

Comparative Analysis of Object-Oriented Software
Maintainability Prediction Models

Narimane Zighed*, Nora Bounour *, Abdelhak-Djamel Seriai +

Abstract. Software maintainability is one of the most important aspects when evaluating

the quality of a software product. It is defined as the ease with which the existing software
can be modified. In the literature, several researchers have proposed a large number of models
to measure and predict maintainability throughout different phases of the Software
Development Life Cycle. However, only a few attempts have been made for conducting a
comparative study of the existent proposed prediction models. In this paper, we present a
detailed classification and conduct a comparative analysis of Object-Oriented software
maintainability prediction models. Furthermore, we considered the aforementioned proposed
models from three perspectives, which are architecture, design and code levels. To the best of
our knowledge, such an analysis that comprises the three levels has not been conducted in
previous research. Moreover, this study hints at certain fundamental basics concerning the
way of how measure the maintainability knowing that at each level the maintainability will
be measured differently. In addition, we will focus on the strengths and weaknesses of these
models. Consequently, the comparative study yields that several statistical and machine
learning techniques have been employed for software maintainability prediction at code level
during the last decade, and each technique possesses its specific characteristic to develop an
accurate prediction model. At the design level, the majority of the prediction models
measured maintainability according to the characteristics of the quality models. Whereas at
the architectural level, the techniques adopted are still limited and only a few of studies have
been conducted in this regard.

Keywords: Metrics; Maintainability Prediction; Object-Oriented Software; Quality

Model, Prediction Model.

1. Introduction

Software maintenance is one of the essential phases of Software Development Life Cycle
process “SDLC”. Defects introduced at this stage are the most dangerous compared to those

* Badji Mokhtar University, Annaba, Algeria, narimanezighed@gmail.com
* Badji Mokhtar University, Annaba, Algeria, nora_bounour@yahoo.com

+ Montpellier University, Montpellier, France, abdelhak.seriai@lirmm.fr

F O U N D A T I O N S O F C O M P U T I N G A N D D E C I S I O N S C I E N C E S
Vol. 43 (2018) No. 4

ISSN 0867-6356
e-ISSN 2300-3405DOI: 10.1515/fcds-2018-0018

which could be introduced at the other phases of software development cycle [26].
Maintenance activities start from the moment when a system comes into operation and
continues for the remainder of the product's life. Thus, according to the past studies, they
have found that for some products this can last twenty years on average, unlike the
development phase which can last from one to two years [19]. In addition, the time spent and
effort required to correct defects in this phase consumes about 40 to 70% of the cost of the
entire life cycle [21].

Therefore, McCall model which is one of the important and oldest software quality
models has cited maintainability as one of a total of eleven factors, these factors are broken
down by the 3 perspectives: product revision (maintainability, testability and flexibility),
product transition (portability, reusability, and interoperability), product operations
(correctness, reliability, efficiency, integrity, usability) [1]. Where the quality factor
maintainability would have criteria of simplicity, conciseness, and modularity as sub-
characteristics [33].

Several definitions for "software maintainability" have been considered. According to
Standard Glossary of Software Engineering IEEE it is defined as “the ease with which a
software system or component can be modified” [15]. In some studies, it has been defined as
“number of lines of code changed” [22], [24], [30], [31], [35], [36], [12], [37]. In other works,
maintainability has been defined as the time required to make changes, and time to
understand, develop and implement a modification [29].

A maintainability prediction model is used to estimate maintenance effort of systems
using some information about it and a preselected technique for developing this model. When
we talk about making prediction at code level often, we measure the maintainability by
number of lines of code changed. Although at design level maintainability prediction is based
on quality models’ factors like understandability, modifiability, extendibility and
flexibility...Etc. But for the architecture level, the maintainability is measured by estimating
the effort of change.

A good predictive model of software maintainability allows organizations to efficiently
manage their maintenance resources and also guide decision-making related to software
maintenance. Which can help further to reduce maintenance effort and hence they can
minimize the overall effort and cost of the software project [23].

In the literature, many researchers have experimented different models to predict software
maintainability, whether at the code level or at the more abstract level as design and
architecture levels. Most of these models were proposed in the code level while a few models
were proposed at design and architecture levels (see Figure.1).

In this paper, we have considered the most important techniques proposed to predict
Object-Oriented software maintainability. We focus on a classification of these models and
we highlight the main difference between them. Then a comparative analysis is conducted to
detail all the result obtained. Unlike [11], [25] which discuss the use of prediction techniques
and compared the proposed models. In this paper we focus on the way of how the
maintainability was predicted at different levels. However, no comparative analysis has been
published previously which including code, design and architecture levels.

The remainder of this paper is organized as follows: section 2 gives a categorization of
models used for predicting Object-Oriented software maintainability. The comparative
analysis of the different models and discussion are detailed in Section 3. Finally, Section 4
concludes the work and states the possible future work.

360 N. Zighed, N. Bounour, A-D. Seriai

2. Maintainability prediction models

Various studies have been conducted and proposed in the literature for predicting software
maintainability. We categorize these works according to the abstraction level exploited by
the model. We distinguish three levels: architecture, design and code level. In Figure.1, we
represent the number of papers submitted in each stage of SDLC within a period of time. The
papers that are classified in figure 1, they are published in journals, conferences and others
which include book chapters, technical reports, white papers, symposium. The important
journals were selected depending to the impact factor while conferences were identified
according to the international repute that address issues in the field of software maintenance.

We restricted our search to the period from 1993 to 2017 and the search strategy were
developed according to the following steps:
1) Derive major search strings from the research questions
2) Use Boolean OR to construct search strings from the search terms with similar meanings.
Use Boolean AND to concatenate the search terms and restrict the research.
3) The resulting were the keywords given bellow: (maintainability prediction OR effort
maintainability prediction OR software maintainability estimation) AND (machine learning
techniques OR regression techniques OR methods) AND (Object Oriented metrics) AND
(code and design and architecture)

Figure 1. Distribution of papers submitted for maintainability prediction
from different perspective

The most obvious from the graph is that few works have been proposed in early stages:
architecture and design, also we noticed that most studies have treated the prediction of
maintainability at code level. In the next sections, we will represent the most important
models in each level.

361Comparative Analysis of Object-Oriented Software Maintainability ...

2.1. Prediction models at architectural level

Software architecture is one such a key artifact which can be used in early maintenance
prediction. According to Bass [7] “the software architecture of a program or computing
system is the structure of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them”. Among the
important recent works that dealt with maintainability prediction using software architecture
the studies that were led by Anwar and al in [5], [6] and Bengeston and al in [9], the proposed
approach has several inputs: architecture specification, engineer expertise, maintenance data
history. The authors developed a probability-based approach. They estimated " maintenance
effort " at the software architecture level using the scenario profiles.

The first step was to identify the different change scenarios that can be encountered during
the maintenance phase. Once the growth scenario profile is developed, the next step was to
classify scenarios based upon their complexity levels (Simple, Average, Complex), then each
scenario is assigned a certain probabilistic weight. The weight measure of the scenario is
defined as relative probability during a specific time interval; the weights are assigned based
upon historical maintenance data. If no historical maintenance data is available then domain
expert or software architect estimates the scenario weight. Once the change impact analysis
has been performed, it is possible to predict the maintenance effort according to a proposed
mathematic formula. We clearly perceive that the approach proposed in [5, 6] is inspired by
the one that was presented in [9].

2.2. Prediction models at design level

The software design of an application has a considerable effect on quality factors such as
maintainability. Using software design to quantify some quality factors will help
organizations to plan resources accordingly. In terms of prediction, some techniques are
available for the software engineer’s community to predict system maintainability at the
design level.

In a series of studies [14-15], Marcela Genero investigates the possibility of the use
structural complexity and size metrics as good predictors of maintainability by constructing
maintainability prediction models based on metrics of UML class diagrams. In 2003 she
developed four models which relate the size and structural complexity metrics of UML class
diagrams with maintainability measures like understandability time, modifiability time,
modifiability completeness, modifiability correctness. In these models, she defined
modifiability and understandability as maintainability’s sub-characteristics. The metrics from
this model can be used for software maintainability prediction resolutions. In order to test her
hypothesis, she used Multivariate Linear technique which is commonly used, it allows to
figure out the relationship between dependent and independent variables. The results
achieved have an accurate prediction.

In another study Kiewkanya and al [20] proposed a methodology for constructing
maintainability model of Object-Oriented System by using two concepts understandability
and modifiability. They carried out a controlled experiment with undergraduate students, with
the purpose of building models for the maintenance level (easy, medium and difficult). These
models are developed by using three different techniques and were based on measurement
values calculated from UML class diagrams and sequence diagrams. The first maintainability
model used the metrics-based discriminant technique which analyzed the pattern of

362 N. Zighed, N. Bounour, A-D. Seriai

correlation between maintainability levels and structural complexity design metrics. The
second model was built using the weighted-score-level technique by taking a weighted sum
of understandability and modifiability scores. The third model was proposed using the
weighted-predicted-level technique that uses a weighted sum of predicted understandability
and modifiability levels, obtained by applying understandability and modifiability models.
However, a comprehensive set of examination questions were required to capture
understandability and modifiability score for each software design model. Further, those
scores might suffer from subjectivity due to different levels of understanding and of subjects
in the experiments.

In 2010, in a research conducted by Rizvi and Khan [29], the authors carried out an
empirical study which investigated the relation between the software maintainability of the
class diagram and his Understandability and Modifiability. They found that
Understandability and modifiability are strongly correlated with maintainability and can
therefore be used as good predictors of maintainability of software. Then a prediction model
was developed to predict the maintainability of a class diagram in terms of the
Understandability and the modifiability of these classes by using a multiple (multivariate)
regression method. The study involved values of understandability, modifiability,
maintainability and eleven measures of size and structural complexity previously collected
by controlled experiments on 28 class diagrams. They applied a multivariate linear regression
to construct models to estimate the comprehensibility and modifiability of class diagrams
using the eleven measurements and to estimate the maintainability of the class diagram using
Understandability and modifiability as attributes.

Further, in the year 2013 Alshayeb [2] performed an empirical study to evaluate the
relationship between four stability metrics and indices of maintenance effort, they found that
classes with higher values of Class Stability Metrics (CSM) are associated with lower values
of perfective maintenance effort measured by hours while none of the stability metrics is
correlated with maintainability measured by the number of changed lines.

From the point of view of Kumar and Dhanda [21], they saw that maintainability of an
Object-Oriented software design is affected by several factors, in which extendibility and
Flexibility that are taken as a major and key factor. The data used during the study is the same
as [29]. They developed three models to compute flexibility, extendibility and maintainability
of the class diagrams, the prediction model measures the maintainability of Object-Oriented
design in terms of their flexibility and extendibility. All the models have been developed
using the process of multiple linear regressions.

Whereas Soni and al [34], had developed three models to compute maintainability
prediction for class diagram using Extendibility and Reusability of the class diagrams. The
maintainability is measured in terms of their extendibility and reusability. All the three
models have been developed using the method of multiple linear regressions.

Lu and al in [32] proposed a methodology for assessing software maintainability at design
level and more precisely the maintainability of class diagram. Considering a set of metrics
for class diagram measurement, the authors have made a comprehensive study on
maintainability assessment from the defect-correction perspectives. Using a defect repository
and corrective maintenance history of Apache Tomcat (maintained from 2006 to 2014), they
have concluded that software maintainability can be accurately estimated in terms of time
span, number of modified lines of code and impact span for a defect correction using size,
coupling and inheritance metrics.

363Comparative Analysis of Object-Oriented Software Maintainability ...

2.3. Prediction models at code level

Several techniques and approaches have been proposed in the literature to predict the
maintainability at code level, these methods vary from simple statistical models such as
regression analysis to complex automatic learning algorithms, such as “neural networks,
genetic algorithms, etc.”. Various methods proposed in the literature for the prediction of
maintainability are summarized in Table 1.

Table 1. List of shortlisted studies

ID Authors and year Techniques used
[22] [Li and al, 93] Multiple Linear Regression
[13] [Fioravanti and al, 01] Multilinear regression analysis
[10] [Dagpinar and al, 03] Multiple Linear Regression
[27] [Misra, 05] Multivariate Regression Analysis
[30] [Van koten and al, 06] Bayesian Network
[35] [Zhou and al, 07] Multivariate Adaptive Regression Splines
[3] [Aggarwal and al, 08] Artificial Neural Network (Multilayer

Feed Forward)
[12] [Elish and al, 09] TreeNet « or also known as Multiple Addi-

tive Regression Trees »
[31] [Li-jin and al, 09] Projection Pursuit Regression
[18] [Jin, and Liu, 10] Support Vector Machine (SVM)
[23] [Malhotra and al, 12] Genetic Algorithms

Probabilistic Neural Network
Group Method of Data Handling

[8] [Baqais and al, 13] Neural Network
Genetic Algorithms

[24] [Malhotra and al, 14] Group Method of Data Handling
[19] [Jindal and al, 15] Neural Network

(Radial Basis Function NN)
[17] [Jain and al, 16] Evolutionary Algorithm

2.3.1 Statistical models

In order to monitor maintenance and reengineering, quantitative metrics to assess and predict
system characteristics should be used. There are many predictive models of maintainability
of software published in the literature that suggest a way to establish the relationship between
metrics and software maintenance.

Several studies have used linear regression techniques to construct models for predicting
the maintainability of software. For example, Li and Henry [22] they used these techniques
to predict maintenance effort, with a combination of metrics collected from the software
source code can be used as input to predict maintenance effort using multivariate regression

364 N. Zighed, N. Bounour, A-D. Seriai

analysis model (MLR).
In [13] a study was carried out by Fioravanti and Nesi with the aim of building and

evaluating a prediction model and the measurements for estimating the adaptive maintenance
effort of Object-Oriented systems.

According to Misra [27], the MI "maintainability index" have been used as an indicator
of the maintainability of Object-Oriented systems. It has studied the effect of the twenty
different metrics at the design / code level on maintainability using statistical techniques of
linear regression to predict the effort of maintainability.

Zhou and Leung in [35] also used a multivariate adaptive regression splines technique,
which allows to model the relationship between a desired value (also called a target variable)
and several predictive variables to construct a prediction model of the maintenance effort
using the metric data collected from two different Object-Oriented systems presented in [22].
These metrics represent cohesion, coupling, inheritance and size.

In a study conducted by Li-jin and al [31], a predictive model of maintainability was
developed using the static technique "Projection Pursuit Regression" and this by means of a
set of Object-Oriented metrics which is constituted as maintainability predictors. The values
of these metrics were collected from two software products UIMS (User Interface
Management System) and QUES (Quality Evaluation System).

Jun and Liu [18] validated their prediction model using the datasets collected from the
software systems developed by graduate students. Their results show that when Support
Vector Machine (SVM) is combined with clustering for the purpose of maintenance effort
predictions, correlation between Chidamber and Kemerer “C&K” metric suite and
maintainability was found to be as high as 0.769 which is statistically quite significant.

Figure 2. The general process of using ML in maintainability prediction

365Comparative Analysis of Object-Oriented Software Maintainability ...

2.3.2. Machine learning techniques-based models

Machine learning (ML) is used for the study of information which helps in the mechanization
of the development of a prediction model. A great variety of experimental work has been
carried out which recommends the use of automatic learning techniques [28].
However, the link between Object-Oriented metrics and maintainability is often complex and
non-linear, limiting the accuracy of classical approaches. Different prediction models- based
ML techniques and Object-Oriented metrics have been proposed for the prediction of
software maintenance effort.

I- Using a single technique

Van and Gray in [30] have constructed a model for predicting the software maintainability of
OO systems using Bayesian networks. The authors used the Object-Oriented metric data set
presented by Li and Henry [22]. In this study, maintainability is measured as the number of
code’s changes during a maintenance period. To build the Bayesian network the Bayda tool
was used. Bayda allows users to build a special type of Bayesian networks called Bayesian
naive classifier. In which a single node representing a classification variable (change) is
connected to all the other nodes that represent the predictor variables (ten of OO metrics).
Then the precision of the model predictions is evaluated and compared with models-based
regression. The results suggest that the Bayesian network model can predict maintainability
more accurately than regression-based models for one system (UIMS) and almost as
accurately as the best regression-based model for the other system (QUES).

Elish [12] used TreeNet to construct a software maintainability prediction model using
the same data collected by Li and Henry [22]. They explored their experience on two popular
data sets in the field of maintainability known as UIMS and QUES. The authors have proved
that it also provides competitive results compared to other models.

Aggarwal and al [3] used ANN as a technique to construct a prediction model to estimate
the maintenance effort of OO software at the class level by estimating the number of rows
modified per class, On the other hand, the authors of [3] aim to explore empirically the
relationship between OO metrics and maintainability estimation. The values of the metrics
studied were collected from a total of 110 classes from two software systems: UIMS and
QUES [22]. A common problem that assumes when using metrics is called correlation. This
problem arises when the dependent variables are strongly correlated with each other and this
is the case with the OO metrics to remedy this problem Principal Component Analysis is a
statistical technique that has been used in this study to transform the data in uncorrelated
variables and reduce the correlation between the independent variables. The constructed
ANN model belongs to the whole of the multilayer perceptron [4] and the results of the latter's
evaluation showed that the relative absolute mean error (MARE) was 0.265 of the model.
The results show that the ANN is capable of providing an adequate model for predicting
maintenance effort and that OO metrics can be useful in guiding prediction.

Jindal and al [19] also used neural networks to develop a prediction model, but by using
another type of neural network "radial basis function network. Malhotra and Chug [23]
constructed a model using automatic learning algorithms to predict the maintainability of
Object-Oriented software such as Genetic Algorithms (GA) and Group Method of Data
Handling (GMDH). They evaluated the execution of this model using UIMS and QUES
systems, and found that the GMDH network model is one of the better methods of
demonstration to anticipate the maintainability of the product.

366 N. Zighed, N. Bounour, A-D. Seriai

In 2016 a recent study was conducted by Jain, Tarwani and Chug [17] to propose the use
of genetic algorithms for predicting the software maintainability, and to compare its
performance with various automatic learning techniques. They extracted the OO metrics from
four open source projects jTDS , jWebUnit, jXLS and SoundHelix, using the tool (Chidamber
and Kemerer Java Metrics). The Weka tool was also used to construct the prediction model.
In their study, maintainability was measured by counting the number of changes at the code
level, which was calculated by comparing each class of the two versions using the Beyond
Compare tool. To evaluate the accuracy of predictions found they used Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) as precision measures of prediction which were
proposed by Kitchenham. According to the results, the genetic algorithm gives more accurate
predictions compared to other models of automatic learning- based prediction.

II- Using hybrid techniques

From 2012 onwards, hybrid methods proved that their results are even better in predicting
maintainability.

Baqais and al [8] also used neural networks to propose a model of maintenance effort
prediction. This model is classified as a hybrid model because they used the ANN to construct
it while the genetic algorithm was used to speed up the ANN process by adjusting the
parameters of its design in order to achieve an optimized topology. In this study, four groups
of metrics were evaluated to conclude their direct influence on maintainability, which was
measured by the use of the maintainability index, the LOC (Line of Codes), NOA (Number
of Attributes), NLM (Number of Local Methods) and WMC (Weighted Methods per Class)
that represent: size, cohesion, coupling and inheritance, they were collected from the Android
project and they were analyzed empirically to understand their relationship to maintainability.
The Metamata tool was used to calculate the metrics while another tool called JHawk was
also used to calculate the maintainability index. After this, the data was provided to another
tool called DTREG to build the predictive model based on AI techniques. The results show
that the size of the code and the coupling metrics are a good indicator to provide an accurate
prediction of the maintainability measure.

Malhotra and Chug [24] deployed static measurements and found that the performance
of the Group Data Management Method (GMDH) was concise in terms of prediction
accuracy and can be viewed as a prediction of maintainability.

3. Discussion and comparison

In this part, we compare the different works presented previously. The comparative study is
elaborated by answering the following research questions:

Q1: How the software maintainability was measured using different artifacts of the
aforementioned abstraction levels?
Q2: Have the OO metrics been used at all the considered levels? What is the set of OO metrics
used for the software maintainability prediction? And which of these were the most influen-
tial on maintainability prediction?

Q3: What kinds of datasets used for empirical validations?

367Comparative Analysis of Object-Oriented Software Maintainability ...

Q4: How can we judge the performance of prediction models?

Q5: What are the most accurate techniques to use for predicting maintainability?

3.1. Measurement and definition of software maintainability during the
considered SDLC phases.

Table 2. Different measurements of maintainability

Studies Measurement of software Maintainability

A

rc
hi

te
ct

ur
al

le

ve
l

[5], [6], [9]

The maintainability is measured by estimating change effort
(hours effort) required for dealing with changes in
maintenance phase by using mathematical model.

D
es

ig
n

le
ve

l

[15]
Understandability: The ease with which a class diagram
can be understood.

Analyzability: The capability of a class diagram to be
diagnosed for deficiencies or to identify parts to be
modified.
Modifiability: The capability of a class diagram to enable a
specified modification to be implemented.

[20], [29]

Two sub-characteristics of maintainability are considered:
Understandability: is the degree to which the software
design model can provide its clear meaning to evaluator.
Modifiability: is the degree to which the software design
model can be changed.

[2]
The authors correlates class stability with maintainability
effort measured by the number of hours spent on
maintenance activities and by the line
of code changes

[34]
The authors estimate the maintainability of class diagrams
in respect of their Extendibility.

Co

de
 le

ve
l [27], [8]

Maintainability was measured using the widely accepted
Maintainability Index (MI).

[30], [35], [31],
[12], [3], [19],

[17], [24]

The number of changes made to the code during a
maintenance period.

The maintainability of a software system can be measured in different ways. At code level
most of studies have measured maintainability by estimating the number of changes made to
the code during a maintenance period, and in few of studies, the maintainability has been
quantified by the Maintainability Index (MI) [27-8]. On other hand at design level the
maintainability can be estimated by measuring some of the sub-characteristics of
maintainability such as understandability, analyzability, modifiability and testability. In some

368 N. Zighed, N. Bounour, A-D. Seriai

studies, they have measured it by measuring two or even three sub-characteristics but the
understandability still an important sub-characteristic of maintainability, since professionals
spend at least half of their time analyzing software to understand it [15-20,29]. But at
architectural level they estimated the effort of change for measuring the maintainability.
Table 2 shows different measurements of software maintainability.

3.2. Metrics suite used in software maintainability prediction.

The link between OO design/code metrics and software maintainability has been proposed
by many researchers. These studies [3], [10], [22], [15], [27], [30] have found that a strong
link between these metrics and software maintainability exist. Due to the help of many
empirical studies, it has been established that the quality of software design, as well as code,
is very important to improve the maintainability of software. Numerous measures have been
proposed in the literature to capture the structural quality of code and design of Object-
Oriented programs, when at architecture level the OO metrics were not used for
maintainability prediction. Such measures are aimed at providing means of evaluating the
quality of the software, among which the most well-known metrics are those of Chidamber
and Kemerer “CK”, Lee and Henry [22].

Table 3. List of OO metrics

Studies

Software metrics used

Co

de
 le

ve
l

[22], [27], [30],
[3], [12], [23], [24]

CK metrics, Li and Henry metrics, and Size

Metrics

[35]

CK metrics, and Li and Henry

D

es
ig

n
le

ve
l [15], [29] Set Metrics for UML Class Diagrams

As can be concluded, the performance of the maintainability prediction models depends on
choosing the right set of Object-Oriented design/code metrics.

In [8] the results suggested that coupling metrics are a good indicator to provide an
accurate prediction of the maintainability measure. In [10] the results indicate that size and
import direct coupling metrics serve as the important predictors measuring maintainability of
classes while inheritance, cohesion, and indirect/export coupling measures are not. Zhou
[33] found that the average control flow complexity per method (OSAVG) appears to be the
most important maintainability factor.

369Comparative Analysis of Object-Oriented Software Maintainability ...

While studies [15], [30], [12], [3] and others did not provide any explicit decision for
successful predictors of maintainability.

Overall it was observed that metrics related to size, complexity and coupling were to date
the most successful maintainability predictors employed.

3.3. Kinds of dataset used to elaborate software maintainability models

Many researchers and studies have conducted empirical studies in part to prove and show
that the values of OO design metrics had a considerable effect on maintainability. All of these
studies are based on small projects, proprietary software databases, open source software,
etc.

Building and evaluating software maintainability prediction techniques rely mainly on
datasets, some research studies have taken real-life data whereas some studies have used the
dataset proposed by Li and Henry [22] from two commercial software packages namely user
interface management system (UIMS) and quality evaluation system (QUES). Maintenance
efforts are generally calculated by counting the number of lines added, deleted or modified
during operations. The source code of old and new versions were collected and analyzed
against modifications made in every class. Values of OO software design metrics suite were
calculated and combined with corresponding changes made into that class so as to generate
datasets which were further divided into 3:1:1 for training, testing and validation,
respectively, during model implementations [24].

Table 4. List of datasets used and its characteristics

Datasets Referred in studies Code characteristic
UIMS and QUES [30], [35], [3], [12],

[31], [22], [23], [24].
- UIMS (User Interface Management
System, 39 classes)
- QUES (Quality Evaluation System, 71
classes)
Both systems were implemented in ADA
language.

Open Source Datasets:
Androidprojet, jTDS,
jWe- BUnit, JXLS,
Sound Helix, Apache
Tomcat server.

[8], [17], [32]. - jTDS (64 classes) [17]
- jWebUnit (22 classes) [17]
- jXLS (78 classes) [17]
- SoundHelix (67 classes) [17]
- Android project (78 classes) [8]
- Apache Tomcat [32]
All systems are written in Java

Propriety software [10], [27]. - 50 projects written in C++ total of
15637 classes [27]
-Two systems written in Java

Fujaba-UML (FUML) and Dynamic Ob- ject
Browser (dobs) [10]

Design diagrams [21], [29], [15] Twenty-eight UML class diagrams

370 N. Zighed, N. Bounour, A-D. Seriai

3.4. Measures to judge the performance of prediction models.

When we develop a maintainability prediction model, the results obtained must be tested and
compared with the actual values of maintainability. There is a number of statistical measures
that have been proposed by several authors to measure the accuracy and precision of the
prediction and to ensure that a precise prediction is not due to a simple coincidence rather, it
exists in fact by proposing formulas with their corresponding interpretations, among the
measures most used by the authors of papers presented in above sections: magnitude of
relative error (MRE)[30-12-18-35-3-24-23], mean magnitude of relative error (MMRE)[30-
12-35-23], residual error (RE), absolute residual error (ARE)[35], mean of ARE (MARE)[18-
3],, Standard deviation of ARE (StdevARE), Pred (q)[35-23], Mean Absolut Error [19], R-
square[23], root mean square error (RMSE)[19] and Normalized mean square error [8].

3.5. The most accurate techniques to use for predicting maintainability

The aim of prediction models is to estimate Object-Oriented software maintainability but
getting an accurate result remains the primary goal of each study that was carried out in
literature. At code level the use of OO metric is inevitable in order to quantify the
characteristics of the code and also it provides ways to evaluate the maintainability of
software. The link between these metrics and maintainability is often complex and non-linear
which limit the accuracy of statistical approaches. The use of ML techniques to develop
prediction model gives more accurate results.

4. Threats to validity

In this section, we discuss the main threats to validity which need to be considered when
interpreting the results from our study and the way we attempted to alleviate them. The
identified threats are given as under:

The first threat to validity in our study is biased in our selection of the works to be included
and the research databases. Therefore, in order to ensure that we have chosen the most
important studies, we have adopted a selection process and it was unbiased, in which different
databases were identified like: Google Scholar, Science Direct, Springer, ACM Digital
Library, IEEE Xplore.

The second threat to validity is related to the search strings used for selecting relevant
studies. The search strings were derived from the research questions which we have
formulated for conducting and guiding our analysis.

5. Conclusion

In this paper, we have presented the most important techniques applied in the literature that
were used for the purpose of software maintainability estimation and constructing prediction
models. In contrast to other studies that took mostly one level and they analyzed the proposed
models, in our study we considered the code, design, and architecture level of SDLC. We

371Comparative Analysis of Object-Oriented Software Maintainability ...

performed a comparative analysis by answering the research questions which are presented
in section 3. We conclude that only few works have been done at the design and architectural
level. For future work, we could explore the use of machine learning techniques at the design
and architectural level.

References

[1] AL-Badareen A.B., Selamat M.H., Jabar M.A., Din J., Turaev S.: Software Quality
Models: A Comparative Study. In the International Conference on Software Engineering
and Computer Systems, pp.46-55, Springer, Malaysia, (2011).

[2] Alshayeb M.: on the relationship of class stability and maintainability, IET Softw.7,
pp.339-347, (2013).

[3] Aggarwal K.K., Singh Y., Kaur A., Malhotra R.: Application of Artificial Neural
Network for Predicting Maintainability using Object-Oriented Metrics. In World
Academy of Science, Engineering and Technology, pp.285-289, (2008).

[4] Aggarwal K.K., Singh Y., Kaur A., Sangwan O.P.: A Neural Net Based Approach To
Test Oracle. In ACM SIGSOFT Software Engineering Notes, pp.1-6, (2004).

[5] Anwar S., Ramzan M., Rauf A., Shahid A.A.: Software Maintenance Prediction Using
Weighted Scenarios: An Architecture Perspective. In International Conference on
Information Science and Applications (ICISA), pp.1-9, IEEE, Korea (South), (2010).

[6] Anwar S.: Software Maintenance Prediction: An Architecture Perspective. PHD thesis,
AST National University of Computer & Emerging Sciences, Islamabad, Pakistan,
(2010). [7] Bass L., Clements P., Kazman R.: Software Architecture in Practise. Second
edition. Addison Wesley, (2003).

[8] Baqais A. A. B., Alshayeb M., Baig Z.A.: Hybrid Intelligent Model for Software
Maintenance Prediction. In World Congress on Engineering, pp.358-362, Springer,
Lon- don, U.K, (2013).

[9] Bengtsson P., Bosch J.: Architecture Level Prediction of Software Maintenance. In The
3rd European Conference on Software Maintenance and Reengineering (CSMR),
pp.139- 147, IEEE, Netherlands, (1999).

[10] Dagpinar M., Jahnke J.H.: Predicting Maintainability with Object-Oriented Metrics - An
Empirical Comparison. In The 10th Working Conference on Reverse Engineering
(WCRE), pp.155-164, IEEE, USA, (2003).

[11] Elmidaoui S., Cheikhi L., Idri A.: Accuracy Comparison of Empirical Studies on
Software Product Maintainability Prediction. World Conference on Information
Systems and Technologies, pp.26-35, (2018).

[12] Elish M., Elish K.: Application of TreeNet in Predicting Object-Oriented Software
Maintainability: A Comparative Study. In The 13th European Conference on Software
Mainte- nance and Reengineering (CSMR), pp.69-78, IEEE, Germany, (2009).

[13] Fioraventi F. , Nesi P.: Estimation and Prediction Metrics for Adaptive Maintenance
Effort of Object-Oriented Systems. In IEEE transactions on software engineering,
pp.1062– 1084, (2001).

[14] Genero M., Piattini M., Calero C.: Early measures of UML class diagrams, Herms
Science Publication, vol. 6, pp.489-515, January (2000).

[15] Genero M., Olivas J., Piattini M., Romero F.: Using metrics to predict OO information
systems maintainability, Lecture Notes in Computer Science, pp.388-401, (2001).

372 N. Zighed, N. Bounour, A-D. Seriai

[16] International Software Testing Qualifications Board: IEEE Standard glossary of terms
used in Software Engineering, (2011).

[17] Jain A., Tarwani S., Chug A.: An Empirical Investigation of Evolutionary Algorithm for
Software Maintainability Prediction. In Students' Conference on Electrical, Electronics
and Computer Science (SCEECS), pp.1-6, IEEE, India, (2016).

[18] Jin C., Liu .J.A.: Applications of Support Vector Machine and Unsupervised Learning
for Predicting Maintainability using Object-Oriented Metrics. In The Second
International Conference on MultiMedia and Information Technology (MMIT), pp.24 -
27, IEEE, China, (2010).

[19] Jindal R., Malhotra R., Jain A.: Predicting Software Maintenance Effort Using Neural
Networks. In The 4th International Conference on Reliability, Infocom Technologies
and Optimization (ICRITO) (Trends and Future Directions), IEEE, India, (2015).

[20] Kiewkanya M., Jindasawat N., MuenchaisriK P.: A Methodology for Constructing
Maintainability Model of Object-Oriented Design, the Fourth International Conference
on Quality Software (QSIC’04), IEEE, pp.206–213, (2004).

[21] Kumar R., Dhanda N.: Maintainability Measurement Model for Object-Oriented Design.
In International Journal of Advanced Research in Computer and Communication
Engineering, pp.68-71, (2015).

[22] Li W., Henry S.: Object-Oriented Metrics that Predict Maintainability. Journal of
Systems and Software, pp.111–122, (1993).

[23] Malhotra R., Chug A.: Software Maintainability Prediction using Machine Learning
Algorithms. In Software Engineering: An International Journal (SEIJ), pp.19-36,
(2012).

[24] Malhotra R., Chug A.: Application of Group Method of Data Handling model for
software maintainability prediction using Object-Oriented systems. International
Journal of System Assurance Engineering and Management, pp.165-173, (2014).

[25] Malhotra R., Chug A.: Software Maintainability: Systematic Literature Review and
Current Trends. International Journal of Software Engineering and Knowledge
Engineering, Vol. 26, pp.1221–1253, (2016).

[26] Mens T., Serebrenik A., Cleve A.: Evolving Software Systems, Springer, (2014).
[27] Misra S.C.: Modeling Design/Coding Factors That Drive Maintainability of Software

Systems. In Software Quality Journal, pp.297-320, (2005).
[28] Nanda S., Saxena S.G., Bala A.G.: Evaluation of Feature Selection Techniques for Soft-

ware Maintenance Prediction. Thapar University, India, (2017).
[29] Rizvi. S.V, Khan .R.A.: Maintainability Estimation Model for Object-Oriented Software

in Design Phase (MEMOOD). In Journal of Computing, pp.26-31, (2010).
[30] Van Koten C., Gray A.R.: An application of Bayesian network for predicting Object-

Oriented software maintainability. Information and Software Technology Journal,
pp.59- 67, (2006).

[31] Li-jin W., Xin-xin H., Zheng-yuan N., Wen-hua K.: Predicting Object-Oriented
Software Maintainability using Projection Pursuit Regression. In The 1st International
Conference on Information Science and Engineering, pp.3827-3830, IEEE, China,
(2009). [32] Lu Y., Mao X., Li Z.: Assessing Software Maintainability Based on Class
Diagram Design: A Preliminary Case Study, (2016).

[33] Saini R., Dubey S.K., Rana A.: Analytical study of Maintainability models for Quality
evaluation. In The Indian Journal of Computer Science and Engineering (IJCSE),
pp.449- 454, (2011).

[34] Soni N., Khaliq M.: Maintainability Estimation of Object-Oriented Software: Design
Phase Perspective”, International Journal of Advanced Research in Computer and

373Comparative Analysis of Object-Oriented Software Maintainability ...

Communication Engineering, March (2015).
[35] Zhou Y., Leung H.: Predicting Object-Oriented software maintainability using

multivariate adaptive regression splines. The Journal of Systems and Software, pp.1349-
1361, (2007).

[36] Zhou Y., XU B.: Predicting the Maintainability of Open Source Software Using Design
Metrics. Wuhan University Journal of Natural Sciences, pp.14-20, (2008).

[37] Zhang W., Huang L., Vincent Ng V., Ge J.: SMPLearner: learning to predict software
maintainability. The international journal of automated Software Engineering, pp.111-
141, (2015).

Received. 5.07.2018, Accepted 16.11.2018

374 N. Zighed, N. Bounour, A-D. Seriai

