in the state-of-the-art approaches to pixel
art scaling [7, 22]. The list of problems includes: a disproportionate replication of
pixels, loss of sharpness, restricted scale factors, and questionable decisions in image
reinterpretation. As a result of that, the authors designed new and reliable techniques:
the proximity-based coefficient correction (PBCC), transition area restriction (TAR),
and p-lin [22]. These methods are reliable as they allow for scaling up bitmaps with
any scale factor while providing a faithful and well-formed square visualization of the
original pixels.

In this paper these new methods are presented in comparison to classic algorithms.
Further the implementation of the new techniques is presented. The implementation
was aimed at experimentation and showcase of the proposed algorithms. Moreover,
the implementation is extensible, as it can be easily modified and expanded with new
algorithms with help of included and in-code documentation.

The implementation relies on .NET Framework and while it uses it for optimiza-
tion, it is not aimed at working in the real time. Shader support would have improved
the execution time, but would also have made the implementation harder to modify.
The application was designed in mind with easy prototyping various scaling methods
and testing them, comparing them and their processing times. Moreover, the imple-
mentation can work both as an executable program and as a library, which expands
its use even more.

In the following sections the methods are shown. Then the extensible software
implementation is presented with an explanation of choices made for the project. At
the end there is a showcase of results of scaling pixel art followed by conclusions.

2. State of the art

Several approaches of bitmap resizing can be used for scaling up pixel art. They can
be divided into two basic groups — classic scaling methods and dedicated methods.

214 P. M. Stasik, J. Balcerek

The easiest classic methods are the linear interpolations and the nearest neighbor
[1]. Both are typically implemented in modern graphic processing units [15]. The
linear interpolation does not impact on overall proportions of resized picture elements,
but provides a blur (see Fig. 1a). The blur gets stronger with increase of the scale
factor (Fig. 1a — keep in mind that the left image was upsampled for presentation).
This drawback makes this method unsuitable for scaling pixel art.

On the other hand, the nearest neighbor is usually advised for scaling pixel art
[4]. However, while providing great contrast, for fractional scale factors the nearest
neighbor does not copy pixels equally. Small disfigurements occurring in such a sce-
nario are an undesired side effect (see Fig. 1b). The proposed methods [22] were
designed to fit in the middle ground between both the nearest neighbor and linear
interpolation methods. Their results presented on displays create an illusion of sharp
and undeformed pixels (see Fig. 1h, 1i, 1j and 1k).

Other classic methods of image scaling are the cubic (bicubic for 2D image pro-
cessing) interpolation and Lanczos resampling [1]. Their major issue that makes them
unfitted for scaling pixel art is overshots, which can be seen in Figures 1c and 1d.

Two typical pixel art-scaling methods were selected as examples — hqx and xBRZ.
Both algorithms rely on a binary comparison of each pixel with its eight neighbors
(whether both pixels are or are not similar). In case of hqx each of 256 possible
similarity scenarios for a given pixel has assigned a combination of blending functions
to fill an area representing the pixel [24]. An approach taken by xBRZ is different
— the area is filled with one color and the similarity tests are used to detect specific
patterns like sharp or round corners, applying appropriate corrections if needed [26].

While both hqx and xBRZ are designed with pixel art in mind and are aimed at
providing readable images, they are not free from their own drawbacks. The main
problem is that these methods allow only for specific, integer scale factors (up to 4
for hqx and up to 6 for xBRZ). Because they were not prepared to handle their own
output, it is not advised to combine several passes of them to get the scale factors
that were not defined (e.g. combining ×2 and ×4 to get ×8 is not valid). The classic
scaling methods might be used to deal with this problem, but such approach would
include problems related to the used classic techniques. Due to complexity of the
code of both methods an addition of new scale factors would require a lot of work.

The other issue with hqx and xBRZ is that the ways they handle image features
were arbitrary chosen by their creators. On subjective level this may lead to either
nice or questionable connections of pixels in the outcome images. The second kind
might be either not liked by a viewer or not representing intentions of a creator of
the image. Moreover, the shapes may be misinterpreted, which will result in errors
in the output, like those that can be seen in Fig. 1e or 1f.

An interesting approach to scaling pixel art was presented by Kopf and Lishinski
[7]. The idea was to vectorize the bitmap by turning it into Voronoi map. The next
step was to make connections between cells and to optimize the resulting splines, by
analyzing similarity of neighboring pixels. The final vector image is then rendered
on the display. The main disadvantage of this method is, as it was stated by its
creators themselves, that it does not handle well all possible scenarios. While there
exists demo allowing for real time computations of the algorithm [8], it tends to

215Extensible Implementation of Reliable Pixel Art Interpolation

render image with artifacts that are especially visible at large scale factors (see Fig.
2). The other available implementations can be found as libdepixelize [5] which was
included in Inkscape vector graphics editor [6]. In [20] an improvement over the
Kopf-Lishinski depixelizing algorithm was proposed, named pixel art remasterization,
aiming at shorter processing time. However, both methods are prone to make wrong
connections as objects move in the rendered scene (see Fig. 1g for an example of the
depixelizing algorithm and see [19] for the remasterization algorithm).

So far the presented techniques depend on predefined rules. These rules can take
various forms - from a simple kernel function to to be as complex as xBRZ, hqx, or
depixelization. However, there are techniques that can, instead of having set rules,
adapt to the data.

There are more experimental approaches that instead of relying on predefined data
first need to be trained to be able to scale up images. Good example of such algorithms
aimed at synthetic pictures are waifu2x [2, 14] and pixcaler [25]. Both algorithms rely
on neutral networks to learn about how images are supposed to be scaled. Waifu2x
was designed with scaling digital artwork while pixcaler is aimed at scaling pixel art.
Both algorithms need a learning dataset, but are also provided with trained data of
their own. Sadly, in case of pixel art no reference model is typically provided. In
case of pixcaler, models are automatically generated from the provided set of images.
Looking at the output of these two algorithms with their default datasets, we can see
that waifu2x does not handle pixel art well (Fig. 3b), while pixcaler provides quite
promising results (Fig. 3c). However both algorithms have limited use and allow only
for the highest scale factor to be of 2.

We proposed in our work [22] an approach to pixel art scaling that solely relies
on proper modifications of interpolation kernel. These techniques are the proximity-
based coefficient correction (PBCC) and the transition area restriction (TAR). The
aim of PBCC is to improve sharpness of the linear interpolation by revaluing its co-
efficients in a regard to the real two-dimensional distance of the interpolated point
from the defined source points (see Fig. 1h). From PBCC a new interpolation func-
tion, called p-lin (see Fig. 1j), was proposed. TAR affects the coordinates of the
interpolated point and is similar to a clamping function, but TAR ties the size of
the transition to the target resolution. That way TAR allows for achieving a good
contrast with various target display resolutions (see Fig. 1i). Moreover, because these
techniques modify normal interpolation kernel, they allow for any scale factors.

When it comes to software designed for testing various scaling algorithms, there
are several options. Custom interpolation kernels can be implemented in Matlab
[9], however the environment is proprietary and not freely available. In regards to
freeware and open-source applications like Octave [3], they can be modified to include
new interpolation options. This is nevertheless not always an easy task. In regards to
optimized implementations, there is a project that tests various kernels using OpenGL
[18], but the use of shaders makes addition of new methods more difficult and less
straightforward.

216 P. M. Stasik, J. Balcerek

(a) Linear (×1.5 on the left, ×3 on the right)

(b) Nearest neighbor (×1.5 on the left, ×3 on the right)

(c) Bicubic (×3) (d) Lanczos-3 (×3)

(e) hqx (×3) (f) xBRZ (×3)

(g) Depixelize (Kopf-Lishinski, ×1.5 on the left, ×3 on the right)

(h) Linear + PBCC (×3) (i) Linear + TAR set to 2 (×3)

(j) P-lin (×1.5 on the left, ×3 on the right)

(k) P-lin + TAR set to 2 (×1.5 on the left, ×3 on the right)

Figure 1. An overview of the scaling methods that rely on predefined rules — classic,
pixel art-dedicated and introduced by the authors. The images for scale factor ×1.5
were upsampled two times for readability. The outcome of the nearest neighbor ×3
serves as a ground truth.

217Extensible Implementation of Reliable Pixel Art Interpolation

Figure 2. An example of artifacts in depixelization algorithm. The image is from
game Owlboy (by courtesy of D-Pad Games).

(a) Nearest neighbor

(b) waifu2x

(c) pixcaler

Figure 3. An overview of the scaling methods that rely on neutral networks —
waifu2x and pixcaler. The scale factor is ×2. The nearest neighbor was added for
comparison.

218 P. M. Stasik, J. Balcerek

3. Classic interpolations

Let us assume we have a bitmap I that isM pixels height and N pixels wide. A value
assigned to a pixel at (x, y) is represented by I(x, y), where

x ∈ [0, N − 1] ∩ Z , y ∈ [0,M − 1] ∩ Z . (1)

If we want to obtain values for each pixel of the image I scaled up with a scale
factor S, the new values have to be interpolated using the existing original pixels. For
this purpose let us assume that each pixel (from both the source image and target
image) has its value assigned to its geometrical center. The shift is important for
obtaining a proper outcome. The transition between the position of the (x, y) pixel
in an bitmap to (xv, yv) coordinates of its value is

(xv, yv) = (x+ 0.5, y + 0.5) . (2)

Let us assume that (xr, yr) is a position of an pixel in the bitmap that is a result
of scaling up. The corresponding coordinate in the source bitmap is

(x, y) =

(
xr + 0.5

S
− 0.5,

yr + 0.5

S
− 0.5

)
, (3)

which is a result of the transition to the center of the target image pixel, casting into
source image, and transition back from the center of the source image pixel. Notice,
that the coordinates might end up with a fractional value which means that the point
lies between two pixels. A reference pixel assigned to these coordinates is

(x0, y0) = (bxc , byc) (4)

and the position of the interpolated point from the reference point is

(x′, y′) = (x− x0, y − y0) . (5)

It is worth noting that the pixels in bitmaps are uniformly spaced from one another
in a square grid. Because of that we can write a formula for more coordinates of the
defined pixels of the source bitmap in relation to the interpolated point:

(xp, yr) = (x0 + p, y0 + r) . (6)

We can also describe a relative position of the defined points as

(x′p, y
′
r) = (p, r) . (7)

When an image is scaled up, the value for a pixel at (xr, yr) is the value of the image
I at (x, y). This value is obtained with an interpolation function. All the presented
classic approaches are convolution-based and are represented with an interpolation
kernel that is applied to the defined values of the source image:

I(x, y) =
∑
p,r

W (x− x0 − p, y − y0 − r) · I(x0 + p, y0 + r) =

=
∑
p,r

W (x′ − x′p, y′ − y′r) · I(xp, yr) ,
(8)

219Extensible Implementation of Reliable Pixel Art Interpolation

where W (x, y) is the window function of the interpolation kernel. The values u and v
should be limited to the size of the window (to the range within which its values are
non-zero). In case of pixels close to the border of the image, there might be a need to
read values outside of the bounds of the picture. In such scenario the values can be
acquired by selecting a strategy of handling the out-of-bounds cases, e.g. mirroring
the image.

Formulas for the mentioned (in the state-of-the-art section) classic approaches are
enlisted below. Notice, that all presented functions can be separated into a product of
two independent one-dimensional functions (which are exactly the same). Also notice,
that in the case of the Lanczos resampling there is n parameter, which denotes size
of the window of the function. The most popular sizes of the window are n = 2
and n = 3 [1]. Plots of the one-dimensional kernels of the presented interpolation
functions are shown in Fig. 4.

The classic methods have kernels as follows:

• nearest neighbor

Wnn(x, y) =

{
1 ; − 0.5 < x, y < 0.5

0 ; otherwise,
(9)

• bilinear interpolation

Wlin(x, y) =

{
1− |x| − |y| − |xy| ; 0 ≤ |x|, |y| < 1

0 ; otherwise,
(10)

• bicubic interpolation

Wbic(x, y) = wcub(x) · wcub(y)

wcub =


|x|3 − 2 · |x|2 + 1 ; 0 ≤ |x| < 1

−|x|3 + 5 · |x|2 − 8 · |x|+ 4 ; 1 ≤ |x| < 2

0 ; otherwise,
(11)

• Lanczos-n resampling &

WLn(x, y) = wLn(x) · wLn(y) wLn =


1 ; 0 = |x|

n · sin(πx/n) · sin(πx)

π2x2
; 0 < |x| < n

0 ; otherwise.
(12)

220 P. M. Stasik, J. Balcerek

0 1 2

0

1

x

w
nn

(x
)

Nearest Neighbor

0 1 2

0

1

x

w
lin

(x
)

Linear Interpolation

0 1 2 3

0

1

x

w
cu

b(x
)

Cubic Interpolation

0 1 2 3

0

1

x

w
lc

z−
2(x

)

Lanczos−2 Resampling

0 1 2 3

0

1

x

w
lc

z−
3(x

)

Lanczos−3 Resampling

Figure 4. Positive values of the classic kernels. The negative values are mirrored.

4. Proposed methods

4.1. PBCC

Let us consider that we use the linear interpolation to obtain coefficients assigned for
each of the defined points. These factors are in practice a product of two independent
one-dimensional interpolations, i.e. horizontal and vertical. Let us now consider that
we want to revalue these coefficients in regards to the true Euclidean two-dimensional
distance from the interpolated point. The following proximity function [21] was used
for this purpose:

bp,r = b(x′, y′, x′p, y
′
r) =

1 ; [x′y′] = [x′py
′
r]

1−
√

(x′ − x′p)2 + (y′ − y′r)2

2
; otherwise,

(13)

where x′, y′ are the relative coordinates of the interpolated point, and x′p, y′r are rela-
tive coordinates of a defined point in relation to the reference point (x0, y0). Because
only four defined points are used in the case of the linear interpolation, forming a
square around the interpolated point, we have x′p, y′r = 0, 1. Moreover, the proximity
function returns one if the interpolated point is overlapping with the defined point
and zero if both across the diagonal. Note, that the proximity function was simpli-

221Extensible Implementation of Reliable Pixel Art Interpolation

fied to encompass only the case of x′, y′ ∈ [0, 1]. Outside of this range, value of the
function should be considered to be zero.

With the proximity function in mind, we can redefine the linear interpolation
function as:

I(x, y) =

1∑
p,r=0

Wlin ·
bp,r
B
· I(xp, yr) =

1∑
p,r=0

Wlin+PBCC(x, y) · I(xp, yr) , (14)

where B is a sum of all four proximity values (this sum is needed to keep convexity
of the interpolation):

B =

1∑
p,r=0

bp,r . (15)

This is how PBCC is applied to the linear interpolation. If we would like to define
only the coefficients of the new, proximity-corrected interpolation, we get:

Wlin+PBCC(x, y) = Wlin(x, y) · b(x, y, 0, 0)/B . (16)

The results of the linear interpolation with PBCC are a little bit sharper than the
linear interpolation and involve a small rounding effect to the corners of the pixels.
It is worth noting, that PBCC can be applied multiple times to achieve a stronger
effect.

4.2. P-Lin

Let us consider a one-dimensional kernel of the linear interpolation:

wlin(x) =

{
1− |x| ; 0 ≤ |x| < 1

0 ; otherwise
(17)

and a one dimensional variant of the previously used proximity function (13) [21]:

bp = b(x′, x′p) =

{
1− |x| ; 0 ≤ |x| < 1

0 ; otherwise.
(18)

The results of applying PBCC in such case would yield two possible non-zero coeffi-
cients:

wp-lin(0) =
(1− x′)2

(1− x′)2 + x′2
, wp-lin(1) =

x′
2

(1− x′)2 + x′2
. (19)

These factors can be combined to get a two-dimensional interpolation:

Wp-lin(x, y) = wp-lin(x) · wp-lin(y) . (20)

This interpolation kernel was named ‘p-lin’, which stands for ‘the proximity-
corrected (one-dimensional) linear interpolation’. The results achieved with this
method are sharper than for the bilinear interpolation with PBCC and the corners
are not rounded. This difference on the corners can be either good or bad effect
depending on what is expected and needed.

222 P. M. Stasik, J. Balcerek

4.3. TAR

The transition area restriction (TAR for short) is a technique of reducing the between-
pixels area that is a subject to interpolation. The idea is that if an interpolated pixel
is close enough to one of the defined points, its value is assigned to be of that closest
defined point. The points that are going to be interpolated have their coordinates
modified to encompass for the reduced transition area between pixels. TAR works in
a similar manner to a clamping function.

Let us assume that we want to dedicate ∆lx pixels vertically and ∆ly pixels hori-
zontally on the display for the purpose of the transition. These values define a desired
size of the transition area on the target image. We can use these parameters to obtain
the respective size in the space of the source image (with the scale factor being S):

∆l′x = ∆lx/S , ∆l′y = ∆ly/S . (21)

Both values ∆l′x and ∆l′y have to be limited to [0, 1] range to prevent exceeding size
of a pixel in the source image. If these values are zeros, then the nearest neighbor
should be used instead of the desired interpolation.

Once the relative size of the transition area have been computed (and limited if
that was needed), the second pair of parameters can be computed:

l′x =
1−∆l′x

2
, l′y =

1−∆l′y
2

. (22)

Finally, new coordinates can be obtained:

x′′ =
x′ − l′x

∆l′x
, y′′ =

y′ − l′y
∆l′y

. (23)

These values have to be limited to [0, 1] range as well. In this case negative values
and values larger that one correspond to ‘snapping’ to the nearest defined point. The
new coordinates replace the old ones when computing interpolation coefficients, i.e.
we have W (x′′ − x′p, y′′ − y′r) instead of W (x′ − x′p, y′ − y′r) in (8).

TAR can improve sharpness of the images very well. Moreover, it ties the new
transition area to the effective target image size. That way it allows for a consistent
perceived sharpness regardless of the resolution of the target display. However, it
is worth mentioning, that for the smaller scale factors than the desired size of the
transition area this technique would simply not work — there would be not enough
pixels left in the first place.

5. Extensible software implementation

An application was created by us to test the proposed algorithms on bitmaps. The
application was created with .NET Framework and works both is the command line
and as a dynamically linked library (DLL). The prime concepts behind its design were
availability, transparency, and extensibility.

223Extensible Implementation of Reliable Pixel Art Interpolation

The first big idea was that this project needed to be easy to use in further research.
Moreover the upgrades and modifications to the program created by others should
not be difficult to publish and share. Because of that the application was made
available in multiple ways. Firstly, its code was intended to be open and publicly
available. Moreover, thanks to .NET the software is cross-platform. The code either
uses functions provided with .NET or has its own, causing no licensing issues.

Another important issue was to ensure that further improvements over the existing
functions should be easy to be made by anyone. Such transparency allows others to
analyze the algorithms and approaches with ease, which is beneficial in further work.
The transparency of the application comes from documentation of its code. Both
its functions and the main code for the command-line functionality are commented,
making it easy to understand the whole resizing process. Additionally, the structure
of the program helps in following what are the responsibilities of each part of the
code.

The extensibility of the software benefits from the transparency, because modifi-
cation of the program and addition of new options is supposed to be a simple and
clear process. This is supposed to have a positive impact on both further testing and
getting insightful input from other researchers. On top of that, using the program as
the library, some options, like kernels or image casting functions, can be customized
on the run. This can be used for dynamic prototyping of new functions and testing
them in the real life.

The application can serve well in prototyping and testing various interpolation
functions. Thus the speed of the whole process was not the main concern. While the
program can be capable of providing results fast, it is not optimized for any real-time
scenarios. The faster processing could be achieved with inclusion of shaders, but that
would impair the straightforwardness of the design (as it has been mentioned in the
state-of-the-art section).

5.1. Technology

As it was mentioned, the application can be used on various platforms and that is one
of the reasons behind using .NET Framework. The minimal version selected of .NET
for the project was 4.5 (default for Windows 10) due to availability of Parallel.For
function [13], which clarifies the code in the part regarding the image processing.
Parallel processing isn’t required for the program to be functional, but is beneficial
for computational time. The way the processing functions are designed is aimed at
separating the exact interpolation functions from the processing, so inclusion of the
parallel processing shouldn’t be a problem. Of course, because the way the parallel
computations are implemented it’s hard to rely on them for comparison of processing
time. Because of that an option to disable the parallel processing was also included.

Another benefit of .NET is an included support for various bitmap formats both
for reading and for writing [12]. However, the default bitmap class cannot be accessed
by multiple threads. Because of that each read bitmap is cast into a simple three-
dimensional array, which is encapsulated into its own class.

224 P. M. Stasik, J. Balcerek

The project was designed to work as both console application and as a DLL. This
approach allows for the application to be used in the most preferable manner. While
the latter approach allows for prototyping in the run-time, the former allows for a
straightforward access to the implemented functions. The library mode allows for
more flexibility and exposes most parts of the project, but users have to construct
and run the scaling process themselves. In case of the command line mode the process
is constructed by the application and all required information has to be provided as
parameters of the program.

The parameters are gathered in the code in arrays of strings which are used for
matching and recognizing the parameters and options. Some exclusive options, like
interpolation method, use two arrays — one for acceptable parameter names and the
other for a finally-assigned labels. New parameters can be included by adding new
arrays and providing a support for their values in the code.

The second part of the the program is the library part. Thanks to .NET rules,
an executable file can work as a dynamically linked library by making its functions
public. providing more functionality than the command-line variant. New options,
like interpolation or transformation functions, can be added in the code. Some of the
new options can be even obtained by using functions provided by the library. Such
approach allows for an easy prototyping. The main reasoning behind exposing the
program functions in this manner was providing a convenient way for experimenting
with scaling methods. While such access to be useful requires creating a separate
application, the client program could be tailored to the needs of actual prototyping.

The image resizing is handled by a dedicated Resizer class. The class takes the
input image, an empty output image, and an interpolation setup (which includes
casting function, TAR, PBCC, and interpolation functions). The resizing process can
work with an interpolation kernel of any finite size and various transformations (like
rotations) can be turned into proper casting functions. However, the excessive points,
like in case of rotation, have to be removed in post-processing (after the Resizer
object provides its output).

Figure 5 shows an outline for the resizing process. For each point of the output
image a respective location within the source image is computed. The location is
then turned into a structure of positioning values: the reference point and the relative
position to that point. The relative coordinates can be modified with TAR. Then the
coordinates, whether restricted or not, are used to obtain the interpolation coefficients.
These coefficients together with the restricted coordinates are then processed with
PBCC. The final coefficients are then multiplied with values of the respective pixels
of the original image, whose locations are obtained from the location of the reference
point. The result of the multiplication is then written into right pixel of the output
image.

The way this process is implemented recreates the whole proposed way TAR com-
bined with PBCC. This step-by-step processing allows to affect how the values are
computed at each stage, usually allowing to provide a new function. TAR in this
situation can be substituted with any function that is supposed to modify positions
only for the purpose of computing the coefficients. In a similar manner PBCC can
be replaced with any method that modifies the coefficients after obtaining them. The

225Extensible Implementation of Reliable Pixel Art Interpolation

Reverse
transformation

Coordinates
in the target image

Coordinates
in the original image

Positiong values

Relative (normalized) position

Reference point
& positioning indices

Coefficients

Position with reduced transition
Corrected

coefficients

Value
of the target

pixel

Relativate
coordinates

TAR

PBCC
Obtain

coefficients
Apply

coefficients

IN

OUT

Figure 5. An outline of the resizing process implemented in the plin Project

presented approach turns the action of computing coefficients into a tree-stage pro-
cess:

• non-transitioning shift of positions (it does not affect the real positions, just
how they are provided to the kernel),

• kernel,

• coefficient reevaluation.

The available control over the process allows at implementing any new scaling func-
tions and test them in the same environment as the existing ones. The only drawback
of this approach is that it requires to use the program in the library mode or to recode
it.

The Resizer class involves an optional optimization process. This process selects
one of many variants of the resizing functions. The selection depends on the infor-
mation on: how many colors image has, are the coefficients buffered, whether TAR
or PBCC should be applied, and even if the whole process is allowed to be computed
using Parallel.For. Every variant of the resizing process is stripped to include only
the needed functions and operations. While at the existing point this is not required,
further modifications might tackle this part of the program to provide even more
flexibility and control options to the users.

5.2. Functions

We can distinguish four basic fields related to how the program works and scales
images. First and foremost are casting operations, which are used to obtain position

226 P. M. Stasik, J. Balcerek

of the new point in the source image. We can simply distinguish as a special field
transformation operations, which after setting up the desired sequence of operations,
can be turned into casting function. After obtaining the position of the point, its
value needs to be interpolated, which is another field of operations of our library.
The last field of our program is the exact processing of the image by applying those
operations. The library part of the project was divided into four namespaces related
to the aforementioned fields:

• Casting — supplies basic structures for point coordinates and positioning of
interpolation coefficients. It also provides definition for delegates [11] of cast-
ing, blending and transition functions. It also gives methods for composing
one-dimensional functions into two-dimensional ones, generating casting and
blending functions.

• Transformations — provides a definition of an affine transformation matrix
and allows for a creation of such a matrix by stating desired operations or by
composing them.

• Interpolations — is responsible for delegates needed for interpolation func-
tions and their compositions. It also provides support for PBCC and TAR.
Moreover, it defines an interpolation setup object class needed for the process-
ing.

• Processing — provides object class for image processing and its optimization.

Whenever it is stated that the library provides a function, it means the library
generates the function. The generation process returns an anonymous function that
works accordingly to the proper delegate type. Thanks to that the whole process
works exactly the same regardless of origins of used functions, allowing for more
reliable comparison of processing time.

The Casting namespace is supposed to cover all all structures and definitions
required to apply casting functions. The most important are definitions of casting
functions, structures to hold related data and means to compose those together func-
tions. The most notable options provided by Casting namespace are:

• InterpPoint1D and InterpPoint2D structures are responsible for providing
an integer position — an index of the reference pixel — and a float value —
the displacement from the reference point or the normalized position of the
interpolated point.

• A static Function class is responsible for combing one-dimensional casting func-
tions into two-dimensional ones. The class is also used for a generation of the
most simple casting methods from provided scale factors or from transformation
matrices. Moreover, the class can generate blending functions (which are used
to clip the image after processing) from the casting functions. For this purpose
it supplies three basic blending functions — a linear one, a point one, and one
based on p-lin. This class also provides functions for creating an array of the
buffered coefficients.

227Extensible Implementation of Reliable Pixel Art Interpolation

When we want to design more complex transformations than just image scaling, it
is much easier using transformation matrices and composing them than trying to de-
sign simple casting functions. For that reason the whole Transformation namespace
was made in separation to the Casting namespace. The Transformation namespace
consists of:

• TransformationMatrix — a structure of the affine transformation matrix with
methods for composing it with other transformation matrices and applying it
to points. It also provides a definition of a unity transformation.

• TransformationPrototype is a structure for storing the matrices for transfor-
mations from the source image to the target image and back. It also holds
dimensions of both the original and the target image.

• TransfomationSetup — a structure for designing an affine transformation from
provided operations — translation, scaling, rotation and expansion (addition of
empty pixels on sides of the bitmap) in that order. The expansion can also be
moved to be the first operation. The structure also provides static methods for
obtaining size of the bitmap after rotation.

The most important part of the presented idea is image interpolation which trans-
forms position of a point into weights that are applied to pixels of the source image in
order to obtain the value at the interpolated point. We proposed the Interpolation
namespace which provides definitions of functions to all three stages of interpolation.
It also provides means to store the setup for the processing and means to generate it
to make creation of the setup easier. The Interpolations namespace provides:

• Interpolate1D and Interpolate2D delegates for functions that return an ar-
ray of coefficients from the normalized position of the interpolated point. The
indexes (coordinates) of the pixels to which these factors are supposed to be
applied are provided by positioning functions defined by Interp1DStart and
Interp2DStart delegates.

• PBCC is supposed to be handled by functions of PBCCFunc delegates. They take
an array of coefficients and the normalized position to return an array of cor-
rected coefficients. Handling of TAR is provided with TransitionReductionFunc
delegate, which transforms the normalized coordinates of the interpolated point.

• A static class Interpolations provides enumerations of the PBCC options
and defined in the library interpolation functions (linear, nearest neighbor, and
p-lin). It gives methods for obtaining two-dimensional interpolations from one-
dimensional ones — both for the interpolation functions and the positioning
functions. It can generate interpolations from the selection of the defined ones
— linear, nearest, and p-lin, — or from a transition function. The class also is
capable of generating basic positioning function for these interpolations and of
creating PBCC and TAR functions.

228 P. M. Stasik, J. Balcerek

• Interp class is designed to store the delegates required for the scaling process
along with the dimensions of both the source and target images. It also pro-
vides methods for simplified assignment of its parameters from provided input
informations.

The Processing namespace was made to apply the the image transformation and
interpolation process presented in this paper and consists of:

• Image class is designed to store a bitmap array and provide access to it. It
allows for an arbitrary quantity of color channels, but it also gives preassigned
indexes for layers of the classic RGB modes. For reading out-of-bounds pixels
it is assumed that the border pixels are expanded infinitely (which is sufficient
for the provided interpolations).

• The aforementioned Resizer class takes Image objects of both the source and
the target images and the Interp interpolation configuration. It provides an
optimization function which selects the most efficient resizing method. It also
gives a support for coefficient buffering. Its Resizemethod handles the rescaling
process safety, however there are options for forcing parallelism or for doing the
resize without ensuring all provided objects are compatible.

5.3. Extensibility and use

The most convenient approach to program extension would be keeping the approach
to the structure of the code intact. That’s why the new options can be included in the
library code by simply adding them in the same manner as the existing options were
implemented. In most cases it would require an addition of a method that returns
an anonymous function. It is worth remembering that addition of new kernels should
be accompanied with an inclusion of a proper positioning function (if the existing
ones do not fit the kernel already). If it is needed, the existing functions, like the
initializations of the Interp object might be modified to allow for a simpler use of
the new possibilities.

The expansion of features available in the library part should be followed by pro-
viding access to those options in the command-line part. That way the accessibility
of the project is preserved and the new options can be easily tested. The manner
in which the parameters are introduced allows them to be very customizable. The
options can behave like toggles, can take input parameters, or even allow for more
than one tag for them. That put an requirement for providing a system to parse the
arguments, compare them with a list of possible names and include a procedure of
obtaining the input value from them.

The new options can also be added to the main program and the whole support
for them is handled with string arrays. The command-line arguments are, at first,
handled by the system, which separates them on the basis of position of quotation
marks and then on position of empty spaces. Next, the arguments are separated into
two groups — basic (the input filename, the desired size, and the output filename)
and special (e.g. used interpolation function, rotation). This distinction separates the

229Extensible Implementation of Reliable Pixel Art Interpolation

required parameters - input, output and scale - from the optional ones. Moreover, the
optional parameters can allow for additional input values to customize their behavior.
The difference is that the special options are preceded with a dash mark ‘-’ and the
basic are not. The new options should always be added as the special ones.

The special parameters are then split into two parts — an argument and its ex-
tension. The split is done according to position of a separator sign (colon or equality
sign by default). Then the argument part can be matched and parsed. The match-
ing should be done by Array.IndexOf<string> method [10] — the returned index
indicates which position of the argument array was matched and negative value tells
that there was no match. In case of detection of the argument, proper information
has to be provided to the program — a meaningful value has to be assigned to a
right variable. After the testing of all arguments these variables are used to setup the
scaling operation.

If an option has exclusive variants (like the interpolation method), the option array
is accompanied with another of the same length. The second array should contain
tags that represent the presented variant. These tags can appear more than once if
an argument has more than one variant. The index, that was a result of matching
the argument, is going to be the same as the one of the tag to assign.

The extension of the argument is a specific parameter for the selected argument.
The extension can be matched the same way the arguments are and the program
already has a support for boolean options. If the extension is a number to parse, the
program already provides encapsulated culture-invariant parsing functions for single-
and double-precision floating point numbers.

As it has already been mentioned, the program can serve as a library. Because all
image processing functions used by the program were assigned public specifier, they
are available outside of the command line. There are two ways of accessing them.
The first one is to include the executable the same way as custom .NET libraries are
added to the project. The second one is to dynamically link them (the default .NET
linking process works the same way in this case). That way there are even more
options available than from the command line. What is more, some options, like new
kernels or transformations can be used this way without resorting to modify the code
of the library. Interestingly, the same mechanisms allow for other kinds of operations
to be conducted with the library, like filtering.

5.4. Sample use: plin_showcase

To showcase the possibilities of the project, an example application was created (Fig.
6). The goal of this application — ‘plin_showcase’ — was to provide an outlook on
how each of the implemented interpolations and their modifiers work. The application
was made as a Windows Form application, allowing for an easy access to all options
and for an overview of the outcome.

The program allows for reading a bitmap and for increasing its size by any scale
factor (even fractional). One of three kernels can be used for scaling — the nearest
neighbor, the linear interpolation, or the p-lin interpolation. Moreover, there is an

230 P. M. Stasik, J. Balcerek

option to turn on PBCC and set the value of TAR. As an addition, the image can
also be rotated.

The plin project is linked as a project library in this case and all options are
accessed that way.

Figure 6. The look of the plin_showcase apllication.

6. Experimental results of interpolation

The proposed algorithms can be compared with the classic methods for the computa-
tion time. All processing was done using the presented project. The times are shown
in Table 2. As it can be clearly seen, more refined techniques needed more time to
process the image. The use of PBCC brought the biggest increase (about 15-16%).
On the other hand, TAR did not affect the processing time significantly. The p-lin
interpolation seems to provide as much time increase as TAR set to 2. The increase
in time is less significant for the smaller scale factor.

Let us now look at the results of bitmap scaling. Figure 7 presents results of
scaling a lorem bitmap [22] with various methods. The bitmap was created for the
purpose of testing the project. On the top there is the source image, below are the
results of scaling up selected areas.

It can be clearly seen that for smaller scale factors the nearest neighbor method
(Fig. 7b) has problems with keeping the squared shapes of the original elements,
causing visible deformations. The effect, even if less strong, is still visible for larger

231Extensible Implementation of Reliable Pixel Art Interpolation

Table 2. Processing time for various scaling methods using plin Project. Median and
mean time of 10 cycles were provided. The median value was used to compensate for
unexpected background operations running on the testing computer. The processed
image was of size 640× 360. Done without parallel computations.

Method PBCC TAR Median
time [ms]

Mean time
[ms]

Scale factor ×1.5
nearest no no 109.2 107.6
linear no no 109.2 109.2
linear yes no 124.8 125.9
linear no 1 109.2 110.8
linear no 2 109.2 109.2
linear yes 2 124.8 128.3
p-lin no no 109.2 109.2
p-lin no 2 109.2 109.2

Scale factor ×4
nearest no no 821.0 821.3
linear no no 828.8 839.2
linear yes no 998.4 998.4
linear no 1 842.4 849.3
linear no 2 842.4 851.1
linear yes 2 998.4 1003.6
p-lin no no 858.0 852.8
p-lin no 2 858.0 863.2

232 P. M. Stasik, J. Balcerek

(a) Source

(b) Nearest neighbor (×1.5) (c) Nearest neighbor (×3.5)

(d) Linear (×1.5) (e) Linear (×3.5)

(f) P-lin (×1.5) (g) P-lin (×3.5)

(h) Linear + PBCC (×3.5) (i) Linear + TAR set to 2 (×3.5)

(j) Linear + PBCC + TAR set to 2 (×3.5) (k) P-lin + PBCC (×3.5)

(l) P-lin + TAR set to 2 (×3.5) (m) P-lin + PBCC + TAR set to 2 (×3.5)

Figure 7. The source image lorem and results of scaling up parts of it with plin
Project. The fragments scaled with a factor of 1.5 were sampled up two times for
readability.

233Extensible Implementation of Reliable Pixel Art Interpolation

scale factors (Fig. 7c). It is worth noting, that this method provides perfect contrast
and does not add any new values to the image.

The linear interpolation does not have a problem with providing undistorted shape
regardless of the scale factor (Fig. 7d and 7e). However, the method introduces a
strong blur, which is more noticeable at larger scale factors. Use of PBCC (Fig. 7h
slightly improves the contrast and rounds up corners of the picture elements. Use
of TAR can strongly improve contrast, especially together with PBCC, as it can be
seen in Fig. 7i and 7j. Interestingly, using TAR not only provides improvement in
contrast, but also keeps the elements less deformed (thanks to the small area in which
the blur is applied). An bitmap scaled this way appears on the display both to be of
a rather good contrast and to contain no deformed pixels.

The p-lin interpolation is capable of giving a slightly sharper outcome without
rounding up the corners (Fig. 7g). The contrast can be further improved with TAR
(Fig. 7l). However PBCC does not impact this kernel with the same strength it did
for the linear interpolation — with or without TAR. This can be seen in Fig. 7k and
7m. The use of TAR with p-lin can provide both very good contrast (even better
than for the linear interpolation with TAR) and perception of undeformed pixels.

Similar effects can be seen for other test images — Fig. 8 [16] and 9.
It is not an easy task to acquire objective measure of the quality of the proposed

methods. Normal measures, like MSE or PSNR [17] would require comparison of the
scaled image to the reference one. But as there are no reference images available, the
only one available for comparison is the original one. However, scaling either bitmap
would affect its features, corrupting the result of the comparison. This means that
further evaluation of the methods shall be different.

The other approach would be a subjective measure of the quality. In such test
viewers should be presented with the same picture scaled with various methods and
rate how these techniques deal with the same problem for the changing scale factor. As
it is clear that the scaling problem in this case requires balancing between sharpness
and distortions, these two aspects should be assessed. Such survey is a goal of further
work.

Our initial observations suggest that our methods handle scaling pictures better
than the classic ones. While the impact might depend on the content — more single-
pixel details and checkerboards benefit our methods — the general outcome should
still point at PBCC, p-lin and TAR as improvements over the existing methods.

The most significant benefit of the proposed techniques comes from the reduction
of transition area. It effectively reduces the blur of the interpolation. However,
because few pixels are usually dedicated to transition between values, the distortion
that appears in the case of the nearest neighbor is not present. Thanks to small
size of singular pixels on the modern displays this should result in illusion of sharp-
enough image without disfiguring the original image. The use of PBCC also effectively
reduces the transition area a bit (both in the pure form, like in the form of p-lin).
The pure PBCC furthermore introduces actual two-dimensional interpolation, which
can be observed in the way it rounds the corners of the pixels.

A more in-depth analysis of our methods would require a full survey to obtain
subjective reception and a mean of obtaining an objective measure of quality. The

234 P. M. Stasik, J. Balcerek

(a) Source

(b) Nearest neighbor (×1.5) (c) Nearest neighbor (×3.5)

(d) Linear (×1.5) (e) Linear (×3.5)

(f) P-lin (×1.5) (g) P-lin (×3.5)

(h) Linear + PBCC (×3.5) (i) Linear + TAR set to 2 (×3.5)

(j) Linear + PBCC + TAR set to 2 (×3.5) (k) P-lin + PBCC (×3.5)

(l) P-lin + TAR set to 2 (×3.5) (m) P-lin + PBCC + TAR set to 2 (×3.5)

Figure 8. The source image cygnus and results of scaling up parts of it with plin
Project. The fragments scaled with a factor of 1.5 were sampled up two times for
readability.

235Extensible Implementation of Reliable Pixel Art Interpolation

(a) Source

(b) Nearest neighbor (×1.5) (c) Nearest neighbor (×3.5)

(d) Linear (×1.5) (e) Linear (×3.5)

(f) P-lin (×1.5) (g) P-lin (×3.5)

(h) Linear + PBCC (×3.5) (i) Linear + TAR set to 2 (×3.5)

(j) Linear + PBCC + TAR set to 2 (×3.5) (k) P-lin + PBCC (×3.5)

(l) P-lin + TAR set to 2 (×3.5) (m) P-lin + PBCC + TAR set to 2 (×3.5)

Figure 9. The source image bw_test and results of scaling up parts of it with plin
Project. The fragments scaled with a factor of 1.5 were sampled up two times for
readability.

236 P. M. Stasik, J. Balcerek

survey would require a presentation of various outcomes of image scaling with various
methods and assessment of the quality by a group of respondents. A possible mean of
filtering the responses to achieve more reliable results is considered. On the other hand
obtaining a reliable objective measure will require a solid mathematical approach.

Both the survey and development of the objective measure are outside of the scope
of this paper, but are going to be approached in our further works.

7. Conclusions

The new interesting methods for scaling pixel art and their implementation were
presented in this paper. The proposed techniques can improve quality of displaying
pixel art. They achieve that by allowing for scaling up the bitmaps in a manner that
is for human perception both sharp and undeformed. The propounded approaches
allow for this to appear at any scale factor. Because our aim was to allow for the
most unaltered experience, the flexibility of the proposed methods is an advantage.
Moreover, p-lin with TAR, which seems to provide the best results, does not add a
lot of additional computation time, making its real-time implementation possible.

The introduced methods were implemented in the C# project. The provided
solution is a flexible, easily extensible and multi-platform application. The application
was made easy-to-read and modify with a possibility of adding new interpolations
without any need to recompile the program. The project might not be suited for real-
time applications, but it is good enough for simple prototyping of scaling methods.
Moreover, the way the project is designed, the other point and filter operations can
be done using the provided library.

Future work with the project is to further improve its extensibility. In first place it
would require an introduction of an interface for transformation matrices, which would
allow for much more complex image casting. The class designed for storing image
needs to be adapted for easy inheritance for allowing other approaches for handling
border-case scenarios. Moreover, there might be a need to find a way to speed up
PBCC and to allow for other coefficients- and coordinates-modifying functions.

The project can be found at https://github.com/PawelMStasik/plinProject (con-
tains code and executables for both the main program and the showcase application).

Acknowledgements

The text of this article was prepared within the DS 2018 Project.

References

[1] Burger W., Burge M. J., Principles of digital image processing: core algorithms,
Springer, pp. 210–237, 2009.

237Extensible Implementation of Reliable Pixel Art Interpolation

[2] Dong C., Loy C. C., He K., Tang X., Image Super-Resolution Using Deep Con-
volutional Networks, IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 38, no. 2, pp. 295-307, 2016.

[3] GNU Octave, https://www.gnu.org/software/octave/, 2018 [on-line, accessed:
20.09.2018].

[4] Graphics Section in GameMaker: Studio Settings for Windows,
https://help.yoyogames.com/hc/en-us/articles/216753338-GameMaker-Studio-
Settings-for-Windows, YoYo Games Ltd, 2015 [on-line, accessed: 20.09.2018].

[5] Inkscape Developers, libdepixelize, https://launchpad.net/libdepixelize, 2014
[on-line, accessed: 20.09.2018].

[6] Inkscape tutorial: Tracing Pixel Art, https://inkscape.org/en/doc/tutorials/
tracing-pixelart/tutorial-tracing-pixelart.html, 2018 [on-line, accessed:
20.09.2018].

[7] Kopf J., Lishinski D., Depixelizing pixel art, ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2011), vol. 30, no. 4, 99:1-99:8, 2011.

[8] Kreuzer F., Depixelizing Pixel Art on GPUs, Institute of Computer Graphics and
Algorithms, Vienna University of Technology, 2014.

[9] Mathworks, imresize, Matlab Documentation,
https://www.mathworks.com/help/images/ref/imresize.html, 2018 [on-line,
accessed: 20.09.2018].

[10] Microsoft Developer Network, Array.IndexOf Method,
https://msdn.microsoft.com/en-us/library/system.array.indexof, 2018 [on-
line, accessed: 20.09.2018].

[11] Microsoft Docs, Delegates (C# Programming Guide),
https://docs.microsoft.com/en-us/dotnet/csharp/programming-
guide/delegates/, 2015 [on-line, accessed: 20.09.2018].

[12] Microsoft Developer Network, ImageFormat Class,
https://msdn.microsoft.com/en-us/library/system.drawing.imaging.imageformat,
2018 [on-line, accessed: 20.09.2018].

[13] Microsoft Developer Network, Parallel.For Method,
https://msdn.microsoft.com/en-us/library/system.threading.tasks.parallel.for,
2018 [on-line, accessed: 20.09.2018].

[14] Nagatomi, Image Super-Resolution for Anime-Style Art,
https://github.com/nagadomi/waifu2x, 2018 [on-line, accessed: 17.10.2018].

[15] OpenGL Wiki “Sampler Object”, https://www.khronos.org/opengl/wiki/
Sampler_Object, 2017 [on-line, accessed: 20.09.2018].

238 P. M. Stasik, J. Balcerek

[16] Pahvl, Cygnus, https://pahvl.tumblr.com/post/161126319888/cygnus, 2017 [on-
line, accessed: 20.09.2018].

[17] Riebman A. R., Bell R. B., Gray S., Quality Assessment for Super-Resolution
Image Enhancement, 2006 International Conference on Image Processing, pp.
2017-2020, 2006.

[18] Santhosh G_, Zoom An Image With Different Interpolation Types,
CodeProject, https://www.codeproject.com/Articles/236394/Bi-Cubic-and-Bi-
Linear-Interpolation-with-GLSL, 2011 [on-line, accessed: 20.09.2018].

[19] Silva M. A. G., Real Time Pixel Art Remasterization on GPUs with CUDA,
https://github.com/marcoc2/pixel-art-remaster-gpu, 2017 [on-line, accessed:
20.09.2018].

[20] Silva M. A. G., Montenegro A., Clua E., Vasconcelos C., Lage M., Real Time
Pixel Art Remasterization on GPUs, 2013 XXVI Conference on Graphics, Pat-
terns and Images, Arequipa, 274-281, 2013.

[21] Stasik P. M., Euclidean proximity function in image processing, 2016 Signal
Processing: Algorithms, Architectures, Arrangements, and Applications (SPA),
254-258, Poznan, 2016.

[22] Stasik P. M., Balcerek J., Improvements in upscaling of pixel art, 2017 Signal
Processing: Algorithms, Architectures, Arrangements, and Applications (SPA),
371-376, Poznan, 2017.

[23] SteamSpy, www.steamspy.com, 2017 [on-line, accessed: 01.12.2017].

[24] Steppin M., Zemek C., Gannaz F., hqx 1.1, https://code.google.com/p/hqx/,
2015 [on-line, accessed: 20.09.2018].

[25] Mitani Y., Pixel-Art Upscaler Based on pix2pix Network,
https://github.com/mitaki28/pixcaler, 2018 [on-line, accessed: 17.10.2018].

[26] Zenju, xBRZ 1.6, http://sourceforge.net/projects/xbrz/, 2018 [on-line, accessed:
20.09.2018].

This paper is a revised and extended version of work originally presented at IEEE
Signal Processing Algorithms, Architectures, Arrangements, and Applications Con-
ference, 20-22 September 2017, Poznań, Poland

Received 19.06.2018, Accepted 6.12.2018

239Extensible Implementation of Reliable Pixel Art Interpolation

