
 

Benchmarking of Problems and Solvers: a Game-Theoretic Approach 

Joseph Gogodze*  

Abstract.  In this note, we propose a game-theoretic approach for benchmarking 
computational problems and their solvers. The approach takes an assessment matrix as a 
payoff matrix for some zero-sum matrix game in which the first player chooses a problem 
and the second player chooses a solver. The solution in mixed strategies of this game is used 
to construct a notionally objective ranking of the problems and solvers under consideration. 
The proposed approach is illustrated in terms of an example to demonstrate its viability and 
its suitability for applications. 

Keywords: benchmarking, software, solvers, problems, testing, multi objective decision-
making problem 

1. Introduction 

In recent years, evaluating the performance of solvers has become a topic of intense study, 
and various approaches have been discussed in the literature. Most benchmarking tests 
produce tables showing each solver’s performance for each problem according to a specified 
evaluation metric, such as the central processing unit (CPU) time, number of function 
evaluations, or number of iterations. Interpretations of this data, i.e., the selection of 
benchmarking method, currently depends on the subjective tastes and preferences of 
individual researchers, who evaluate solvers using different problem sets and metrics, [2-
5,7,8,10,13,14,20].   
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This study introduces a new benchmarking approach that explores the natural relations 
between problems and solvers as determined by their evaluation tables. Specifically, we 
present data for benchmarking in the form of a benchmarking context, i.e., as a triple                  
< 𝑆, 𝑃, 𝐽 > where 𝑆 and	𝑃 are sets of solvers and problems, respectively and 𝐽: 𝑆 × 𝑃 → ℝ is 
an assessment function (a performance metric or evaluation metric). This concept is quite 
general and emphasizes that problem and solver benchmarking cannot be considered 
independently. Throughout the paper the benchmarking context < 𝑆, 𝑃, 𝐽 >  assumes that the 
sets of solvers and problems are finite. 

The benchmarking procedure proposed in this study uses the data encapsulated by the 
given benchmarking context< 𝑆, 𝑃, 𝐽 > and a new multi-objective decision making (MODM) 
procedure. Specifically, we consider the set of problems as a set of alternatives and the set of 
solvers as a set of criteria. Now, we can define a decision matrix as a matrix whose elements 
exhibit the performance of different alternatives (i.e., solvers) with respect to various criteria 
(i.e., problems) through the assessment function. 

    The rationale of such consideration is that such a multi-objective formulation allows us to 
use the concept of Pareto optimality and a vast arsenal of different approaches for Pareto 
optimization. However, it must be stressed that a characteristic feature of Pareto optimality 
is that the set of Pareto-optimal alternatives is large and that all Pareto-optimal alternatives 
must be considered as mathematically equal. On the other hand, because decisions are usually 
expected to be unique, additional factors are considered for selecting specific and/or in some 
sense more appropriate alternatives from the set of Pareto-optimal alternatives. Our approach 
allows us to select, in some sense, appropriate solvers. The essence of the method lies in the 
fact that an (in some sense) objective weighting method for the MODM problem described 
above can be obtained solving a special two-person zero-sum game. Specifically, we can 
consider the decision matrix described above as a pay-off matrix for some zero-sum matrix 
game in which the S-player chooses one of the solvers (i.e., alternatives) from 𝑆  and the P-
player chooses one of the problems (i.e., criteria) from 𝑃. Solving this game using mixed 
strategies, we can find both appropriate solvers and reasonable rankings of solvers and 
problems at the same time. 

We demonstrate the possibilities of the proposed method on a concrete example. 
Specifically, as an illustrative example, based on data from [16], we benchmark 9 differential 
evolutionary algorithms on a set of 50 test problems, in accordance with the ERTRSE (Random 
Sampling Equivalent Expected Run Time) performance metric.  

The remainder of this paper is organized as follows. Section 2 describes the proposed 
methodology for evaluating and comparing solvers and problems. Section 3 considers the 
applications of the proposed tool in a selected benchmarking problem. Section 4 draws 
conclusions. 

2. Proposed Methods 

Throughout the paper, ℝ-   is    𝑛 −dimensional space,  with   norm	|| ⋅ ||  and scalar product 
<	⋅,⋅>. Moreover, we use the following notations for the special sets and special vectors: 
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ℝ2
- = {	𝜉 ∈ ℝ-|𝜉7 ≥ 0, 𝑘 = 1,… , 𝑛},			Δ- = {	𝜉 ∈ ℝ2

-|∑ 𝜉7 = 1-
7@A }, 

𝑒7 = C0,… , 1(7), … ,0F ∈ ℝ-, 𝑘 = 1,… , 𝑛;	1- = (1,… ,1) ∈ ℝ-;	0- = (0,… ,0) ∈ ℝ-.	  

2.1. Preliminaries regarding MODM problems 

We begin here with notations and definitions that are necessary for our further considerations. 
We assume that the initial data for decision-making are presented as a decision matrix, 𝑋, the 
elements of which exhibit the performance of diverse alternatives with respect to various 
criteria: 

𝑋 = I
𝑥AA ⋯ 𝑥A-
⋮ ⋱ ⋮

𝑥NA ⋯ 𝑥N-
O 

where 𝑥PQ	the performance is measure of the 𝑖-th alternative on the	𝑗-th criterion  (	𝑖 =
1, . . 𝑛, 𝑗 = 1,… , 𝑛),𝑚 is the number of alternatives, and  𝑛	is the number of criteria.  

For simplicity, we assume further that each criterion can be treated as non-beneficial (for 
which lower values are preferable) criteria. We assume in addition that the decision matrix 
is normalized for ensuring the comparability of its elements and is such that ∑ 𝑥7Q-

7@A > 0,   
𝑥QNP- = minX𝑥AQ, … , 𝑥NQY = 0, 			𝑥QNZ[ = maxX𝑥AQ, … , 𝑥NQY = 1 for all			𝑗 = 1,…,n i.e.  
elements of the matrix 𝑋 are dimensionless numbers representing the normalized 
performance of the 𝑖-th alternative on the 𝑗-th criterion (	𝑖 = 1, . . 𝑛, 𝑗 = 1,… , 𝑛). Thus, the 
decision-making procedure's goal after the normalization procedure is simultaneous 
minimization of all criteria, i.e., we obtain a typical multi-objective optimization problem.  

Recall now the basic concepts of multi-objective optimization theory. To this end we 
introduce the following notations: alternatives will be denote by				𝑎P, 𝑖 = 1,… ,𝑚,    𝐴 =
{𝑎A, … , 𝑎N}			and criteria by 𝑐Q: 𝐴 ⟶ ℝ, 𝑗 = 1,… , 𝑛 with the result that 𝑥PQ = 𝑐Q(𝑎P), 𝑖 =
1, . . 𝑚, 𝑗 = 1,… , 𝑛. Further, the set 𝐴 will be designated as the set of alternatives, map           
𝑐 = (𝑐A,…,𝑐-)			will be designated as the criterion map (correspondingly 𝑐Q is the 𝑗-th 
objective 	𝑗 = 1,…,n), and the set 𝑐(𝐴) will be designated as the set of admissible criterion 
values. The following concepts are also associated with the criterion map and the set of 
alternatives. We say that an alternative 𝑎c ∈ 𝐴 is a minimizer of the 𝑗-th criterion, if 𝑐Q(𝑎c) =
min
Z∈d

𝑐Q(𝑎). We denote by	𝐴NP-
Q (𝑐) the set of all minimizers of the 𝑗-th objective,		𝑗 = 1,… , n. 

Correspondingly, a point𝜉Q=𝑐(𝑎) ∈ 𝑐(𝐴), where 𝑎 ∈ 𝐴NP-
Q (𝑐) will be designated as an anchor 

point, 	𝑗 = 1,…,n.  The point		𝜉f = (𝜉Af, … , 𝜉-f ) where if 𝜉Qf = min
Z∈d

𝑐Q(𝑎), objective 	𝑗 = 1,…,n, 
will be designated as an ideal point. We say that an ideal point is attainable if there exists an 
alternative	𝑎f ∈ 𝐴  such that		𝜉f = 𝑐(𝑎f).  

We say that point 𝑎∗ ∈ 𝐴 is Pareto-optimal (efficient) if there is no  𝑎 ∈ 𝐴  with				𝑐Q(𝑎) ≤
𝑐Q(𝑎∗) for all 	𝑗 = 1,…,n, and there exists an index		𝑗i ∈ {1,… , 𝑛} such that 𝑐Qj(𝑎) < 𝑐Qj(𝑎∗). 
The set of all efficient alternatives will be denoted	𝐴k  and designated as a  Pareto set  
Accordingly, 𝑐(𝐴k) will be designated as an efficient front.  

139Benchmarking of Problems and Solvers: a Game-Theoretic Approach



A very common method for solving the MODM problem is the weighting method. This 
method requires specifying how we are to determine what we consider to be objective 
weights. To this end, for simplicity we consider here only entropy method (ENT), [22]. To 
determine objective weights using the entropy measure, the decision matrix must to be 
normalized as follows: 

𝑝PQ = 𝑥𝑖𝑗 ∑ 𝑥𝑘𝑗𝑚
𝑘=1⁄ (	𝑖 = 1, . . 𝑛, 𝑗 = 1, … , 𝑛). 

Now, the amount of decision information contained in the matrix 𝑝PQ and emitted from 
each criterion can be measured by the entropy values   

𝑒Q = −
1
𝑙𝑛𝑚o𝑝7Qln	(

N

7@A

𝑝7Q), 𝑗 = 1,… , 𝑛.		 

 
Correspondingly, the degree of divergence			𝑑Q = 1 − 𝑒Q  can be defined and the objective 
weight can be calculated as 

𝑤Q = 𝑑Q o𝑑7,
N

7@A

s 		𝑗 = 1,… , 𝑛.	 

 
It is possible to determine objective weights similarly for alternatives, but we omit the 
corresponding details here. 

2.2. Game-theoretic approach for solving MODM problems 

Here, we present our game-theoretic approach for solving MODM problems, [11]. The 
proposed method considers the matrix 𝑋 as a pay-off matrix for some zero-sum matrix game.  
We can interpret this game as follows. The row-player (𝐴-player) chooses one of the 
alternatives 𝑎 ∈ 𝐴, and the column-player (𝐶-player) chooses one of the criteria 𝑐 ∈ 𝐶. The 
quantity 𝑥PQ = 𝑐Q(𝑎P)  is a sum paid to the	𝐴-player by the	𝐶-player when the 𝐴-player  
chooses the alternative	𝑎P ∈ 𝐴, and the	𝐶-player chooses the criteria 𝑐Q ∈ 𝐶, 𝑖 = 1, . . 𝑚, 𝑗 =
1,… , 𝑛.  The mixed strategy for the	𝐴-player is a vector	𝜉 ∈ ΔN, and the mixed strategy for 
the	𝐶-player is a vector	𝜁 ∈ Δ-. Correspondingly, components		𝜉7, 𝑘 = 1,… ,𝑚, 	(	𝜁7, 𝑘 =
1,… , 𝑛)	are the probabilities of choices for alternative  by the	𝐴-player (resp., criteria  
by the	𝐶-player). Hence, for mixed strategies 𝜉 ∈ ΔN, 𝜁 ∈ Δ-, the expected pay-off for the 
𝐴-player is 

Λ(ξ, ζ) =oo𝑥PQ𝜉P𝜁Q =o𝑃y(𝑎P)𝜉P =o𝑄{C𝑐QF𝜁P

-

Q@A

,
N

P@A

-

Q@A

N

P@A

 

 
where we use the notation 

𝑃y(𝑎) =o𝑐Q(𝑎), ∀𝑎 ∈ 𝐴;		𝑄{(𝑐) =o𝑐(𝑎P)
N

P@A

-

Q@A

		∀𝑐 ∈ 𝐶. 

  

k k
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Note that 𝑃y(𝑎)	can be interpreted as the expected pay-off of the alternative 𝑎 ∈ 𝐴, when 
choosing the 𝐶-player’s mixed strategies 	𝜁 ∈ Δ- and	𝑄{(𝑐) can be interpreted as expected 
pay-offs for the criterion 𝑐 ∈ 𝐶 when choosing the 𝐴-player’s  mixed strategies 𝜉 ∈ ΔN.  
Recall also that a pair of mixed strategies (𝜉∗, 𝜁∗) ∈ ΔN × Δ- is a Nash equilibrium solution 
of the considered zero-sum matrix game if and only if 
 

max
{∈}~

min
y∈}�

Λ(ξ, ζ) = min
y∈}�

max
{∈}~

Λ(ξ, ζ) = Λ (𝜉∗, 𝜁∗). 

 
Let (𝜉∗, 𝜁∗) ∈ ΔN × Δ- be a solution of the considered zero-sum matrix game. Now, we 
interpret 𝜁∗ ∈ Δ- as a properly chosen weight and consider 𝑃{∗

�⃗ (𝑎) = ∑ 𝑐Q(𝑎)-
Q@A 𝜁Q∗ as a true 

aggregation of performance criteria. Moreover, it is well-known that any solution of this 
minimization problem 

𝑃{∗
�⃗ (𝑎) =o 𝑐Q(𝑎)

-

Q@A
𝜁Q∗ ⟶ 𝑚𝑖𝑛

𝑎 ∈ 𝐴
� 

 
is always Pareto optimal, and hence, the presented approach allows the selection of some 
Pareto-optimal alternative, which can be considered as appropriate. 

The relevant interpretation of the procedure described above is necessary for determining 
in what sense this obtained Pareto-optimal alternative is appropriate. We assume that the 	𝐴 
-player and 𝐶-player are represented by the populations designated as the 	𝐴 -population and 
𝐶-population, respectively. Moreover, we also assume that to each alternative (criterion) 
there corresponds the subpopulation of individuals that dispose of this and only this 
alternative (criterion) in the 𝐴-population (resp., 𝐶-population), and that such subpopulations 
cover the entire 𝐴-population (resp.,	𝐶-population). We also interpret component 		𝜉7, 𝑘 =
1,… ,𝑚, 	(	𝜁7, 𝑘 = 1,… , 𝑛) of a mixed strategy	𝜉 ∈ ΔN(	𝜁 ∈ Δ-) as sharing in a  
corresponding subpopulation in the 𝐴-population (resp.,	𝐶-population).  

It is useful to be able to compare the proposed method ,with some known method of 
MODM-problem solution. For this purpose, we use the ENT method described in the 
previous subsection. After the weights determining by the ENT method or by the GTR 
method, the criteria can be aggregated/scalarized into the single criterion. The aggregate 
criterion's value on an alternative defines rating of this alternative. The subsequent ordering 
(by ascending or descending ratings-at wish) of the alternatives determines their ENT-
ranking or GTR-ranking, respectively. 

2.3. Benchmarking problem 

Consider a set 	𝑃 of problems, a set 	𝑆 of solvers, and a function 𝐽: 𝑆 × 𝑃 → ℝ  - the 
assessment function (performance metric). Further, assume for definiteness that the high and 
low values of  𝐽 correspond to the worst and best cases, respectively, and for convenience, 
interpret 𝐽(𝑠, 𝑝) as the cost of solving the problem  	𝑝 ∈ 𝑃  with solver problem  𝑠 ∈ 𝑆  . Note 
that if	𝐽(𝑠, 𝑝) < 	𝐽(𝑠�, 𝑝�), then it can be said that 𝑠 ∈ 𝑆 solves problem  	𝑝 ∈ 𝑃   better than 
solver  𝑠� ∈ 𝑆 solves problem 𝑝� ∈ 𝑃 (i.e., the problem  𝑝 ∈ 𝑃 was easier for solver 𝑠 ∈ 𝑆  
than the problem		𝑝� ∈ 𝑃  was for solver		𝑠� ∈ 𝑆). 

141Benchmarking of Problems and Solvers: a Game-Theoretic Approach



For a given benchmarking context < 𝑆, 𝑃, 𝐽 > assume further that the following 
assumptio,ns hold (where 𝑛�, 𝑛� are given natural numbers):  

 

⎩
⎪
⎨

⎪
⎧(𝐴0) 𝑃 = {1,… , 𝑛�}, 𝑆 = {1,… , 𝑛�};		
(𝐴1) 𝐽(𝑠, 𝑝) ≥ 0	∀(𝑠, 𝑝) ∈ 𝑆 × 𝑃

(𝐴2) 𝐼� =o𝐽(𝑠, 𝑝) > 0
�∈�

			∀𝑠 ∈ 𝑆
 

 
Assumption (A0) establishes that the sets 𝑆, 𝑃 are finite. Assumption (A2) can be 

interpreted as a no-triviality condition of the assessments (such that, as a requirement, each 
solver and each problem are to be tested with at least one problem and one solver, 
respectively). (A2) implies that		𝐼�� = ∑ 𝐽(𝑠, 𝑝) > 0�∈�,�∈� .  The triple < 𝑆, 𝑃, 𝐽 >, which 
satisfies assumptions (A0), (A1), and (A2), is henceforth referred to as the benchmarking 
context.   

Let us assume now that < 𝑆, 𝑃, 𝐽 >  is a given benchmarking context. Define the set 
of alternatives as	𝑆  i.e.,		𝐴 = 𝑆 = X𝑠A, … , 𝑠-�Y.  At the same time, define the criteria set 
	𝐶 = X𝑐A, … , 𝑐-�Y as follows: 𝑐Q(∙) = 𝐽C∙, 𝑝QF: 𝑆 → ℝ for	𝑝Q ∈ 𝑃, 𝑗 = 1,… , 𝑛�; i.e., we can 
assume that 𝐶 = 𝑃. Hence, we obtain decision matrix 𝑋 = [𝑥PQ], where  𝑥PQ = 𝑐Q(𝑎P) =
𝐽(𝑠P, 𝑝Q), 𝑖 = 1, . . 𝑛�, 𝑗 = 1,… , 𝑛�. We assume also that 𝑥QNP- < 𝑥QNZ[ for all  𝑗 = 1,… , 𝑛�. 
Now we can apply the game-theoretic approach for solving MODM problems, as it was 
described in the previous subsection. 

3. Benchmarking of Differential Evolution Algorithms 

We focus in this section on an illustrative example using the proposed method. To apply the 
proposed approach, we must solve the corresponding zero-sum game. To this end, we use the 
standard approach of reducing this game-theoretic problem to a linear programming problem. 
All calculations were performed using the MATLAB environment.   

      Note finally that, as we will see below, the results are quite appropriate and 
competitive and were found without any previous estimates of the importance of the criteria. 
For comparison, we also present here results obtained using the ENT method described above 
(see subsection 2.1).  

The study [16] considered the 9 optimization algorithms and 25 test functions and 
correspondingly we consider the sets of 9 solvers and 50 problems (see Tables B.1– B4, 
Annex B.) The sources cited in these tables present detailed information on the selected 
algorithms and test functions. The ERTRSE metric/assessment function used in [16] (see 
Annex A for detail description).  

Table B5, Annex B, presents the ERTRSE values for all problem-solver pairs. Obviously, 
assumptions (A0), (A1), and (A2) hold in the case under consideration, and hence, the 
benchmarking context < 𝑆, 𝑃, 𝐽 > is fully determined.  

Here we present the ranking results of the solvers/problems obtained using the proposed 
method, GTR, and, for comparison, the results obtained using the ENT method. First, note 
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that the solution (equilibrium) in the mixed strategies for the corresponding zero-sum game 
is 

 

 

 
This solution can be interpreted as the distribution of some population according to 

preferences regarding solvers/problems (see subsection 2.2). Note also that using the 
proposed method, within a given benchmarking context, the solvers S01, S02, S06, S08 and 
the problems P03, P07, P40, P44 have a special status (are significant).  

The results of the ranking of solvers and problems using the three methods indicated 
above are reported in Tables 1 and 2 and illustrated in Figures 1 and 2, respectively. Our 
calculations show that according to the GTR-ranking the solvers S01 and S09 (the problems 
P07 and P20) can be considered as “the first” and “the last”, respectively, in the framework 
of the considered benchmarking context.    

 

Table 1. Ranking solvers using different methods  

 

 

 

 
Figure 1. Comparison of rankings obtained using different methods. 

               Vertical axis-Rank, Horizontal axis–Solvers (see main text for explanation) 

* , ), 0, 0,(0.2299 0.2636 0.0, , 0, 3197 0. 086 9, 0x =
*

0.2960
(0, 0, 0.2037, 0, 0, 0, 0.3000, 0, 0, 0, 0, 0, 0,0, 0, 0,0, 0, 0, 0,0, 0, 0,0,

0, 0,0, 0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0, ,0, 0, 0,0.2003, 0, 0,0, 0, 0, 0)
z =

0

5

10

1 2 3 4 5 6 7 8 9

ENT

GTR

Solver ENT GTR 
S01 8 9 
S02 9 6 
S03 5 5 
S04 2 3 
S05 4 4 
S06 6 7 
S07 7 2 
S08 3 8 
S09 1 1 
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Table 2. Ranking problems using different methods 

Problem ENT GTR 
 

Problem ENT GTR 
P01 10 13 

 
P26 6 9 

P02 34 27 
 

P27 33 34 
P03 4 2 

 
P28 26 10 

P04 24 14 
 

P29 29 16 
P05 38 37 

 
P30 21 15 

P06 22 24 
 

P31 19 33 
P07 1 1 

 
P32 2 5 

P08 49 48 
 

P33 50 39 
P09 12 23 

 
P34 14 32 

P10 8 12 
 

P35 9 36 
P11 48 35 

 
P36 47 40 

P12 45 45 
 

P37 44 47 
P13 16 20 

 
P38 30 31 

P14 39 30 
 

P39 36 29 
P15 46 42 

 
P40 40 3 

P16 17 7 
 

P41 25 28 
P17 37 46 

 
P42 23 18 

P18 43 49 
 

P43 15 17 
P19 42 41 

 
P44 5 4 

P20 41 50 
 

P45 13 25 
P21 7 11 

 
P46 20 22 

P22 27 21 
 

P47 28 26 
P23 11 19 

 
P48 31 38 

P24 35 43 
 

P49 32 44 
P25 18 8 

 
P50 3 6 

 

 
Figure 2. Comparison of rankings obtained using different methods 

Vertical axis-Rank, Horizontal axis–Problems (see main text for explanation) 

05
10152025303540455055

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

ENT
GTR
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4. Conclusion 

In this paper, we proposed a new method for benchmarking computational problems and their 
solvers. The method is based on a game-theoretic approach to the solving of MODM 
problems. The proposed method is sufficiently general to be used in other areas. Furthermore, 
we considered an illustrative example to demonstrate the viability and suitability of the 
proposed method for applications. 

Note also that we only provided a tool for benchmarking a given set of solvers (problems) 
on a given set of problems (solvers) using a given performance metric, i.e., in the framework 
of the given benchmarking context. However, issues regarding selection of benchmarking 
context components remain open. The literature does not contain clear and direct 
recommendations regarding how to select a collection of solvers, problems, and performance 
metrics to obtain benchmarking results with proper justification. Hence, further development 
of benchmarking methods must focus to a greater extent on the justification of a 
benchmarking context’s component choices. 

Annex A 

A description of the assessment function used in [16] follows. First, note that the expected 
running time (ERT), a widely used performance metric for optimization algorithms, is 
defined as 

𝐸𝑅𝑇(𝜏) = 𝑚𝑒𝑎𝑛(𝑀�) +
1 − 𝑞
𝑞 𝑁NZ[, 𝑞 =

𝑁����k�
𝑁���Z�

 

where  𝜏	is a reference threshold value, 𝑀� is the number of function evaluations required to 
reach an objective value better than 𝜏	(such as successful runs), 𝑁NZ[ is the maximum 
number of function evaluations per optimization run,𝑁����k� is the number of successful runs, 
𝑁���Z� is the total number of runs, and 𝑞 is the named success rate [1].  

Note that ERT can be interpreted as the expected number of function evaluations of an 
algorithm to reach an objective function threshold for the first time and for the ERT 
performance measure, a threshold or success criterion is required. However, unlike 
conventional optimization problems (where ERT criterion is usually related to reaching the 
value of the known global optimum, within a specified tolerance), for difficult optimization 
problems the probability of coming close to the global optimum is negligible and a more 
acceptable alternative success criterion is required.  Moreover, to compare qualitative 
performance using ERT for the difficult optimization problems, it is necessary that all 
compared algorithms meet the success criterion at least a few times. Correspondingly, in [16] 
was used the success criterion as reaching a target value which corresponds to the expected 
value of the best objective function value obtained from uniform random sampling (1000 
samples). Next, for a test function 𝑓 determined the expected objective value ERSE (𝑓), the 
estimation of which is based on the 100 repetitions. Finally, the ERT w.r.t. this objective 
function value limit was referred as ERTRSE (Random Sampling Equivalent-Expected Run 
Time) for the test function 𝑓. 
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Annex B 

Table B.1. Solvers 
 

Solver S01 S02 S03 S04 S05 S06 S07 S08 S09 

Algorithm DE DE2 jDE JADE SADE Code epsDE SQG SQG-
DE 

Table B.2. Problems 
 

Problem 
Description 

Problem 
Description 

Dimension Function Dimension Function 

P01 30 F01 P26 50 F01 
P02 30 F02 P27 50 F02 
P03 30 F03 P28 50 F03 
P04 30 F04 P29 50 F04 
P05 30 F05 P30 50 F05 
P06 30 F06 P31 50 F06 
P07 30 F07 P32 50 F07 
P08 30 F08 P33 50 F08 
P09 30 F09 P34 50 F09 
P10 30 F10 P35 50 F10 
P11 30 F11 P36 50 F11 
P12 30 F12 P37 50 F12 
P13 30 F13 P38 50 F13 
P14 30 F14 P39 50 F14 
P15 30 F15 P40 50 F15 
P16 30 F16 P41 50 F16 
P17 30 F17 P42 50 F17 
P18 30 F18 P43 50 F18 
P19 30 F19 P44 50 F19 
P20 30 F20 P45 50 F20 
P21 30 F21 P46 50 F21 
P22 30 F22 P47 50 F22 
P23 30 F23 P48 50 F23 
P24 30 F24 P49 50 F24 
P25 30 F25 P50 50 F25 

146 J. Gogodze



Table B.3. Test Functions 
 

Function Short Description (see [23]) 

F01 Shifted Sphere Function 
F02 Shifted Schwefel’s Problem 1.2 
F03 Shifted Rotated High Conditioned Elliptic Function 
F04 Shifted Schwefel’s Problem 1.2 with noise in fitness function 
F05 Schwefel’s Problem 2.6 with the global optimum on the bounds 
F06 Shifted Rosenbrock’s Function 
F07 Shifted Rotated Griewank’s Function  
F08 Shifted Rotated Ackley’s Function with the global optimum on the bounds 
F09 Shifted Rastrigin’s Function 
F10 Shifted Rotated Rastrigin’s Function 
F11 Shifted Rotated Weierstrass Function 
F12 Schwefel’s Problem 2.13 
F13 Expanded Extended Griewank’s plus Rosenbrock’s Function 
F14 Shifted Rotated Expanded Scaffer’s F6 
F15 Hybrid Composition Function 
F16 Rotated Hybrid Composition Function  
F17 Rotated Hybrid Composition Function  
F18 Rotated Hybrid Composition Function  
F19 Rotated Hybrid Composition Functions with noise in fitness function 
F20 Rotated Hybrid Composition Function with a narrow basin for the global optimum 
F21 Rotated Hybrid Composition Function  
F22 Rotated Hybrid Composition Function with a high condition number matrix 
F23 Non-Continuous Rotated Hybrid Composition Function 
F24 Rotated Hybrid Composition Function  
F25 Rotated Hybrid Composition Function 

Source: [16]. 

                                                   Table B.4. Algorithms 
 

Algorithm Short Description Source 

DE “Rand/1/bin” Differential Evolution [17] 
DE2 “Best/2/bin” Differential Evolution [18] 
jDE Self-adapting Differential Evolution [6] 
JADE Adaptive Differential Evolution [23] 
SaDE Strategy adaptation Differential Evolution [15] 
Code Composite trial vector strategy Differential Evolution [21] 
epsDE Ensemble parameters Differential Evolution [12] 
SQG Stochastic Quasi-Gradient search [9] 
SQG-DE Stochastic Quasi-Gradient based Differential Evolution [16] 
    Source: [16]. 
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Table B5. ERTRSE Metric 
 

Problems 
Solvers 

S01 S02 S03 S04 S05 S06 S077 S08 S09 

P01 11657 24049 491 264 329 904 606 202 168 
P02 7401 11567 739 309 379 894 3653 137 318 
P03 6536 32763 606 356 519 1148 1045 135 210 
P04 6182 13326 570 285 342 662 1712 694 310 
P05 4342 4766 536 311 527 871 564 459 160 
P06 7404 11728 491 234 315 807 603 124 168 
P07 256 124 482 310 596 879 169 32365 107 
P08 2877 3011 1783 2084 2673 2720 2082 132 2771 
P09 15735 24058 467 269 380 818 726 126 193 
P10 11658 24054 474 256 320 850 630 201 172 
P11 2414 1555 1967 1502 1321 1541 1979 368 1949 
P12 1072 934 509 342 416 931 594 128 225 
P13 15709 10150 524 224 231 723 898 161 289 
P14 7497 19174 2735 1735 1509 2366 6379 6899 1658 
P15 437 373 668 366 565 857 458 1016 185 
P16 2999 11671 490 335 615 689 616 219 179 
P17 6925 11670 514 362 572 845 693 9096 178 
P18 1017 1036 501 314 460 741 341 263 143 
P19 1271 1045 533 317 551 836 389 259 148 
P20 1190 1098 491 315 545 1039 384 284 154 
P21 9466 24251 498 253 327 901 597 301 175 
P22 2433 2889 489 281 389 730 602 13320 202 
P23 13650 24194 474 254 325 802 586 664 181 
P24 7785 4449 544 272 376 911 573 10183 187 
P25 220 115 445 304 554 855 167 5321 109 
P26 19030 9054 439 205 254 674 579 192 178 
P27 9055 8145 572 316 388 908 2135 127 296 
P28 3819 10317 514 289 455 764 566 121 145 
P29 19059 10175 538 341 434 920 2931 1332 310 
P30 9173 19040 568 294 366 964 1418 451 214 
P31 11557 13327 491 235 244 831 609 132 182 
P32 394 187 443 289 536 884 231 24041 109 
P33 1732 2347 2098 1792 2724 2522 2740 117 1960 
P34 15719 19060 482 245 295 845 738 123 194 
P35 24071 24059 456 235 306 739 661 169 188 
P36 2024 2568 2187 1324 1814 1825 1675 347 1331 
P37 1183 1263 560 340 418 1132 774 119 224 
P38 7381 9057 514 227 193 604 1139 145 336 
P39 7476 15824 1792 1310 1198 1296 3482 4706 1808 
P40 341 291 557 354 556 852 331 205 173 
P41 7506 11568 495 320 487 738 593 260 156 
P42 11585 32369 640 327 515 794 809 5743 192 
P43 10264 19135 631 319 380 1071 892 352 226 
P44 24351 7387 511 290 389 866 728 307 210 
P45 19307 13407 533 321 372 915 794 380 227 
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(Table B5, continued) 

Source: [16]. 
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