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Abstract. We consider a single-machine bi-objective scheduling problem with
rejection. In this problem, it is possible to reject some jobs. Four algorithms are
provided to solve this scheduling problem. The two objectives are the total weighted
completion time and the total rejection cost. The aim is to determine the set of
efficient solutions. Four heuristics are described; they are implicit enumeration al-
gorithms forming a branching tree, each one having two versions according to the
root of the tree corresponding either to acceptance or rejection of all the jobs. The
algorithms are first illustrated by a didactic example. Then they are compared on
a large set of instances of various dimension and their respective performances are
analysed.

Keywords: Production scheduling, bi-objective optimization, single-machine, re-
jection cost.

1. Introduction

The majority of the researches in the scheduling problem literature [2] considered
that all the jobs must be scheduled in the workshop. However, there are particular
practical situations where all the jobs may not be accepted and thus some of them
rejected for specific reasons as congestion of the workshop, impossibility to meet
customers requirements or as very long processing time or less importance of a job.
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In such a case, the rejection of a job induces a penalty which can be considered like
an outsourcing cost or an opportunity loss.

To our knowledge, the paper of Bartel et al. in 2000 [1] is the first to introduce the
possible rejection of a job. After this initial study, several authors were interested to
propose specific situations of scheduling problems with rejection of jobs. Their works
are listed in the paper of Moghaddam et al. [8]. The majority of them analyse single-
objective problems where the rejection cost is aggregated with a classical scheduling
criterion or the rejection cost is limited by a constraint. Researches on the rejection
cost as a separate objective in a multi-objective problem is still rare in the literature
[9]. That is the reason why we address the specific problem in this paper.

Moreover, except the papers of Moghaddam et al. [6], [7] and [8], even in a bi-
objective context, none of these works proposes algorithms to determine the set of
efficient solutions. It is also the case in two most recent studies: the one of Wang et al.
[11] where the authors introduce a special mechanism to control the processing times
and the one of Zhang et al. [12] in which the off-line and the on-line two machines
flow-shop scheduling problems with rejection are analysed.

An exception is the paper of Jia et al. [5]: some ant colony optimization (ACO)
metaheuristics are proposed to find the Pareto efficient solutions set for the bi-criteria
optimization of the makespan and the total rejection cost in a batch scheduling model
on parallel machines.

Using the formalism of T’Kindt and Billaut [9], the model analysed in the present
paper can be denoted by 1//(Cw, R), where Cw is the total weighted completion time
of the accepted jobs and R is the total cost of the rejected jobs, and it consists to
determine the set of efficient solutions for these two criteria. This model has been first
introduced by Moghaddam et al. In [7], various simulated annealing metaheuristics
are compared to obtain the efficient solutions based on the Pareto dominance. In [6],
these algorithms are also analysed but based on the Lorenz dominance. Both domi-
nance concepts are also considered in [8] where the results of two main metaheuristics,
MOSA [10] and NSGAII [3] are compared.

The same model with Pareto dominance is analysed in the present paper, but dedi-
cated implicit enumeration heuristics are developed instead of general metaheuristics.
The rest of the paper is organized as follows. In Section 2, we define the problem
in more details and we introduce in Section 3 some concepts used in the algorithms.
The first four sub-sections of Section 4 describe respectively four implicit enumeration
heuristics H1, H2, H3 and H4, each one having two versions according to the root
of the branching tree corresponding either to the acceptance or the rejection of all
the jobs. These eight heuristics are illustrated with a didactic example and in the
sub-section 4.5, further comparison between them is illustrated. In Section 5, a large
set of instances, with the number of jobs varying from 5 till 200, are solved with
all the heuristics and a detailed analysis of their respective results is presented. The
practical implementation of the algorithms is commented in sub-section 5.4. Section 6
provides a short conclusion of the study.
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2. The problem

We consider a single-machine scheduling problem. There are n jobs and each job
j ∈ {1, . . . , n} is characterized by its processing time pj and its own weight wj .

A first objective is to minimize the total weighted completion time Cw, for which
it is well known [2] that an optimal solution consists to schedule the jobs in the
increasing order of the ratio pj/wj . For this reason, we assume that the n jobs are
initially ranked in this order:

p1/w1 ≤ p2/w2 ≤ . . . ≤ pn/wn. (1)

Nevertheless, it is possible to decide not to schedule all the jobs and thus to reject
some of them. If the job j ∈ {1, . . . , n} is rejected, a rejection cost or penalty rj is
incurred. A second objective R is to minimize the total rejection cost i.e. the sum of
the penalties rj of the rejected jobs. A solution s is characterized by A ⊆ {1, . . . , n}
the set of rejected jobs and by A = {1, . . . , n} \ A the set of accepted jobs scheduled
in the order (1).

The two considered objectives to minimize are thus

Cw(s) =
∑
j∈A

wj Cj (2)

R(s) =
∑
j∈A

rj (3)

where Cj is the completion time of job j ∈ A in the optimal schedule of the jobs in
subset A obtained by the order of relation (1).

Let us note that as
Cj =

∑
k∈A
k≤j

pk (4)

relation (2) can be written equivalently

Cw(s) =
∑
j∈A

pj (
∑
k∈A
k≥j

wk) (5)

For this bi-objective scheduling problem, our aim is to determine (or to approxi-
mate) the set of efficient solutions and the corresponding Pareto front.

We recall [9] that a feasible solution s is efficient if it does not exist any other
feasible solution s′ such that

Cw(s′) ≤ Cw(s)

R(s′) ≤ R(s)

with at least one strict inequality.
We denote by E the set of efficient solutions. The points {(Cw(s), R(s)) |s ∈ E}

correspond to the non-dominated points in the bi-objective space and form the so
called Pareto front.
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Obviously the two extreme efficient solutions, denoted by sa and sb, correspond
respectively to A = ∅ and A = {1, . . . , n}, giving the two extreme points of the Pareto
front (Cw = Cw(sa) =

∑n
j=1 wj Cj , R = R(sa) = 0) and (Cw = Cw(sb) = 0, R =

R(sb) =
∑n

j=1 rj). For all efficient solutions s ∈ E, we have thus

Cw = Cw(sb) = 0 ≤ Cw(s) ≤ Cw(sa) = Cw

R = R(sa) = 0 ≤ R(s) ≤ R(sb) = R

3. Terminology

3.1. Potential efficient solution

In the algorithms proposed in this paper, in a certain iteration, a solution is called a
”potential efficient solution” if it is not dominated by any other solutions.

The set of potential efficient solutions is denoted by PE. Each time new solutions
are generated, the list PE is updated.

3.2. Algorithms of type a and type b

A solution s is of level k, if the number of rejected jobs is equal to k, i.e. if |A| = k.
The algorithms in Section 4 are implicit enumeration forming a tree. An algorithm is
said of type a, if the root of the tree is the solution sa (i.e. the unique solution of level
0) and the branching scheme increases progressively the considered level, creating
children solutions at level k + 1 by rejecting an additional job from a parent solution
at level k.

An algorithm is said of type b, if the root of the tree is the solution sb (i.e.
the unique solution of level n) and the branching scheme decreases progressively the
considered level, creating children solutions at level k − 1 by the acceptance of an
additional job from a parent solution at level k.

For both types, the considered children solutions of a parent solution s will be
denoted by E(s).

3.3. Children nodes generated by non-dominated variations

3.3.1. Algorithm of type a

At each level, the branching scheme creating E(s) is based on a dominance relation
defined by decreasing the first objective value Cw and increasing the second objective
value R.
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E(sa) at level 1

The parent of this solution is the initial solution sa at level 0 with Cw(sa) = Cw and
R(sa) = 0.

If a child solution s1 at level 1 is characterized by A = {j}, using relation (5), it
is easy to see that

Cw(s1) = Cw −∆
(1)
j

R(s1) = 0 + rj
(6)

where

∆
(1)
j = pj (

n∑
k=j

wk) + wj (

j−1∑
l=1

pl) (7)

Definition: Dominance relation of variation (∆
(1)
j , rj)

In an algorithm of type a, the variation (∆
(1)
j , rj) is dominated if there exists

another job k ∈ {1, . . . , n} \ {j} such that

∆
(1)
k ≥ ∆

(1)
j

rk ≤ rj
(8)

with at least one strict inequality.
In such a case, by rejecting job k, it is possible to have a larger decrease of the

objective Cw at a smaller increase of the objective R. It is clear that the non-
dominated variations are the only onces able to possibly generate an efficient solution
at level 1.

So the branching scheme will only generate the set of children solutions E(sa) with

each solution s1 corresponding to a non-dominated variation (∆
(1)
j , rj).

At this first iteration, all the solutions E(sa) are potential efficient solutions and
there are all assigned in the list PE.

E(s) at level k = 2, . . . , n

From a parent solution sk−1, with A = {j1, . . . , jk−1} at level k− 1, an additional job
j can be rejected to build a child solution sk with A = {j1, . . . , jk−1, j}.

Using relation (5), the variation of the two objectives is iteratively determined:

Cw(sk) = Cw(sk−1)−∆
(k)
j

R(sk) = R(sk−1) + rj
(9)

where
∆

(k)
j = ∆

(k−1)
j − pj wjk−1

if j < jk−1

∆
(k)
j = ∆

(k−1)
j − pjk−1

wj if j > jk−1
(10)
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The non-dominated variations (∆
(k)
j , rj) are the only ones able to possibly generate

potential efficient solutions sk. So the branching scheme will only generate the set of
children E(sk−1) with each solution sk corresponding to a non-dominated variation

(∆
(k)
j , rj).

Remark 1: At each level k, the set of non-dominated variations (∆
(k)
j , rj) is always

non-empty, containing at least the job j with the smallest rj and the job j with the

largest ∆
(k)
j . If it is the same job, then there exists only one non-dominated variation.

3.3.2. Algorithm of type b

When an algorithm of type b is considered, with the root sb at level n, with Cw(sb) = 0
and R(sb) = R, at each level the branching scheme creating E(s) consists to schedule
an additional job and is also based on a dominance relation defined by the increase
of the first objective Cw and the decrease of the second objective R.

The concept is similar and the equations (6),(7),(8),(9) and (10), are replaced by
the following equations (11),(12),(15),(13) and (14).

Cw(sn−1) = ∆
(n−1)
j

R(sn−1) = R− rj
(11)

where
∆

(n−1)
j = pj wj (12)

Cw(sk) = Cw(sk+1) + ∆
(k)
j

R(sk) = R(sk+1)− rj
(13)

where
∆

(k)
j = ∆

(k+1)
j + pj wjk−1

if j < jk−1

∆
(k)
j = ∆

(k+1)
j + pjk−1

wj if j > jk−1
(14)

with sk+1 characterized by A = {j1, . . . , jk−1} and sk by A = {j1, . . . , jk−1, j}.
The dominance relation of variation (∆

(1)
j , rj) could be defined as following:

∆
(n−1)
k ≤ ∆

(n−1)
j

rk ≥ rj
(15)

with at least one strict inequality.
As for the algorithm of type a, the branching scheme will only generate the set of

children E(sk+1) with each solution sk corresponding to a non-dominated variation

(∆
(k)
j , rj).
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4. Algorithms H1,H2,H3 and H4

Each of these four algorithms can be of type a or type b. In these algorithms, we
denote by P the pool of solutions which must be still considered by the branching
scheme. These algorithms will be illustrated on the following didactic example with
5 jobs (already in the order of increasing ratio pj/wj).

Table 1: Data of the didactic example
j 1 2 3 4 5
pj 7 5 10 8 20
wj 8 4 6 4 2
rj 5 1 5 3 2

4.1. Algorithms H1

4.1.1. H1a

In this algorithm, to describe a solution we will assign a status to each job with one
of the three possibilities:

status 0 scheduled job free to be rejected,
status −1 definitively rejected job,
status 1 definitively scheduled job.

The initial solution is sa = (0, . . . , 0) and assigned to the pool P . The solutions
of P are ranked in the increasing order of the objective R; in case of equality of
this objective, the solutions are sorted in the order of their generation (see remark 2
below). When a new solution is examined by the branching scheme, the first solution
of P is chosen and this solution is removed. The algorithm comes to the end when
P = ∅.

When a set of children solutions is created, they are compared with those of PE.
Only the new potential solutions are assigned to the pool P , the others are fathomed
in the tree, i.e. they are no more considered for the branching scheme.

The aim of the status ”1” of a job is to avoid non-empty intersections between
the sets of solutions corresponding to the different non-fathomed branches of the tree.
For instance at the first iteration of H1a on the didactic example where the children
solutions consist to reject one of the three jobs 2, 4 or 3, these three children solutions
will be (0,−1, 0, 0, 0), (0, 1, 0,−1, 0) and (0, 1,−1, 1, 0).

The rejection of job 2, considered in the first branch, will no more be examined in
the second and third branches, and the rejection of job 4, considered in the second
branch, will no more be examined in the third branch.
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Table 2: Iterations of algorithm H1a on the didactic example
It s E(s) (R,Cw) Level P PE
0 s0 = (0,0,0,0,0) (0,456) 0 s0 s0
1 s0 s1 = (0,-1,0,0,0) (1,348) 1 s1, s3 s0, s1, s3, s5

s3 = (0,1,0,-1,0) (3,320) 1 s5
s5 = (0,1,-1,1,0) (5,264) 1

2 s1 s23 = (0,-1,0,0,-1) (3,258) 2 s3, s
2
3 s0, s1, s

2
3, s4

s4 = (0,-1,0,-1,1) (4,232) 2 s4, s5 s6
s6 = (0,-1,-1,1,1) (6,186) 2 s6

3 s3 s25 = (0,1,0,-1,-1) (5,236) 2 ≺ s4 s23, s4 s0, s1, s
2
3, s4

s8 = (0,1,-1,-1,0) (8,168) 2 s5, s6 s6, s8
s8

4 s23 s26 = (0,-1,0,-1,-1) (6,158) 3 s4, s5 s0, s1, s
2
3, s4

s28 = (0,-1,-1,1,-1) (8,116) 3 s6, s
2
6 s26, s

2
8

s8, s
2
8

5 s4 s9 = (0,-1,-1,-1,1) (9,110) 3 s5, s6 s0, s1, s
2
3, s4

s26, s8 s26, s
2
8, s9

s28, s9
6 s5 s7 = (0,1,-1,1,-1) (7,184) 2 ≺ s26 s6, s

2
6 s0, s1, s

2
3, s4

s10 = (-1,1,-1,1,0) (10,138) 2 ≺ s9 s8, s
2
8 s26, s

2
8, s9

s9
7 s6 s11 = (-1,-1,-1,1,1) (11,88) 3 s26, s8 s0, s1, s

2
3, s4

s28, s9 s26, s
2
8, s9, s11

8 s26 s211 = (0,-1,-1,-1,-1) (11,56) 4 s8, s
2
8 s0, s1, s

2
3, s4

s9, s
2
11 s26, s

2
8, s9, s

2
11

9 s8 s210 = (0,1,-1,-1,-1) (10,104) 3 s28, s9 s0, s1, s
2
3, s4

s13 = (-1,1,-1,-1,0) (13,70) 3 ≺ s211 s210, s
2
11 s26, s

2
8, s9, s

2
10

s211
10 s28 s213 = (-1,-1,-1,1,-1) (13,32) 4 s9, s

2
10 s0, s1, s

2
3, s4

s211 s26, s
2
8, s9, s

2
10

s211, s
2
13

11 s9 s14 = (-1,-1,-1,-1,1) (14,40) 4 ≺ s213 s210, s
2
11 s0, s1, s

2
3, s4

s26, s
2
8, s9, s

2
10

s211, s
2
13

12 s210 s15 = (-1,1,-1,-1,-1) (15,20) 4 s211 s0, s1, s
2
3, s4

s26, s
2
8, s9, s

2
10

s211, s
2
13, s15

13 s211 s16 = (-1,-1,-1,-1,-1) (16,0) 5 s0, s1, s
2
3, s4

s26, s
2
8, s9, s

2
10

s211, s
2
13, s15, s16
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�
�
�
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A
A
A
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�
�
�
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A
A
A
A

-4 -3 4 -3 -1 -5 -1

s15s14s213s211
X FX X

-3 -1 -1 -1

sb = s16

X

-1

(left) new rejected job | (right) new definitively scheduled job(s)

: efficient solution F: fathomed solution X: ending solution

Figure 1: Branching scheme of H1a

For a solution with no job with the status ”0”, this solution is an ending solution
of the branch. Table 2 describes the successive iterations of the algorithm H1a on
the didactic example. Figure 1 represents the corresponding branching scheme. The
twelve efficient solutions of this instance are generated. For this didactic example,
the subindex of a solution is the value for the objective R; in case of identical value,
the upper index indicates the order of their generation.

Remark 2: An impact of the order of the solutions in the pool P
Let us suppose that inside the pool P , the solutions with identical value of objective
R are ordered in the increasing order of objective Cw in contrary to the order of
their generation. Table 3 indicates what happens for the didactic example with this
change. The solution s23, with Cw(s23) = 258, will be treated before the solution s3,
with Cw(s3) = 320. So the solution s28, a child solution of s23, will be generated before
the solution s8, a child solution of s3, and as s8 is dominated by s28, the solution s8
will now be fathomed and no more included in the pool P . The consequence is (see
iteration 9 of Table 2 and also Figure 1) that it will be impossible to still generate
the efficient solution s210 and so the efficient solution s15, a child of s210 (see iteration
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12 of Table 2).
So it appears that with such a change in the order to treat the solutions of the

pool, only 10 efficient solutions will be generated instead of 12. We have seen that
this case can happen in several instances and it is the reason why we have chosen to
order the solutions of the pool as indicated before.

Table 3: Impact of the lexicographic order
It s E(s) (R,Cw) Level P PE

2 s1 s23 = (0,-1,0,0,-1) (3,258) 2 s23 , s3 , s4, s5 s0, s1, s
2
3, s4

s4 = (0,-1,0,-1,1) (4,232) 2 s6 s6
s6 = (0,-1,-1,1,1) (6,186) 2

3 s23 s26 = (0,-1,0,-1,-1) (6,158) 3 s3, s4, s5, s
2
6 s0, s1, s

2
3, s4

s28 = (0,-1,-1,1,-1) (8,116) 3 s6, s
2
8 s26, s

2
8

4 s3 s25 = (0,1,0,-1,-1) (5,236) 2 ≺ s4 s4, s5, s
2
6, s6 s0, s1, s

2
3, s4

s8 = (0,1,-1,-1,0) (8,168) 2 ≺ s28 s28 s26, s
2
8

4.1.2. H1b

Algorithm H1b is similar to algorithm H1a. The unique difference is that this algo-
rithm is of type b so that the initial solution is thus the extreme efficient solution sb,
initializing the pool P .

There are two logical modifications in comparison to H1a. First, the solutions of
P are ranked in the decreasing order of the objective R; in case of equality of this
objective, the solutions are sorted according to their generation. Nevertheless, the
management of the pool P is identical to the one of H1a and thus the dominated
children solutions are not placed in the pool P .

Secondly, in the description of a solution, the three following status of a job are
used:

status 0 rejected job free to be scheduled,
status −1 definitively rejected job,
status 1 definitively scheduled job,

so that sb = (0, . . . , 0).
But the aim of the status ”-1” is also to avoid non-empty intersections between

the sets of solutions corresponding to the non-fathomed different branches of the tree.
Table 4 describes the successive iterations of the algorithm H1b on the didactic

example. Figure 2 represents the corresponding branching scheme. The twelve effi-
cient solutions of this instance are again generated even if the way to obtain those
solutions in Figure 1 is quite different to the one in Figure 2.
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Table 4: Iterations of algorithm H1b on the didactic example
It s E(s) (R,Cw) Level P PE

0 s16 = (0,0,0,0,0) (16,0) 5 s16 s16
1 s16 s15 = (0,1,0,0,0) (15,20) 4 s15, s13, s11 s11, s13, s15, s16

s13 = (0,-1,0,1,0) (13,32) 4
s11 = (1,-1,0,-1,0) (11,56) 4

2 s15 s213 = (0,1,0,0,1) (13,70) 3 ≺ s13 s13, s11, s10 s10, s11, s13, s15
s12 = (0,1,0,1,0) (12,72) 3 ≺ s11 s16
s10 = (1,1,0,0,0) (10,104) 3

3 s13 s211 = (0,-1,0,1,1) (11,88) 3 ≺ s11 s11, s10, s8 s8, s10, s11, s13
s8 = (1,-1,0,1,0) (8,116) 3 s15, s16

4 s11 s9 = (1,-1,0,-1,1) (9,110) 3 s10, s9, s8 s6, s8, s9, s10
s6 = (1,-1,1,-1,-1) (6,158) 3 s11, s13, s15, s16

5 s10 s28 = (1,1,0,0,1) (8,168) 2 ≺ s8 s9, s8, s5 s5, s6, s8, s9
s7 = (1,1,0,1,0) (7,184) 2 ≺ s6 s10, s11, s13, s15
s5 = (1,1,1,0,0) (5,236) 2 s16

6 s9 s4 = (1,-1,1,-1,1) (4,232) 2 s8, s5 s4, s6, s8, s9
s10, s11, s13, s15
s16

7 s8 s26 = (1,-1,0,1,1) (6,186) 2 ≺ s6 s5, s3 s3, s4, s6, s8
s3 = (1,-1,1,1,0) (3,258) 2 s9, s10, s11, s13

s15, s16
8 s5 s23 = (1,1,1,0,1) (3,320) 1 ≺ s3 s3, s2 s2, s3, s4, s6

s2 = (1,1,1,1,0) (2,356) 1 s8, s9, s10, s11
s13, s15, s16

9 s3 s1 = (1,-1,1,1,1) (1,348) 1 s2 s1, s3, s4, s6
s8, s9, s10, s11
s13, s15, s16

10 s2 s0 = (1,1,1,1,1) (0,456) 0 s0, s1, s3, s4
s6, s8, s9, s10
s11, s13, s15, s16
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Figure 2: Branching scheme of H1b

4.1.3. H1ab

As we will see in the numerical experiments of Section 5, the two sets PE obtained by
H1a and H1b, can be different, contrary to what happens in the didactic example. If
these two sets are filtered by pairwise comparisons of the solutions, this filtering will
be denoted by H1ab. Thus only the non-dominated solutions present in the union of
these two sets are saved.

4.2. Algorithms H2

4.2.1. H2a

The algorithm H2a presents a minor modification comparing to the algorithm H1a.
As we will see in the numerical experiments (and see also above-mentioned remark 1),
an efficient solution can be missed in the case where all the children solutions of the
same parent solution are dominated and thus fathomed and not placed in the pool P
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of solutions still to be examined.
It is the reason why in such a situation, in H2a one of the dominated children

solutions is kept in the pool P . To choose which solution to retain in the pool, different
criteria are possible. For H2a, we decide to keep the dominated child solution with
the minimum value of R in the pool. Another possibility investigated is to keep the
solution corresponding to the minimum ratio rj/∆j . In this case, the other dominated
children solutions are fathomed.

In Table 5, an example of modification due to H2a comparing to Table 2 for H1a
is given. As the two children solutions s7 and s10 are dominated, the solution s7 is
kept in the pool.

Table 5: Algorithm H2a when all children solutions are dominated solutions
It s E(s) (R,Cw) Level P PE

6 s5 s7 = (0, 1,−1, 1,−1) (7,184) 2 ≺ s26 s6, s
2
6, s7 , s8 s0, s1, s

2
3, s4

s10 = (−1, 1,−1, 1, 0) (10,138) 2 ≺ s9 s28, s9 s26, s
2
8, s9

4.2.2. H2b

In H1b a similar modification that the one made in H1a is introduced. When all the
children solutions of the same parent solution are dominated, one of them is kept in
the pool P : the dominated child solution with the maximal value of R is assigned to
the pool. The other dominated children solutions are fathomed.

4.2.3. H2ab

In this algorithm, the two sets of PE obtained with H2a and H2b are filtered, keeping
only the non-dominated solutions in the union of these two sets.

4.3. Algorithms H3

4.3.1. H3a

The principle of this algorithm is identical to the one H1a. The unique difference
is that in H3a the status ”1” of a job is not considered. Thus there are only two
possibilities for the status of a job:

status 0 scheduled job free to be rejected,
status −1 definitively rejected job.

In H1a, a job j with the status ”1” is no more considered to be rejected in the
branching scheme so that its variation (∆j , rj) is not taken into consideration. As a
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consequence, the set of non-dominated variations can be influenced by this fact. In
H3a, all the variations for the jobs with “0” status are analyzed. This mechanism
helps generating new branches, which can lead to efficient solutions ignored by H1a.

Of course, another consequence is that the intersection of the sets of solutions in
non-fathomed branches are no more empty. The algorithm simply ignores redundant
solutions, which have been generated in another branch.

The numerical experiments of Section 5 will prove that such a situation appears
in the case of large-size instances.

Table 6 illustrates the first three iterations of H3a. We see that the non-dominated
variations of iteration 3 are now obtained for jobs 2 and 3, providing the solutions s4
(already obtained) and s8 instead in H1a (see Table 2) for jobs 5 and 3 providing the
solutions s25 and s8.

Table 6: Three first iterations of algorithm H3a on the didactic example

It s E(s) (R,Cw) Level P PE

0 s0 = (0, 0, 0, 0, 0) (0,456) 0 s0 s0
1 s0 s1 = (0,−1, 0, 0, 0) (1,348) 1 s1, s3, s5 s0, s1, s3, s5

s3 = (0, 0 , 0,−1, 0) (3,320) 1

s5 = (0, 0 ,−1, 0 , 0) (5,264) 1
2 s1 s23 = (0,−1, 0, 0,−1) (3,258) 2 s3, s

2
3, s4, s5 s0, s1, s

2
3, s4

s4 = (0,−1, 0,−1, 0 ) (4,232) 2 s6 s6
s6 = (0,−1,−1, 0 , 0 ) (6,186) 2

3 s3 s4 = (0,−1, 0,−1, 0) (4,232) 2 = s4 s23, s4, s5, s6 s0, s1, s
2
3, s4

s8 = (0, 0,−1,−1, 0) (8,168) 2 s8 s6, s8

4.3.2. H3b

A similar modification is made in H1b, i.e. the status ”-1” of a job is no more
considered, keeping only the two status:

status 0 rejected job free to be scheduled,
status 1 definitively scheduled job.

The consequences of this modification are identical to those described for H3a.

4.3.3. H3ab

The result of this algorithm is the filtering of the two sets H3a and H3b.
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4.4. Algorithms H4

4.4.1. H4a

In this algorithm, as in H3a, we do not consider the status ”1” of a job, keeping
only the status ”0” and ”-1”. But here the status ”-1” means ”rejected job free to
be scheduled” but no more ”definitively rejected job”. This change differs the H4a
algorithm to H3, H1 and H2 by one main element: if the solution parent is of level
k, the possible children solutions will be of level k − 1 or of level k + 1. Effectively,
the considered variations consist to change successively the status of each job; thus:

• the status ”0” becomes ”-1” generating solutions of level k + 1,

• the status ”-1” becomes ”0” generating solutions of level k − 1.

Among these n variations, as in the three preceding algorithms, only the non-dominated
variations are kept to define E(s). Redundant solutions are ignored as they were in
H3 algorithm. Nevertheless, Table 7 illustrates this new branching scheme on the
iterations 4 and 5 of Table 2 for the didactic example.

Table 7: First five iterations of algorithm H4a on the didactic example
It s E(s) (R,Cw) Level P PE

0 s0 = (0, 0, 0, 0, 0) (0,456) 0 s0 s0
1 s0 s1 = (0, -1 , 0, 0, 0) (1,348) 1 s1, s3, s5 s0, s1, s3, s5

s3 = (0, 0, 0, -1 , 0) (3,320) 1

s5 = (0, 0, -1 , 0, 0) (5,264) 1

2 s1 s23 = (0,−1, 0, 0, -1 ) (3,258) 2 s3, s
2
3, s4, s5 s0, s1, s

2
3, s4

s4 = (0,−1, 0, -1 , 0) (4,232) 2 s6 s6
s6 = (0,−1, -1 , 0, 0) (6,186) 2

3 s3 s4 = (0,−1, 0,−1, 0) (4,232) 2 = s4 s23, s4, s5, s6 s0, s1, s
2
3, s4

s8 = (0, 0,−1,−1, 0) (8,168) 2 s8 s6, s8
4 s23 s2 = (0, 0 , 0, 0,−1) (2,356) 1 ≺ s1 s4, s5, s6, s

2
6 s0, s1, s

2
3, s4

s26 = (0,−1, 0, -1 ,−1) (6,158) 3 s8, s
2
8 s26, s

2
8

s28 = (0,−1, -1 , 0,−1) (8,116) 3

5 s4 s3 = (0, 0 , 0, 0,−1) (3,320) 1 = s3 s5, s6, s
2
6, s8 s0, s1, s

2
3, s4

s26 = (0,−1, 0,−1, -1 ) (6,158) 3 = s26 s28, s9 s26, s
2
8, s9

s9 = (0,−1, -1 ,−1, 0) (9,110) 3

In the next section, the positive impact of H4 on two larger instances is presented.
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4.4.2. H4b

By changing the initial efficient solution, algorithm H4b can also be developed. Nev-
ertheless, for all the instances treated in Section 5, the results of H4b will be sys-
tematically the same as those of H4a. For this reason, in the following, we will only
mention H4.

4.5. Illustrations

In this section, we will analyse the impact of the algorithms using the first two in-
stances of Section 5 presenting some differences between the results of the algorithms.
The data of these two instances 12 (13-3) and 13 (15-1), are given in Table 8 and
Table 9 in the Annex.

Instance 12 (13-3)

This instance with 13 jobs has 41 efficient solutions. They are all generated by the
algorithms H1b,H2a,H2b,H3b and H4. H1a provides only 39 efficient solutions (see
Table 10 in the Annex); the two missing solutions are:

• s1 at level 8, with rejected jobs 1,4,5,6,7,8,11 and 12,

• s2 at level 11, with rejected jobs 1,2,3,4,5,7,8,10,11,12 and 13.

H3a provides 40 efficient solutions (see Table 14 in the Annex); s2 is the missing
solution.

Remarks on the observations made.

H1a versus H2a

In H1a, at parent solution at level 6 corresponding to the successive rejects of jobs
7,12,5,4,8,6 and the job 2 with status ”1”, all the children solutions are dominated so
that it is impossible to obtain s1 corresponding to the reject of the additional jobs 1
and 11.

But with H2a, the dominated child solution with the minimal rejection cost is
kept in the pool; and during the two next iterations these two jobs are successively
rejected providing s1.

Similarly in H1a, at parent solution at level 9 corresponding to the successive
rejects of jobs 7,12,5,4,8,2,11,1,10 and the job 6 with status ”1”, all the children
solutions are dominated and it is impossible to obtain s2 corresponding to the reject
of the additional jobs 3 and 13.
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Again, with H2a, the dominated child solution with the minimal rejection cost is
kept in the pool. This allows to reject jobs 3 and 13 during the two next iterations
providing s2.

H3a versus H4

In H3a, from the same parent solution at level 9 that was in H1a, it is impossible to
obtain s2.

It is useful to note that s2 at level 11 is generated with H4 from the parent solution
at level 12 corresponding to the successive rejects of jobs 7,12,5,4,8,2,11,6,1,13,10,3,
changing the status ”-1” of job 6 to status ”0”.

Instance 13 (15-1)

This instance with 15 jobs has 66 efficient solutions. They are all provided by al-
gorithms H1b,H2b,H3b and H4. But H1a,H2a and H3a generate only 65 efficient
solutions (see Table 10, Table 12 and Table 14).

H3a versus H4

It is important to note that the missing efficient solution at level 11, corresponding
to the reject of jobs 1,3,4,5,7,8,9,10,11,13 and 14 is obtained by H4 as child solution
of a solution at level 12, changing the status ”-1” of job 12 to status ”0”, despite that
this job was initially rejected already at level 3.

5. Numerical experiments

5.1. The data

To evaluate the performance of the different algorithms described in Section 4, we
use the instances proposed in [8]. These instances are randomly generated within
predefined intervals as follows:

• the processing times pj : random integer numbers within [10,80],

• the weight values wj : random integer numbers within [1,30],

• the rejection costs rj : exp(5+
√
a b) where a is a random integer number within

[1,80] and b is a random number within [0,1].

The number of jobs is fixed to 21 values:

• small instances with n ∈ {5, 7, 9, 13, 15, 20},

195Toward an Efficient Resolution for a Single-machine...



• medium instances with n ∈ {25, 30, 35, 40, 45, 50},

• larger instances with n ∈ {60, 70, 80, 90, 100, 125, 150, 175, 200}.

Three instances are generated for each value of n so that 63 instances are solved.

5.2. The results

The complete results are presented in Table 10, Table 12, Table 14 and Table 16 (see
the Annex). In these tables we use the following notations.

|PE(H)| the number of solutions obtained by algorithm H
and for the comparison between two algorithms H and H̄:

• C(H, H̄) = |{x ∈ PE(H)
⋂

PE(H̄)}| is the number of common solutions in
PE(H) and PE(H̄),

• D(H, H̄) = |{x ∈ PE(H) | ∃y ∈ PE(H̄), y dominating x}| is the number of
solutions in PE(H) dominated by a solution of PE(H̄),

• ND(H, H̄) = |PE(H)| − C(H, H̄) − D(H, H̄) is the number of solutions in
PE(H) not present in PE(H̄) and not dominated by any solution of PE(H̄).

One can find that, H4 is by so far the most performant algorithm: no of the
solutions obtained by H4 is dominated by any solution generated with another algo-
rithm H; moreover all the solutions generated by any H are either found by H4 or
dominated by a solution of H4. We have thus

ND(H,H4) = D(H4, H) = 0 ∀H.

For this reason the results of all the algorithms will be compared with those of H4.
In Table 10 till Table 16, the first two columns characterize the instance:

(1) index of the 63 instances

(2) name of the instance (n− x, with x ∈ {1, 2, 3})

Table 10 is dedicated to the algorithm H1 and its comparison with H4. Columns 3
till 9, present the comparison of the results of H1a and H1b:

(3) |PE(H1a)|

(4) D(H1a,H1b)

(5) ND(H1a,H1b)

(6) C(H1a,H1b)

(7) ND(H1b,H1a)
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(8) D(H1b,H1a)

(9) |PE(H1b)|

We have (3) = (4) + (5) + (6) and (9) = (6) + (7) + (8). Columns 10 to 12 present the
comparison of the results of H1a and H4:

(10) D(H1a,H4)

(11) C(H1a,H4)

(12) ND(H4, H1a)

We have |PE(H1a)| = (10) + (11), |PE(H4)| = (11) + (12) (as ND(H1a,H4) = 0
and D(H4, H1a) = 0).

In the same way, columns 13 to 15 present the comparison of the results of H1b
and H4 and columns 16 to 18 present the comparison of the results of H1ab and H4.

With the same structure of Table 10, Table 12 and Table 14 consider respectively
the comparison of H2 and H3 with the algorithm H4.

Table 16 analyses the performance of the different algorithms, indicating the ratio

%(H,H4) =
C(H,H4)

|PE(H4)|

i.e. the percentage of the solutions of H4 generated by algorithm H.
This percentage is given in columns 5, 7 and 9 for H1a, H1b and H1ab, in columns

10, 12 and 14 for H2a, H2b and H2ab, and in columns 15, 17 and 19 for H3a, H3b
and H3ab. Table 16 gives also the CPU time for the different algorithms, in columns
6 and 8 for H1a and H1b, columns 11 and 13 for H2a and H2b, columns 16 and 18
for H3a and H3b. Column 3 gives the number of solutions obtained with algorithm
H4 and column 4 gives the CPU time for algorithm H4. Only the CPU times greater
or equal to 1 second are reported.

Let us note that the filtering process-time to obtain the result of an algorithm Hab
is almost immediate.

Finally, Table 18 presents a more synthetic view of all these results, gathering
the instances by three successive values of n. These values are indicated in column
1 and correspond to 9 instances. The nine other columns give the average value of
%(H,H4) in these instances, respectively for the 9 algorithms from H1a till H3ab.
The last line of Table 18 resumes all the results by the average value of %(H,H4) for
all the instances.

Remark 3:
In [8], all these instances are solved to also generate PE, with two metaheuristics:
MOSA [10] and NSGAII [3]. Unfortunately, it appears impossible to compare our
results with those of [8] for the following reasons:

• with NSGAII, the number of solutions in PE is always limited to 100,
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• for MOSA, the parameters are not well fixed because they do not dynamically
vary in function of the dimension of the instances.

So in the results of [8] the average numbers of solutions in PE for the instances with
n = 200, are respectively equal to 87 with MOSA and 100 with NSGAII, to compare
with the thousands solutions in PE in the results of Table 10, Table 12 and Table 14.

5.3. Analysis of the results

5.3.1. H3 versus H4

First of all, Table 14 and Table 16 indicate that the two algorithms H3a and especially
H3b give excellent results according to H4, with very large ratios %(H3a,H4) and
%(H3b,H4). But it is remarkable that D(H3ab,H4) = ND(H4, H3ab) = 0 so that
%(H3ab,H4) = 100 for all the instances. H3ab and H4 produce thus the same sets
PE(H3ab) and PE(H4). Is it the exact set of efficient solutions ? It is an open
question to further research. In any case, we take thus this set, denoted by Ê, as a
reference set to compare the different algorithms.

5.3.2. The small-size instances (n ≤ 20)

For this set of instances, it has been possible to verify that Ê is the exact set of
efficient solutions by a complete enumeration of all the feasible solutions.

For the 18 small instances, even if the results of the 3 algorithms H1a, H2a and
H3a are quite good, nevertheless sometimes they miss some solutions of Ê; it is the
case for 5 instances (12-13-16-17-18) for H1a and H3a and for 3 instances (13-16-
18) with H2a (see Table 16). But it is not the case for the versions H1b, H2b and
H3b which generate exactly Ê (see Table 16). In these instances, it appears that the
missing solutions of the versions a, are located at a high level of the branching scheme
and for this reason, they are more easily obtained with the versions b.

5.3.3. The medium-size instances (25 ≤ n ≤ 50)

Often, the versions b of the algorithms produce a larger percentage of Ê than the cor-
responding versions a, but it is not always the case. Effectively, in particular for H1,
we have opposite results: for example, with instance 27, we have %(H1b,H4) = 98.9
however only %(H1a,H4) = 54.1 otherwise with the instance 36 the results are dif-
ferent, %(H1b,H4) = 42.0 instead %(H1a,H4) = 95.4. The respective performance
of the versions a and b depends on the data of each instance. Nevertheless, for these
medium-size instances, the results of H1ab are excellent with an average percentage
%(H1ab,H4) larger than 99.83% (see Table 18).

It is even the case when either the result of H1a is bad (see the instance 27 in
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Table 16 where %(H1ab,H4) = 99.3) or the result of H1b is bad (see the instance 36
in Table 16 %(H1ab,H4) = 99.0).

We can note that H2 becomes a little bit more competitive than H1 for these
medium-size instances, and H3 is more competitive than H2.

The version b of H2 and H3 are almost always more performant than their version
a, with some rare exceptions like instances 27, 35 and 36 for H2 and instance 27 for
H3 (see Table 16). But, as with H3, we have always %(H2ab,H4) = 100 so that for
the medium instances PE(H2ab) = Ê.

5.3.4. The large-size instances (60 ≤ n ≤ 200)

For the large instances, clearly algorithms H1a and H1b become inadequate to obtain
a good approximation of Ê, with small ratios %(H1a,H4) and %(H1b,H4). Table 10
shows also that the numbers D(H1a,H4) and D(H1b,H4) are very large, especially
when n ≥ 150 (with rare exception like D(H1a,H4) for instance 59); it appears that
these algorithms produce thousand solutions which in fact are dominated.

It should be underlined that in many of these large instances, we have only
C(H1a,H1b) = 2 (see Table 10). These two unique common solutions in PE(H1a)
and PE(H1b) are in fact the two extreme efficient solutions corresponding to rejecting
none of the jobs or rejecting all of them. Except these two obvious solutions, H1a
and H1b completely diverge to generate PE(H1a) and PE(H1b).

Even if the results of H2 improve those of H1, we note (see Table 12) that
D(H2a,H4) and D(H2b,H4) increase with the dimension of the instances to reach
several thousands when n ≥ 150. So these algorithms do not provide a good approx-
imation of Ê for instances with very large dimension.

For such instances, there is a clear superiority of H3 versus H2. The performance
of H3 remains excellent and very stable with, in particular of H3b, a ratio %(H3b,H4)
larger than 99.1 (see Table 16). We recall that for all the instances %(H3ab,H4) =
100.

5.3.5. The CPU time

Concerning the CPU time of all the different algorithms, we can see from Table 16
(columns 4,6,8,11,13,16 and 18) that:

• for H1 and H3, it is always inferior to 2 seconds, even when n = 200,

• logically, H2 needs a larger CPU time till 35 seconds for H2a and 16 seconds
for H2b when n = 200,

• H4 takes 19 seconds to treat the instances with n = 200, thus a larger time
than H3a and H3b. We must note that the filtering process of their respective
set PE to obtain PE(H3ab) is almost immediate.

In conclusion of this analysis, H4 appears the more efficient and stable algorithm
to approximate E even if H3ab appears as an excellent alternative, a little faster.
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5.4. Comment on the implementation of the algorithms

The algorithms presented in the paper are all implicit enumeration. At each iteration,
a solution s (related to a node of the tree) is selected from the pool and is examined
by the branching scheme. The set E(s) of children solutions of the parent solution
s is created with only solutions corresponding to a non-dominated variation. For
the solution s, the variations corresponding to the two objectives Cw and R can be
efficiently obtained using relation (9) and relation (10). Nevertheless relation (10)
is computationally very efficient only when the vector of variations ∆() can also be
stored in the pool. For information, to treat the instances with n = 200, the maximal
size of pool is equal to 1600 for H1, H3 and H4, and is equal to 8000 for H2. In case
of limited memory (very large scale problems), we can proceed differently and these
variations can still be calculated efficiently using relation (16) which is a generalization
of relation (7).

∆
(k)
j = pj (

∑
k∈A
k≥j

wk) + wj (
∑
l∈A
l<j

pl) (16)

The verification of the non-dominance of the variations can be done efficiently when
considering these variations in the order of increasing rejection cost. For this reason,
an additional vector is created (i1, i2, . . . , in) corresponding to the increasing order
ri1 ≤ ri2 ≤ . . . ≤ rin . For the didactic example given in Table 1, we have that
r2 ≤ r5 ≤ r4 ≤ r3 ≤ r1 so that we create the additional vector (2, 5, 4, 3, 1). We

compare the successive variations (rjk ,∆
()
jk

) and (rjk+1,∆
()
jk+1). These variations are

non-dominated if ∆
()
jk

< ∆
()
jk+1.

6. Conclusion

For the bi-objective model 1//(Cw, R) several heuristics which are implicit enumer-
ation following a branching scheme are proposed. They all use the concept of non-
dominated variations to define the set E(s) of children solutions of a parent solution s.
These heuristics differ either by the definition of fathomed node or by the branching
scheme. The large set of experimental results proofs that the heuristic H1 and H2
are not well adapted to large instances; secondly the superiority of the heuristic H4,
even if H3ab obtains the same results.

For the future, one can first analyse if some metaheuristics are able to improve
the results; of course to propose an exact method is also a challenge. It will also be
interesting, in the spirit of [4], [6] and [8], to analyse if the concept of non-dominated
variations can be extended to the Lorenz domination variations instead of the Pareto
domination. Another direction of further research is to adapt these algorithms to other
classical scheduling models, like two parallel machines or two sequential machines,
with rejection.
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Annex: Instance data and complete results

Table 8: Data of instance 12
j pj wj rj
1 18 22 1602
2 14 16 592
3 26 18 15738
4 40 21 432
5 51 26 408
6 23 8 601
7 76 26 149
8 80 27 809
9 16 4 4017
10 69 15 5879
11 74 16 1053
12 41 4 282
13 63 4 1652

Table 9: Data of instance 13
j pj wj rj
1 11 25 9097
2 26 29 39771
3 53 28 1960
4 73 27 2372
5 44 13 11277
6 22 6 20548
7 42 11 2476
8 75 19 1838
9 77 13 427
10 62 9 17825
11 53 7 2273
12 41 5 383
13 66 6 2227
14 64 2 175
15 68 1 3782
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Table 10: Results H1 (Part I)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
n |PE(H1a)| D ND C(H1a,H1b) ND D |PE(H1b)|

1 5-1 11 0 0 11 0 0 11
2 5-2 8 0 0 8 0 0 8
3 5-3 7 0 0 7 0 0 7
4 7-1 20 0 0 20 0 0 20
5 7-2 17 0 0 17 0 0 17
6 7-3 16 0 0 16 0 0 16
7 9-1 22 0 0 22 0 0 22
8 9-2 26 0 0 26 0 0 26
9 9-3 26 0 0 26 0 0 26
10 13-1 30 0 0 30 0 0 30
11 13-2 41 0 0 41 0 0 41
12 13-3 39 0 0 39 2 0 41
13 15-1 65 0 0 65 1 0 66
14 15-2 39 0 0 39 0 0 39
15 15-3 81 0 0 81 0 0 81
16 20-1 124 1 0 123 3 0 126
17 20-2 93 0 0 93 1 0 94
18 20-3 96 21 0 75 53 0 128
19 25-1 144 0 0 144 5 0 149
20 25-2 108 0 0 108 6 0 114
21 25-3 156 0 3 153 3 2 158
22 30-1 218 0 6 212 5 1 218
23 30-2 133 1 0 132 7 0 139
24 30-3 221 0 0 221 7 0 228
25 35-1 288 0 24 264 17 14 295
26 35-2 242 1 0 241 33 0 274
27 35-3 192 39 1 152 128 0 280
28 40-1 298 0 0 298 7 0 305
29 40-2 292 0 74 218 12 49 279
30 40-3 296 0 0 296 18 0 314
31 45-1 290 0 2 288 6 0 294
32 45-2 352 0 79 273 7 47 327
33 45-3 348 0 54 294 12 36 342
34 50-1 374 2 123 249 4 107 360
35 50-2 401 2 177 222 12 156 390
36 50-3 559 0 334 225 21 290 536
37 60-1 526 1 148 377 6 56 439
38 60-2 481 317 0 164 335 0 499
39 60-3 485 14 0 471 76 0 547
40 70-1 622 5 10 607 72 0 679
41 70-2 708 621 85 2 677 97 776
42 70-3 776 69 602 105 76 495 676
43 80-1 983 903 0 80 926 0 1006
44 80-2 676 1 531 144 6 506 656
45 80-3 839 22 622 195 98 535 828
46 90-1 970 542 426 2 558 406 966
47 90-2 854 741 93 20 869 94 983
48 90-3 1083 265 647 171 445 638 1254
49 100-1 1400 18 241 1141 47 127 1315
50 100-2 1037 412 623 2 440 613 1055
51 100-3 1190 21 641 528 60 512 1100
52 125-1 1597 17 981 599 76 790 1465
53 125-2 1687 1401 284 2 1601 347 1950
54 125-3 1691 3 1128 560 82 1072 1714
55 150-1 3245 1071 2172 2 784 1670 2456
56 150-2 2262 306 1954 2 589 2074 2665
57 150-3 2322 1615 705 2 1988 714 2704
58 175-1 3054 1477 1575 2 1484 1571 3057
59 175-2 3317 2 3198 117 16 3011 3144
60 175-3 3377 1032 2343 2 1103 2273 3378
61 200-1 3608 1762 1844 2 1833 1961 3796
62 200-2 3860 2488 1370 2 2775 1361 4138
63 200-3 3888 1924 1962 2 2210 1949 4161
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Table 11: Results H1 (Part II)

(10) (11) (12) (13) (14) (15) (16) (17) (18)
D C(H1a,H4) ND D C(H1b,H4) ND D C(H1ab,H4) ND
0 11 0 0 11 0 0 11 0
0 8 0 0 8 0 0 8 0
0 7 0 0 7 0 0 7 0
0 20 0 0 20 0 0 20 0
0 17 0 0 17 0 0 17 0
0 16 0 0 16 0 0 16 0
0 22 0 0 22 0 0 22 0
0 26 0 0 26 0 0 26 0
0 26 0 0 26 0 0 26 0
0 30 0 0 30 0 0 30 0
0 41 0 0 41 0 0 41 0
0 39 2 0 41 0 0 41 0
0 65 1 0 66 0 0 66 0
0 39 0 0 39 0 0 39 0
0 81 0 0 81 0 0 81 0
1 123 3 0 126 0 0 126 0
0 93 1 0 94 0 0 94 0
21 75 53 0 128 0 0 128 0
0 144 5 0 149 0 0 149 0
0 108 6 0 114 0 0 114 0
0 156 3 2 156 3 0 159 0
0 218 5 1 217 6 0 223 0
1 132 7 0 139 0 0 139 0
0 221 7 0 228 0 0 228 0
0 288 17 14 281 24 0 305 0
1 241 33 0 274 0 0 274 0
39 153 130 0 280 3 0 281 2
0 298 7 0 305 0 0 305 0
0 292 12 49 230 74 0 304 0
0 296 18 0 314 0 0 314 0
0 290 6 0 294 2 0 296 0
0 352 7 47 280 79 0 359 0
0 348 12 36 306 54 0 360 0
2 372 5 107 253 124 0 376 1
3 398 13 156 234 177 1 410 1
0 559 27 290 246 340 0 580 6
1 525 9 56 383 151 0 531 3

317 164 341 2 497 8 2 497 8
14 471 76 0 547 0 0 547 0
5 617 72 0 679 10 0 689 0

638 70 760 162 614 216 82 682 148
72 704 86 495 181 609 3 780 10
903 80 930 2 1004 6 2 1004 6
1 675 13 507 149 539 1 680 8
25 814 125 535 293 646 3 912 27
727 243 783 484 482 544 263 723 303
764 90 899 210 773 216 121 861 128
374 709 669 740 514 864 190 1073 305
18 1382 53 127 1188 247 0 1429 6
875 162 1010 765 290 882 615 450 722
23 1167 78 512 588 657 2 1227 18
25 1572 125 806 659 1038 20 1636 61

1529 158 1922 993 957 1123 774 1113 967
38 1653 128 1078 636 1145 35 1735 46

2021 1224 1587 1943 513 2298 1223 1735 1076
1756 506 2582 2335 330 2758 1711 834 2254
1762 560 2832 1407 1297 2095 840 1855 1537
2556 498 2860 2329 728 2630 1837 1224 2134
133 3184 314 3011 133 3365 131 3200 298
3238 139 3474 2962 416 3197 2895 553 3060
3116 492 3340 2738 1058 2774 2131 1548 2284
3500 360 3914 2577 1561 2713 2228 1919 2355
3341 547 3877 3324 837 3587 2792 1382 3042
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Table 12: Results H2 (Part I)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
n |PE(H2a)| D ND C(H2a,H2b) ND D |PE(H2b)|

1 5-1 11 0 0 11 0 0 11
2 5-2 8 0 0 8 0 0 8
3 5-3 7 0 0 7 0 0 7
4 7-1 20 0 0 20 0 0 20
5 7-2 17 0 0 17 0 0 17
6 7-3 16 0 0 16 0 0 16
7 9-1 22 0 0 22 0 0 22
8 9-2 26 0 0 26 0 0 26
9 9-3 26 0 0 26 0 0 26
10 13-1 30 0 0 30 0 0 30
11 13-2 41 0 0 41 0 0 41
12 13-3 41 0 0 41 0 0 41
13 15-1 65 0 0 65 1 0 66
14 15-2 39 0 0 39 0 0 39
15 15-3 81 0 0 81 0 0 81
16 20-1 124 1 0 123 3 0 126
17 20-2 94 0 0 94 0 0 94
18 20-3 123 0 0 123 5 0 128
19 25-1 144 0 0 144 5 0 149
20 25-2 114 0 0 114 0 0 114
21 25-3 158 1 0 157 2 0 159
22 30-1 218 0 3 215 5 1 221
23 30-2 136 2 0 134 5 0 139
24 30-3 226 0 0 226 2 0 228
25 35-1 300 0 2 298 5 1 304
26 35-2 258 0 0 258 16 0 274
27 35-3 220 7 0 213 70 0 283
28 40-1 303 0 0 303 2 0 305
29 40-2 293 0 0 293 11 0 304
30 40-3 298 0 0 298 16 0 314
31 45-1 293 0 2 291 3 0 294
32 45-2 355 1 5 349 5 0 354
33 45-3 353 1 0 352 8 0 360
34 50-1 374 2 9 363 5 2 370
35 50-2 405 3 37 365 9 24 398
36 50-3 565 2 82 481 23 46 550
37 60-1 527 1 3 523 8 0 531
38 60-2 485 68 0 417 88 0 505
39 60-3 516 12 0 504 43 0 547
40 70-1 622 5 7 610 72 0 682
41 70-2 786 14 69 703 53 37 793
42 70-3 775 43 24 708 57 9 774
43 80-1 768 333 2 433 574 0 1 007
44 80-2 678 1 3 674 11 3 688
45 80-3 845 23 296 526 108 217 851
46 90-1 964 475 84 405 494 53 952
47 90-2 900 49 7 844 144 4 992
48 90-3 1089 323 2 764 613 0 1 377
49 100-1 1410 13 438 959 32 378 1369
50 100-2 1056 63 34 959 176 10 1145
51 100-3 1203 4 20 1179 42 5 1226
52 125-1 1632 14 389 1229 51 354 1634
53 125-2 1415 937 0 478 1572 0 2050
54 125-3 1730 10 665 1055 58 621 1734
55 150-1 2631 715 889 1027 722 725 2474
56 150-2 2209 630 1176 403 1235 1197 2835
57 150-3 2222 1379 698 145 1858 707 2710
58 175-1 2833 2044 123 666 2344 93 3103
59 175-2 3317 29 1934 1354 92 1861 3307
60 175-3 3173 2700 244 229 2950 213 3392
61 200-1 3566 1986 1466 114 2116 1421 3651
62 200-2 3778 2675 690 413 3092 638 4143
63 200-3 3443 2319 8 1116 3253 3 4372
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Table 13: Results H2 (Part II)

(10) (11) (12) (13) (14) (15) (16) (17) (18)
D C(H2a,H4) ND D C(H2b,H4) ND D C(H2ab,H4) ND
0 11 0 0 11 0 0 11 0
0 8 0 0 8 0 0 8 0
0 7 0 0 7 0 0 7 0
0 20 0 0 20 0 0 20 0
0 17 0 0 17 0 0 17 0
0 16 0 0 16 0 0 16 0
0 22 0 0 22 0 0 22 0
0 26 0 0 26 0 0 26 0
0 26 0 0 26 0 0 26 0
0 30 0 0 30 0 0 30 0
0 41 0 0 41 0 0 41 0
0 41 0 0 41 0 0 41 0
0 65 1 0 66 0 0 66 0
0 39 0 0 39 0 0 39 0
0 81 0 0 81 0 0 81 0
1 123 3 0 126 0 0 126 0
0 94 0 0 94 0 0 94 0
0 123 5 0 128 0 0 128 0
0 144 5 0 149 0 0 149 0
0 114 0 0 114 0 0 114 0
1 157 2 0 159 0 0 159 0
0 218 5 1 220 3 0 223 0
2 134 5 0 139 0 0 139 0
0 226 2 0 228 0 0 228 0
0 300 5 1 303 2 0 305 0
0 258 16 0 274 0 0 274 0
7 213 70 0 283 0 0 283 0
0 303 2 0 305 0 0 305 0
0 293 11 0 304 0 0 304 0
0 298 16 0 314 0 0 314 0
0 293 3 0 294 2 0 296 0
1 354 5 0 354 5 0 359 0
1 352 8 0 360 0 0 360 0
2 372 5 2 368 9 0 377 0
3 402 9 24 374 37 0 411 0
2 563 23 46 504 82 0 586 0
1 526 8 0 531 3 0 534 0
68 417 88 0 505 0 0 505 0
12 504 43 0 547 0 0 547 0
5 617 72 0 682 7 0 689 0
16 770 60 41 752 78 4 821 9
43 732 58 9 765 25 0 789 1
333 435 575 0 1 007 3 0 1 009 1
1 677 11 3 685 3 0 688 0
25 820 119 217 634 305 2 928 11
546 418 608 136 816 210 154 829 197
105 795 194 90 902 87 86 909 80
325 764 614 5 1 372 6 5 1 374 4
17 1393 42 380 989 446 4 1425 10
63 993 179 11 1134 38 1 1168 4
5 1198 47 5 1221 24 1 1240 5
18 1614 83 354 1280 417 4 1665 32
938 477 1603 35 2015 65 35 2015 65
38 1692 89 625 1109 672 28 1750 31
784 1847 964 769 1705 1106 83 2555 256
1367 842 2246 1963 872 2216 1499 1315 1773
1528 694 2698 1403 1307 2085 843 1858 1534
2198 635 2723 861 2242 1116 888 2245 1113
133 3184 314 1868 1439 2059 106 3274 224
2887 286 3327 887 2505 1108 861 2562 1051
3062 504 3328 2409 1242 2590 2064 1632 2200
3362 416 3858 1920 2223 2051 1969 2226 2048
2322 1121 3303 61 4311 113 58 4319 105
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Table 14: Results H3 (Part I)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
n |PE(H3a)| D ND C(H3a,H3b) ND D |PE(H3b)|

1 5-1 11 0 0 11 0 0 11
2 5-2 8 0 0 8 0 0 8
3 5-3 7 0 0 7 0 0 7
4 7-1 20 0 0 20 0 0 20
5 7-2 17 0 0 17 0 0 17
6 7-3 16 0 0 16 0 0 16
7 9-1 22 0 0 22 0 0 22
8 9-2 26 0 0 26 0 0 26
9 9-3 26 0 0 26 0 0 26
10 13-1 30 0 0 30 0 0 30
11 13-2 41 0 0 41 0 0 41
12 13-3 40 0 0 40 1 0 41
13 15-1 65 0 0 65 1 0 66
14 15-2 39 0 0 39 0 0 39
15 15-3 81 0 0 81 0 0 81
16 20-1 124 1 0 123 3 0 126
17 20-2 93 0 0 93 1 0 94
18 20-3 122 1 0 121 7 0 128
19 25-1 144 0 0 144 5 0 149
20 25-2 108 0 0 108 6 0 114
21 25-3 157 0 0 157 2 0 159
22 30-1 219 0 0 219 4 0 223
23 30-2 138 0 0 138 1 0 139
24 30-3 221 0 0 221 7 0 228
25 35-1 289 0 0 289 16 0 305
26 35-2 274 0 0 274 0 0 274
27 35-3 282 0 3 279 1 0 280
28 40-1 301 0 0 301 4 0 305
29 40-2 293 0 0 293 11 0 304
30 40-3 310 0 0 310 4 0 314
31 45-1 291 0 0 291 5 0 296
32 45-2 355 0 1 354 4 0 358
33 45-3 355 1 0 354 6 0 360
34 50-1 374 2 0 372 5 0 377
35 50-2 405 3 0 402 9 0 411
36 50-3 577 0 0 577 9 0 586
37 60-1 530 1 0 529 5 0 534
38 60-2 496 1 0 495 10 0 505
39 60-3 547 0 0 547 0 0 547
40 70-1 686 1 0 685 4 0 689
41 70-2 777 3 4 770 56 1 827
42 70-3 778 0 1 777 12 0 789
43 80-1 1007 1 1 1 005 4 0 1 009
44 80-2 676 1 0 675 13 0 688
45 80-3 919 1 2 916 21 1 938
46 90-1 985 0 4 981 41 3 1 025
47 90-2 969 6 1 962 26 0 988
48 90-3 1352 3 0 1 349 29 0 1 378
49 100-1 1410 13 6 1391 38 1 1430
50 100-2 1110 11 1 1098 73 0 1171
51 100-3 1200 6 0 1194 51 0 1245
52 125-1 1624 4 5 1615 77 2 1694
53 125-2 2041 3 3 2035 42 0 2077
54 125-3 1753 8 8 1737 36 6 1779
55 150-1 2726 12 13 2701 97 2 2800
56 150-2 2933 13 7 2913 168 5 3086
57 150-3 3341 14 30 3297 65 11 3373
58 175-1 3261 4 22 3235 101 4 3340
59 175-2 3433 11 4 3418 76 0 3494
60 175-3 3519 19 9 3491 113 2 3606
61 200-1 3786 8 9 3769 54 0 3823
62 200-2 3984 41 17 3926 331 1 4258
63 200-3 4362 2 10 4350 64 5 4419

207Toward an Efficient Resolution for a Single-machine...



Table 15: Results H3 (Part II)

(10) (11) (12) (13) (14) (15) (16) (17) (18)
D C(H3a,H4) ND D C(H3b,H4) ND D C(H3ab,H4) ND
0 11 0 0 11 0 0 11 0
0 8 0 0 8 0 0 8 0
0 7 0 0 7 0 0 7 0
0 20 0 0 20 0 0 20 0
0 17 0 0 17 0 0 17 0
0 16 0 0 16 0 0 16 0
0 22 0 0 22 0 0 22 0
0 26 0 0 26 0 0 26 0
0 26 0 0 26 0 0 26 0
0 30 0 0 30 0 0 30 0
0 41 0 0 41 0 0 41 0
0 40 1 0 41 0 0 41 0
0 65 1 0 66 0 0 66 0
0 39 0 0 39 0 0 39 0
0 81 0 0 81 0 0 81 0
1 123 3 0 126 0 0 126 0
0 93 1 0 94 0 0 94 0
1 121 7 0 128 0 0 128 0
0 144 5 0 149 0 0 149 0
0 108 6 0 114 0 0 114 0
0 157 2 0 159 0 0 159 0
0 219 4 0 223 0 0 223 0
0 138 1 0 139 0 0 139 0
0 221 7 0 228 0 0 228 0
0 289 16 0 305 0 0 305 0
0 274 0 0 274 0 0 274 0
0 282 1 0 280 3 0 283 0
0 301 4 0 305 0 0 305 0
0 293 11 0 304 0 0 304 0
0 310 4 0 314 0 0 314 0
0 291 5 0 296 0 0 296 0
0 355 4 0 358 1 0 359 0
1 354 6 0 360 0 0 360 0
2 372 5 0 377 0 0 377 0
3 402 9 0 411 0 0 411 0
0 577 9 0 586 0 0 586 0
1 529 5 0 534 0 0 534 0
1 495 10 0 505 0 0 505 0
0 547 0 0 547 0 0 547 0
1 685 4 0 689 0 0 689 0
3 774 56 1 826 4 0 830 0
0 778 12 0 789 1 0 790 0
1 1 006 4 0 1 009 1 0 1 010 0
1 675 13 0 688 0 0 688 0
1 918 21 1 937 2 0 939 0
0 985 41 3 1 022 4 0 1 026 0
6 963 26 0 988 1 0 989 0
3 1 349 29 0 1 378 0 0 1 378 0
13 1397 38 1 1429 6 0 1435 0
11 1099 73 0 1171 1 0 1172 0
6 1194 51 0 1245 0 0 1245 0
4 1620 77 2 1692 5 0 1697 0
3 2038 42 0 2077 3 0 2080 0
8 1745 36 6 1773 8 0 1781 0
12 2714 97 2 2798 13 0 2811 0
13 2920 168 5 3081 7 0 3088 0
14 3327 65 11 3362 30 0 3392 0
4 3257 101 4 3336 22 0 3358 0
11 3422 76 0 3494 4 0 3498 0
19 3500 113 2 3604 9 0 3613 0
8 3778 54 0 3823 9 0 3832 0
41 3943 331 1 4257 17 0 4274 0
2 4360 64 5 4414 10 0 4424 0
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Table 16: Percentage of common solutions with H4 and CPU time (Part I)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
n |PE(H4)| cpu %H1a cpu %H1b cpu %H1ab

1 5-1 11 100 100 100
2 5-2 8 100 100 100
3 5-3 7 100 100 100
4 7-1 20 100 100 100
5 7-2 17 100 100 100
6 7-3 16 100 100 100
7 9-1 22 100 100 100
8 9-2 26 100 100 100
9 9-3 26 100 100 100
10 13-1 30 100 100 100
11 13-2 41 100 100 100
12 13-3 41 95.1 100 100
13 15-1 66 98.5 100 100
14 15-2 39 100 100 100
15 15-3 81 100 100 100
16 20-1 126 97.6 100 100
17 20-2 94 98.9 100 100
18 20-3 128 58.6 100 100
19 25-1 149 96.6 100 100
20 25-2 114 94.7 100 100
21 25-3 159 98.1 98.1 100
22 30-1 223 97.8 97.3 100
23 30-2 139 95.0 100 100
24 30-3 228 96.9 100 100
25 35-1 305 94.4 92.1 100
26 35-2 274 88.0 100 100
27 35-3 283 54.1 98.9 99.3
28 40-1 305 97.7 100 100
29 40-2 304 96.1 75.7 100
30 40-3 314 94.3 100 100
31 45-1 296 98.0 99.3 100
32 45-2 359 98.1 78.0 100
33 45-3 360 96.7 85.0 100
34 50-1 377 98.7 67.1 99.7
35 50-2 411 96.8 26.9 99.8
36 50-3 586 95.4 42.0 99.0
37 60-1 534 98.3 71.7 99.4
38 60-2 505 32.5 98.4 98.4
39 60-3 547 96.1 100 100
40 70-1 689 1 89.6 98.5 100
41 70-2 830 1 8.4 74.0 82.2
42 70-3 790 1 89.1 22.9 98.7
43 80-1 1010 1 7.9 99.4 99.4
44 80-2 688 1 98.1 21.7 98.8
45 80-3 939 1 86.7 31.2 97.1
46 90-1 1026 5 23.7 47.0 70.5
47 90-2 989 5 9.1 78.2 87.1
48 90-3 1378 8 51.5 37.3 77.9
49 100-1 1435 8 96.3 1 82.8 99.6
50 100-2 1172 7 18.8 1 24.7 38.4
51 100-3 1245 7 93.7 1 47.2 98.6
52 125-1 1697 12 92.6 1 38.8 1 96.4
53 125-2 2080 12 7.6 1 46.0 1 53.5
54 125-3 1781 9 92.8 1 35.7 1 97.4
55 150-1 2811 9 43.5 1 18.2 1 61.7
56 150-2 3088 11 16.4 1 10.7 1 27.0
57 150-3 3392 11 16.5 1 38.2 1 54.7
58 175-1 3358 16 14.8 2 21.7 1 36.5
59 175-2 3498 16 91.0 2 3.8 1 91.5
60 175-3 3613 17 3.8 2 11.5 1 15.3
61 200-1 3832 17 12.8 2 27.6 1 40.4
62 200-2 4274 19 8.4 2 36.5 1 44.9
63 200-3 4424 19 12.4 2 18.9 1 31.2
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Table 17: Percentage of common solutions with H4 and CPU time (Part II)

(10) (11) (12) (13) (14) (15) (16) (17) (18) (19)
%H2a cpu %H2b cpu %H2ab %H3a cpu %H3b cpu %H3ab
100 100 100 100 100 100
100 100 100 100 100 100
100 100 100 100 100 100
100 100 100 100 100 100
100 100 100 100 100 100
100 100 100 100 100 100
100 100 100 100 100 100
100 100 100 100 100 100
100 100 100 100 100 100
100 100 100 100 100 100
100 100 100 100 100 100
100 100 100 97.6 100 100
98.5 100 100 98.5 100 100
100 100 100 100 100 100
100 100 100 100 100 100
97.6 100 100 100 100 100
100 100 100 97.6 100 100
96.1 100 100 94.5 100 100
96.6 100 100 96.6 100 100
100 100 100 94.7 100 100
98.7 100 100 98.7 100 100
97.8 98.7 100 98.2 100 100
96.4 100 100 99.3 100 100
99.1 100 100 96.9 100 100
98.4 99.3 100 94.8 100 100
94.2 100 100 100 100 100
75.3 100 100 99.6 98.9 100
99.3 100 100 98.7 100 100
98.4 100 100 96.4 100 100
94.9 100 100 98.7 100 100
99.0 99.3 100 98.3 100 100
98.6 98.6 100 98.9 99.7 100
97.8 100 100 98.3 100 100
98.7 2 97.6 100 98.7 100 100
97.8 2 91.0 100 97.8 100 100
96.1 1 86.0 100 98.5 100 100
98.5 1 99.4 100 99.1 100 100
82.6 1 100 100 98.0 100 100
92.1 1 100 100 100 100 100
89.6 3 99.0 1 100 99.4 100 100
92.8 3 90.6 1 98.9 93.3 99.5 100
92.7 5 96.8 2 99.9 98.5 99.9 100
43.1 6 99.7 2 99.9 99.6 99.9 100
98.4 3 99.6 1 100 98.1 100 100
87.3 3 67.5 1 98.8 97.8 99.8 100
40.7 13 79.5 2 80.8 96.0 99.6 100
80.4 13 91.2 2 91.9 97.4 99.9 100
55.4 9 99.6 4 99.7 97.9 100 100
97.1 9 68.9 5 99.3 97.4 1 99.6 100
84.7 20 96.8 4 99.7 93.8 1 99.9 100
96.2 20 98.1 4 99.6 95.9 1 100 100
95.1 21 75.4 4 98.1 95.5 1 99.7 1 100
22.9 21 96.9 4 96.9 98.0 1 99.9 1 100
95.0 26 62.3 4 98.3 98.0 1 99.6 1 100
65.7 26 60.7 6 90.9 96.5 1 99.5 1 100
27.3 42 28.2 7 42.6 94.6 1 99.8 1 100
20.5 42 38.5 7 54.8 98.1 1 99.1 1 100
18.9 36 66.8 11 66.9 97.0 2 99.3 1 100
91.0 36 41.1 11 93.6 97.8 2 99.9 1 100
7.9 49 69.3 13 70.9 96.9 2 99.8 1 100
13.2 49 32.4 13 42.6 98.6 2 99.8 1 100
9.7 35 52.0 16 52.1 92.3 2 99.6 1 100
25.3 35 97.4 16 97.6 98.6 2 99.8 1 100
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Table 18: Synthetic view of the results: average %
n H1a H1b H1ab H2a H2b H2ab H3a H3b H3ab

5-7-9 100 100 100 100 100 100 100 100 100
13-15-20 94.30 100 100 99.13 100 100 98.56 100 100
25-30-35 90.60 98.48 99.92 95.30 99.77 100 97.64 99.87 100
40-45-50 96.86 78.22 99.83 97.62 96.94 100 98.25 99.96 100
60-87-800 66.30 68.64 97.11 83.64 94.73 99.72 98.20 99.90 100
90-100-125 53.45 48.63 79.93 74.16 85.41 96.03 96.65 99.80 100
150-175-200 24.40 20.78 44.80 31.05 54.04 68.00 96.71 99.64 100

All instances 75.13 73.53 88.79 83.37 90.12 94.82 98.00 99.88 100
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