
Predicting Aggregated User Satisfaction in Software Projects 

Łukasz Radliński* 

Abstract. User satisfaction is an important feature of software quality. However, it was 
rarely studied in software engineering literature. By enhancing earlier research this paper 
focuses on predicting user satisfaction with machine learning techniques using software de-
velopment data from an extended ISBSG dataset. This study involved building, evaluating 
and comparing a total of 15,600 prediction schemes. Each scheme consists of a different 
combination of its components: manual feature preselection, handling missing values, outlier 
elimination, value normalization, automated feature selection, and a classifier. The research 
procedure involved a 10-fold cross-validation and separate testing, both repeated 10 times, 
to train and to evaluate each prediction scheme. Achieved level of accuracy for best perform-
ing schemes expressed by Matthews correlation coefficient was about 0.5 in the cross-vali-
dation and about 0.5–0.6 in the testing stage. The study identified the most accurate settings 
for components of prediction schemes. 

Keywords: user satisfaction, prediction scheme, software projects, machine learning, 
ISBSG. 

1. Introduction 

User satisfaction is one of the features of software quality. The ISO/IEC 25010:2011 stand-
ard, that is widely used in software quality studies, e.g. [9], [14], [25], and [39], defines two 
quality models: (1) a quality in use model composed of five characteristics related to the 
outcome of interaction when a product is used in a particular context of use, and (2) a product 
quality model composed of eight characteristics related to static properties of software and 
dynamic properties of the computer system. In the first of these models satisfaction is one of 
top-level characteristics and is defined as a ”degree to which user needs are satisfied when a 
product or system is used in a specified context of use” [15]. Usually related studies focus on 
investigating which factors influence user satisfaction. Jones states that user satisfaction is 
measurable but not predictable [17 p. 456]. The lack of extensive literature on predicting user 
satisfaction partially confirms this claim. 

* Faculty of Computer Science and Information Technology, West Pomeranian Univer-
sity of Technology in Szczecin, ul. Żołnierska 49, 71-210 Szczecin, Poland, lukasz.radlin-
ski@zut.edu.pl. 

                                                           

F O U N D A T I O N S  O F  C O M P U T I N G  A N D  D E C I S I O N  S C I E N C E S
Vol. 43 (2018) No. 4

ISSN 0867-6356
e-ISSN 2300-3405DOI: 10.1515/fcds-2018-0017



However, some existing work, discussed later in Section 3, shows that there may be some 
potential in dealing with the challenge of predicting software quality. Thus, this study focuses 
on the following two goals: 

1. To investigate what accuracy can be achieved in predicting aggregated user satisfaction;  
2. To determine which settings for schemes’ components deliver the most accurate predic-

tions. 

To achieve these goals this study used the extended edition of ISBSG R11 dataset of 
software projects [13] that contains data on user satisfaction, expressed by eight distinct var-
iables. In this study, a total of 15,600 prediction schemes were built, trained, and evaluated 
for predictive accuracy. Each scheme consists of different components for manual feature 
preselection, handling missing values, outlier elimination, value normalization, automated 
feature selection, and a classifier. 

The paper contributes to the applied science and practice by investigating a large amount 
of modelling/prediction algorithms and techniques in the context of their performance to pre-
dict user satisfaction. Presented results demonstrate how these algorithms and techniques 
perform in comparison with others of the same type and focus.   

The rest of this paper is organized as follows: Section 2 presents research method fol-
lowed and data for the experimental study. Section 3 discusses related work. Section 4 con-
siders limitations and threats to validity. Section 5 presents obtained results of comparing the 
schemes and their components. Section 6 formulates conclusions and plans for future work. 

2. Data and method 

This study used the extended version of the ISBSG R11 dataset [13] on past software devel-
opment projects. The whole dataset contains data on 5024 software projects that were devel-
oped worldwide. These projects vary in terms of the type, size, duration, development activ-
ities involved, environmental factors, objectives, and documents and techniques used. In the 
extended version of the dataset, used in this study, the projects are described by 205 attrib-
utes. Table 1 describes the basic statistics for the main numeric attributes. Table 2 describes 
the most frequent states (values) for key environmental attributes. The dataset does not con-
tain attributes describing the country or geographical area where the project was developed. 

Table 1. Selected basic statistics for numeric attributes 

Attribute 

Original extended da-
taset 

After preprocessing 

Range Median Range Median 
Project implementation year 1989–2009 2002 1995–2008 2000 
Functional Size (function 
points) 

3–19050 194 22–1670 143 

Summary Work Effort 
(hours) 

0–645694 1746 82–18054 2381 

Total defects delivered 
(count) 

0–2554 1 0–2554 6 
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Table 2. Most frequent states for non-numeric attributes 

Attribute 
Original extended dataset After preprocessing 

Value % Value % 
Development 
type 

New development 
Enhancement 
Re-development 

39 
59 
2 

New development 
Enhancement 
Re-development 

51 
46 
3 

Application 
type 

Accounting 
Financial transaction pro-
cess 
Transaction/production 
Management inform. sys-
tem 

19 
19 
8 
7 

Network management 
Office information system 
Management inform. sys-
tem 
Process control 

12 
11 
10 
9 

Business area 
type 

Communications 
Telecommunications 
Insurance 
Banking 

19 
19 
10 
10 

Manufacturing 
Engineering 
Marketing 
Logistics 

24 
15 
13 
7 

Organization 
type 

Communications 
Insurance 
Services 
Banking 

14 
14 
11 
10 

Manufacturing 
Communications 
Computers & Software 
Banking 

14 
13 
11 
7 

 
According to the author’s knowledge this is the only publicly available dataset of software 

projects of sensible volume for prediction purposes that contains data on user satisfaction – 
thus no comparison of predictions with another dataset was performed. 

The research process, illustrated in Figure 1, involved the following stages and their steps: 
Basic preprocessing and data selection: selecting only cases with ‘A’ or ‘B’ for data 

quality rating, partitioning into the CV (65 cases) and test subsets (24 cases); cleaning and 
adjusting/correcting the values; removing variables with few counts for their states or with 
many missing values; creating dummy variables from multiple response nominal variables; 
removing cases with missing user satisfaction values. After performing these tasks 89 pro-
jects were kept in the dataset. The significant data reduction was caused mainly by the fact 
that only a small part of projects were supported with attributes describing user satisfaction 
that are essential in this study. 

 The target variable for prediction was calculated by aggregating the following eight in-
dividual variables: 

• User satisfaction with the ability of system to meet stated objectives; 
• User satisfaction with the ability of system to meet business requirements; 
• User satisfaction with the quality of the functionality provided; 
• User satisfaction with the quality of the documentation provided; 
• User satisfaction with the ease of use; 
• User satisfaction with the training given; 
• User satisfaction with the speed of defining solution; 
• User satisfaction with the speed of providing solution. 
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Figure 1. Schematic of the research process 

 
These variables were originally defined on the following 4-point ranked scale: 

‘1’ – user needs met to a limited extent or not at all; 
‘2’ – user needs largely met; 
‘3’ – user needs fully met; 
‘4’ – user expectations exceeded. 
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Because the focus of this study was the prediction of the overall, i.e. aggregated, user 
satisfaction it was necessary to combine them into a single target variable. This was achieved 
by calculating the mean of their numerical values for each case (project). Then, this calculated 
value was dichotomized – set as ‘true’ if 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀) ≥ 2.5 and to ‘false’ if 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀) < 2.5 This dichotomization was motivated by the fact that there were 
very few projects with mean satisfaction of ‘1’ or ‘4’ – thus, learning patterns and predicting 
user satisfaction from very few projects would very likely fail. 

Defining potential predictors. This step involved creating new potential predictors cal-
culated from regular variables such as rates, proportions or, for variables non-normally dis-
tributed, transformed variables with log and Box-Cox transformations. After completing this 
and the previous step, the dataset contained projects described by 65 potential predictors 
(columns): 32 numeric, 17 logical or nominal with two states, 12 multiple-response nominal 
converted to logical dummy variables, and four other nominal with more than two states. 

Preparation of prediction environment. The goal of this step was to create an environ-
ment capable of repeatable execution of the following main actions for different schemes: 
loading and preparing data folds, setting up 10-fold cross-validation subprocess using the CV 
subset, setting up a test subprocess that used a classifier trained on the CV subset to be eval-
uated on the test subset, setting up logging prediction performance for both CV and test sub-
processes, aggregating all main subprocesses into a process capable of multiple execution – 
i.e. multiple passes each time with different splits of folds in the CV subset. A total of 15,600 
prediction schemes were prepared as combinations of different settings for its components: 
two settings for manual feature preselection performed by a human expert, three missing 
value imputation algorithms, five outlier detection and removal algorithms, two for value 
normalization, 13 for automated feature selection (including two algorithms and six settings 
for number of features), and 20 classifiers. The complete list of these settings are presented 
in Tables 3–8 Further information on these algorithms, their implementation and settings is 
available in [6], [32] and partially in [30]. 

Table 3. Settings for manual feature preselection 
Value Description 

no No manual feature preselection was performed – All variables, that satisfied 
data quality thresholds were used. 

yes A manual feature preselection was performed – An author investigated each 
variable’s description, value distribution, clearness of value definition and po-
tential usefulness as a predictor variable. A variable was removed from further 
use if it was classified as non-useful according to author’s expertise after judg-
ing the above criteria. This was performed by investigating only the CV subset 
to ensure that the test data are not ‘seen’ before evaluating predictions. 
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Table 4. Settings for missing value imputation algorithms 
Value Description 

mean/mode The missing value was substituted by a mean value (for a numeric varia-
ble) or a mode (for a logical or nominal variable) across all non-missing 
values in the CV subset. 

W-REPTree The missing values were estimated by applying a model trained to predict 
them. In this setting the model was a WREPTree – a fast decision tree 
learner that builds a decision or regression tree using information gain or 
variance, respectively, and prunes it using reduced-error pruning (with 
backfitting) [6]. 

k-NN The missing values were estimated by applying a model trained to predict 
them. In this setting the model was k-NN algorithm that finds k neighbors 
(k=7) and classifies the unknown case by a majority vote (for nominal 
variable) or calculates the mean (for the numeric variable) of the found 
neighbor. 

Table 5. Settings for outlier elimination algorithms 
Value Description 

No No outlier elimination algorithm performed, i.e., no cases removed with 
this setting. 

INFLO lazy 
and greedy 

Outlier elimination performed with influenced outlierness (INFLO) algo-
rithm - a local density algorithm that considers the neighbors and the re-
verse neighbors when estimating the local density of a given point. It is 
also based on the nearest neighbors set. The normal cases have a calcu-
lated outlier score of approximately 1, while outliers have a value greater 
than 1 [32]. The ‘lazy’ setting means that cases with outlier score ≥ 1.8 
were treated as outliers (i.e., very few cases) and removed from the da-
taset. The ‘greedy’ setting means that values with outlier score ≥ 1.2 were 
treated as outliers (i.e., more cases than with the previous setting) and re-
moved from the dataset. 

CBOF lazy 
and greedy 

Outlier elimination performed with the outlier score based on Connectiv-
ity Based Outlier Factor – an algorithm that improves the effectiveness of 
a local outlier factor (LOF) algorithm when a pattern itself has similar 
neighborhood density as an outlier. The normal cases have a calculated 
outlier score of approximately 1, while outliers have a value greater than 
1 [32], [38]. The ‘lazy’ setting means that cases with outlier score ≥ 1.5 
were treated as outliers (i.e., very few cases) and removed from the da-
taset. The ‘greedy’ setting means that values with outlier score ≥ 1.2 were 
treated as outliers (i.e., more cases than with the previous setting) and re-
moved from the dataset. 

Table 6. Settings for value normalization 
Value Description 

no No value normalization was performed. 
z-score Numeric values were transformed by a statistical normalization with a 

formula (𝑣𝑣𝑀𝑀𝑣𝑣𝑣𝑣𝑀𝑀 − 𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀) 𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠 𝑠𝑠𝑀𝑀𝑣𝑣𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀⁄ . 
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Table 7. Settings for automated feature selection 
Value Description 

all All variables were used – no variable was removed by this component. 
weights by 
infor-
mation gain 
ratio 

For each variable the information gain ratio was calculated – the higher 
value indicates the variable as the more relevant. Then top k variables were 
kept in the dataset while others were treated as not relevant and removed. 
The following values of k were considered: 3, 5, 10, 15, 20, and 30. 

MRMR-
EFS 

A mixture of Minimum Redundancy Maximum Relevance (MRMR) with 
a correlation-based method using ensembles for feature selection (EFS). An 
algorithm iteratively adds a variable with the most information regarding 
the target variable and the least redundancy to the already selected variables 
[4], [33]. Top k variables were kept in the dataset while others were treated 
as not relevant and removed. The following values of k were considered: 3, 
5, 10, 15, 20, and 30. 

Table 8. Settings for classifiers† [6], [32] 
Value Description 

W-ZeroR A simple and naïve classifier that ‘predicts’ the mode (for a nominal 
class as in the case of this study). Used as a baseline for comparisons 
with ‘real’ predictive classifiers. 

Naive Bayes A high-bias, low-variance classifier, and it can build a good model 
even with a small data set. It is simple to use and computationally 
inexpensive. Assumes that given the value of the target the value of 
any attribute is independent of the value of any other attribute – but 
is considered to perform well even with violation of this assumption. 

k-NN The algorithm that finds k neighbors the closest to the predicted case 
and classifies this case by a majority vote (for nominal variable) of 
the found neighbor. 

Decision Tree A classifier with a tree-like collection of nodes where each node 
represents a splitting rule for a specific variable. 

Random Forest An ensemble of a number of random trees created and trained on 
bootstrapped subsets. A resulting set of trees delivers prediction by 
voting of all random trees [32]. 

W-OneR An algorithm that builds a single rule for each predictive variable 
(discretizing numeric attributes) and chooses the one with the mini-
mum-error for prediction [12]. 

W-PART An algorithm for generating PART decision list that uses separate-
and-conquer strategy – builds a partial C4.5 decision tree in each 
iteration and makes the ‘best’ leaf into a rule [7] 

W-DTNB A simple semi-naive Bayesian ranking method that combine naive 
Bayes with induction of decision tables [10]. 

W-J48 An open source implementation of an algorithm for generating a 
pruned or unpruned C4.5 decision tree [27]. 

† Classifiers prefixed with ‘W-‘ denote implementations in Weka [6], all remaining are native 
RapidMiner implementations [32]. The values of the main parameters for these classifiers used in 
this study are provided in Table 17 in Appendix 1. 
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Value Description 
W-NBTree A hybrid of decision-tree and Naive-Bayes – the decision-tree nodes 

contain univariate splits as regular decision-trees, the leaves contain 
Naive-Bayesian classifiers. [21]. 

W-LMT An algorithm for building logistic model trees – classification trees 
with logistic regression functions at the leaves [22], [37].  

W-LADTree Builds a multi-class alternating decision tree using the LogitBoost 
strategy [11]. 

W-BFTree A boosting algorithm that builds a Best-First decision Tree classi-
fier. Uses binary split for both nominal and numeric attributes. The 
method of 'fractional' instances is used to handle missing values [8], 
[35]. 

W-Logistic An algorithm for building multinomial logistic regression model 
with a ridge estimator. An algorithm proposed in [23] with several 
modifications for calculating probability, log-likelihood and han-
dling instance weights [6]. 

W-SimpleLogistic A classifier for building linear logistic regression models. Uses the 
AIC criterion instead of cross-validation to prevent overfitting the 
model. A weight trimming heuristic is used for a significant speedup 
[37]. 

W-BayesNet A Bayesian network – a probabilistic graphical model (directed acy-
clic graph) that contains a set of variables and their conditional de-
pendencies [26]. Can be constructed from data using various search 
algorithms and quality measures. 

W-LWL Locally weighted learning – instance-based algorithm to assign in-
stance weights which are then used by a specified weighted in-
stances handler [1]. 

W-KStar An instance-based classifier – predicted class is based on the class 
of those training instances similar to the predicted case, as deter-
mined by a similarity function. It uses an entropy-based distance 
function [3]. 

W-DecisionTable A simple decision table majority classifier using the Inducer of De-
cision Table Majority (IDTM) – a decision table with default rule 
mapping to the majority class [20]. 

W-HyperPipes For each category a HyperPipe is constructed that contains all points 
of that category (records the attribute bounds observed for each cat-
egory). Test instances are classified according to the category that 
‘most contains the instance’. Extremely simple algorithm, but has 
the advantage of being extremely fast. 

 
Training classifiers and logging performance data: This step involved executing de-

fined processes using prepared data and prediction schemes. To ensure a higher level of ran-
domness of splits in the CV subset the whole process of training and testing these schemes 
was repeated ten times. 
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Analysis of results. The predictive accuracy in all analyses was based on the Matthews 
correlation coefficient (MCC) recommended to evaluate prediction accuracy in classification 
tasks [34]. The main benefits for using MCC are: 

- Interpretation similar to the Pearson correlation coefficient – the same range of [-1, 
1], a value +1 indicates perfect prediction, -1 indicates all predictions opposite to the 
reality, and 0 indicates prediction at the random level. 

- It is regarded as a balanced measure which can be used when the variable is class 
(state) imbalanced. 

- It is calculated from all four cells of the confusion matrix in contrast to often used 
F1-score, recall or precision.  

This analysis was divided into three parts: The first part involved pairwise comparisons 
of schemes’ components by visualizing the accuracy distributions for all settings of pairs of 
scheme’s components. This paper discusses three the most interesting and useful (in the au-
thor’s opinion) pairs of components investigated but more such analyses were performed. 

The second part involved identification of ten best performing schemes in both CV and 
test subsets. Its first goal was to investigate the highest level of accuracy that can be expected 
to obtain using created prediction schemes. The second goal was to investigate which settings 
and their combinations for particular components of prediction schemes deliver the most ac-
curate results. 

The third part was focused on comparing schemes' components by ranks using four pre-
dictive accuracy measures: MCC, area under ROC curve, Cohen's kappa coefficient, and 
balance [36]. As mentioned earlier, the MCC is a recommended evaluation measure. How-
ever, other measures highlight other aspects of accuracy, thus they also were included in this 
third part of analysis to produce the distribution of accuracy measures. The overall perfor-
mance of the settings in each component was evaluated using the win-tie-loss procedure 
(Algorithm 1) adapted from [19] and [24].  

Algorithm 1. Calculation of overall performance 

for-each pass p do 
for-each accuracy measure ai do 
 for-each component setting cj do 
  run Wilcoxon signed-rank test against all other component settings ck 

adjust p-values with Bonferroni procedure 
  determine win, tie or loss 
   winpij ← if adjusted p-value ≤ 0.05 AND Median(apij) > Median(apik)  

losspij ← if adjusted p-value ≤ 0.05 AND Median(apij) < Median(apik) 
tiepij ← if (adjusted p-value ≤ 0.05 AND Median(apij) = Median(apik) OR 

adjusted p-value ≥ 0.05 
calculate Sum(winj), Sum(lossj), Sum(tiej) 
differencej ← Sum(winj) – Sum(lossj) 
return Sum(winj), Sum(lossj), Sum(tiej), Sum(differencej) 
 
This procedure was applied to the prediction results from the CV and test subsets joined 

together. It involves repeatable running of the Wilcoxon signed-rank test, applying Bonfer-
roni correction procedure. Its main step uses prediction measures to calculate the number of 
‘wins’, ‘ties’ and ‘losses’ – pairwise for each setting of a component of a prediction scheme 
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against all other settings in this component. Thus, the number of ‘wins’ and ‘losses’ tells how 
many times a particular setting of a component delivered predictions statistically significantly 
better or worse, respectively, than other settings. The number of ‘ties’ tell how many times a 
particular setting delivered predictions not statistically different from other settings or when 
the median value of particular evaluation measure was equal compared to the other setting. 
The value of the ‘difference’ is the difference between the number of ‘wins’ and the number 
of ‘losses’ for a particular setting of a component. 

Preparation of prediction environment and running predictions were performed using 
RapidMiner [32]. Other steps were performed in R [28]. 

3. Related work 

The earlier study [30] that is the closest to the current one involved a similar research process 
to the one described in Section 2 and on the same dataset. That work focused on a single 
aspect of user satisfaction, i.e, with the ability of system to meet stated objectives, not on 
predicting aggregated user satisfaction as in the current study. That study also evaluated 
fewer schemes (288) compared to 15,600 in the current study. The schemes in the earlier 
study were also simpler – they did not consider outlier elimination and value normalization. 
Also, in the previous work each scheme was used once on the CV and test subsets; in the 
current study this process was repeated ten times for each scheme. Finally, the analysis of 
results in earlier study was simpler and did not contain three steps performed here. Thus, the 
current study is a significant extension to [30]. That study reports that the median accuracy 
of predictions was MCC=0.30 for the validation subset and MCC=0.24 for the test subset. 
Two schemes with the highest accuracy (MCC=0.71) involve no manual feature preselection, 
imputation of missing values by mean/mode, number of features selected was 30, and clas-
sifiers were W-LMT and W-SimpleLogistic, respectively. 

A different study [29], that also involved the use of ISBSG dataset, used a classifier of 
CN2 rules. Achieved prediction accuracy in a validation subset for 10-fold cross-validation 
was MCC=0.42. 

Two studies involved developing a Bayesian network. The first [5] was focused on pre-
dicting resources. The second [31] was focused on predicting various software quality attrib-
utes defined in the ISO 25010 standard [15]. In both models user satisfaction was one of the 
target predictive variables. Unfortunately, none of these studies report achieved accuracy 
predictions. 

Another study [2] compared various schemes to predict project outcome, defined as either 
‘success’ or ‘failure’. The authors made the following findings: feature selection using infor-
mation gain score improves accuracy, statistical and ensemble classifiers are robust for pre-
dicting project outcome, and Random Forest produced on average the most accurate predic-
tions. 

4. Limitations and threats to validity 

Results in this study are subject to some limitations and threats to validity. ISBSG dataset is 
not a random sample from population of software projects, thus no generalization of results 
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or conclusions can be performed to other projects. Specifically, the ISBSG contains data on 
software projects from different contributors who wish to share the data on their projects with 
others. The investigated version of the dataset does not contain certain types of projects, e.g. 
in military application area or modern mobile applications. 

Secondly, the author made arbitrary decisions on treatment of several variables, e.g. those 
with lots of missing data, transformations or adjustments of values. Also, the author made 
arbitrary decisions on the definition of schemes and their components. The author used own 
experience and recent literature when making such decisions to limit the bias caused by sub-
jectivity. As a result of such human-based data preparation, to treat the test data as ‘unseen’ 
until the evaluation of predictions, the process was performed once – i.e. the repetition of 
data partitioning was performed ten times but only within the cross-validation subset, the test 
subset was defined once for all these passes of the process. 

The last step of the analysis involved repeated execution of the statistical test. To mitigate 
the inflated possibility of false alarms this analysis involved adjusting p-values using a Bon-
ferroni procedure. 

The aggregated satisfaction used in predictions averages over eight individual user satis-
faction variables from original dataset. This calculated mean treats each of them with the 
same weight while in specific projects some individual variables may be more important 
overall than others. However, the dataset did not contain information on the importance of 
particular satisfaction variables. 

Finally, to combine certain values this study often used the mean which is a non-robust 
measure of central location. Recent literature recommend using robust measures such as the 
trimmed mean [18]. However, the software packages used in this study very often had no 
option/setting to use a more robust measure than the mean. Using robust measure would 
require significant effort to re-implement or extend certain operators of these packages. 
While this path is worth examining it is planned for the future work. 

Also, the author made an arbitrary decision to use the mean when calculating the aggre-
gated user satisfaction from eight distinct variables. This choice was motivated by the fact 
that in the author’s opinion this aggregated value should be prone to and reflect negative 
deviations, e.g. when for a given project one of these satisfaction variables is significantly 
worse than all others it is likely that overall satisfaction would be poor. Plans for future work 
include examining this aspect in details. 

5. Results 

5.1. Pairwise comparisons of schemes’ components 
Creating prediction scheme involved two steps of feature selection: initially performed man-
ually by a domain expert and then automated performed using a tool-supported algorithm. 
Results in Figure 2 show that on average for the CV subset for each setting of automated 
feature selection algorithm the prediction accuracy was higher when the features were earlier 
preselected by a human expert than when no such preselection was performed. Thus, auto-
mated feature selection may not be sufficient on its own. In the test subset, on average, 
schemes with automated feature selection usually performed no worse than with no such 
preselection (by investigating the quartiles) but here the differences were smaller than in the 
CV subset, sometimes hardly noticeable. 
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Figure 2. Accuracy by manual and automated feature selection 

The second comparison involved a number of features in automated selection and a clas-
sifier (Figure 3). In the CV subset, classifiers produce different patterns of accuracy for var-
ying number of features selected. Several classifiers are more accurate with the increasing 
number of features selected, i.e., Naïve-Bayes, k-NN, Random Forest, W-KStar, W-Decision 
Table, and W-Hyper Pipes. Other group of classifiers, e.g. W-OneR, LMT, W-LADTree, W-
BFTree, on average deliver surprising predictive performance – the most accurate for very 
few or a lot of features selected and the least accurate for medium number of features selected. 
Decision Tree was the only classifier that on average performed less accurate with increasing 
number of features selected. In the test subset the results were noisy and observations for 
most classifiers in the CV subset were not confirmed in the test subset. 
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Figure 3. Accuracy by number of features in automated selection and a classifier 

The last pairwise comparison involved missing value imputation and automated feature 
selection (Figure 4). In both the CV and test subsets for information gain ratio as automated 

347Predicting Aggregated User Satisfaction in Software Projects



feature selection on average a procedure of filling missing values by mean/mode performed 
the better with the increasing value of number of features selected – both in absolute scale 
and comparing to other procedures of handling missing data. For MRMR-EFS with different 
values of features no such clear tendency for missing value procedures was observed – yet, 
in the CV subset all missing value handling procedures seem to benefit from a higher number 
of features.  

 

 
Figure 4. Accuracy by missing value imputation and automated feature selection  

5.2. Best and worst performing schemes 

The next part of this analysis involve the identification of the best performing schemes in the 
CV subset (Table 9) and the test subset (Table 10). These schemes were identified based on 
the highest mean MCC across all ten passes of in evaluation process. In the CV subset all top 
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five schemes achieved the same mean MCC of 0.500 and shared the same setting for all 
components except automated feature selection. Surprisingly, all five of them used a very 
simple classifier – W-OneR. 

Table 9. Best performing schemes for the CV subset 
Feature pre-
selection 

Impute 
missing 

Outlier elim-
ination Normalization Feature selection Classifier MCC 

yes mean/mode INFLO lazy no Inf. Gain Ratio 20 W-OneR 0.500 
yes mean/mode INFLO lazy no MRMR-EFS 20 W-OneR 0.500 
yes mean/mode INFLO lazy no Inf. Gain Ratio 30 W-OneR 0.500 
yes mean/mode INFLO lazy no MRMR-EFS 30 W-OneR 0.500 
yes mean/mode INFLO lazy no All W-OneR 0.500 
no mean/mode CBOF lazy no All W-OneR 0.490 

Yes mean/mode CBOF 
greedy no MRMR-EFS 20 W-OneR 0.483 

Yes mean/mode CBOF 
greedy no Inf. Gain Ratio 30 W-OneR 0.483 

yes mean/mode CBOF 
greedy no MRMR-EFS 30 W-OneR 0.483 

yes mean/mode CBOF 
greedy no All W-OneR 0.483 

 

Table 10. Best performing schemes for the test subset 
Feature pre-
selection 

Impute miss-
ing 

Outlier elimi-
nation Normalization 

Feature selec-
tion Classifier MCC 

no W-REPTree No z-score MRMR-EFS 15 W-KStar 0.598 
yes mean/mode CBOF greedy no MRMR-EFS 5 W-KStar 0.527 
yes mean/mode CBOF greedy z-score MRMR-EFS 5 W-KStar 0.527 
yes mean/mode CBOF lazy no MRMR-EFS 5 W-KStar 0.520 
yes mean/mode CBOF lazy z-score MRMR-EFS 5 W-KStar 0.520 
no mean/mode No z-score MRMR-EFS 15 W-KStar 0.489 

no mean/mode No z-score Inf. Gain Ratio 
3 W-KStar 0.477 

yes mean/mode INFLO lazy no Inf. Gain Ratio 
5 W-KStar 0.471 

yes mean/mode CBOF lazy no Inf. Gain Ratio 
5 W-KStar 0.471 

yes mean/mode INFLO lazy z-score Inf. Gain Ratio 
5 W-KStar 0.471 

yes mean/mode CBOF lazy z-score Inf. Gain Ratio 
5 W-KStar 0.471 

 
In the test subset different schemes performed the best, i.e. with different settings for most 

schemes’ components. Surprisingly, in the test subset the best schemes achieved higher ac-
curacy than the best in the CV subset. The W-KStar turned to be the classifier with the best 
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performance in all top schemes. The best performing scheme involved imputation of missing 
values with W-REPTree. However, this method of handling missing values appeared only 
once in top performing schemes – all other schemes involved substitution with mean/mode. 
Quite surprisingly, the best performing schemes usually were based on very few features 
automatically selected: 5 or 3, with two exceptions of 15. 

These results show that often quite simple schemes (or their components) perform the 
most accurate, e.g., W-OneR classifier for the CV subset and using very few features in au-
tomated feature selection in the test subset. In addition, simple substitution of missing values 
with mean/mode appeared to be the best choice in almost all top performing schemes in both 
the CV and test subsets. 

5.3. Comparing schemes’ components by ranks 
The last and the most important step of this analysis involved each component by comparing 
all settings used in a given component using the procedure explained in Section 2. The results 
illustrated in this Section were sorted by the last column (‘difference’) from the best to the 
worst. Table 11 shows that under this procedure of comparison using manual feature prese-
lection have always performed better than not performing such selection. Thus, a recommen-
dation for performing such feature preselection is strongly supported by obtained results.  

Table 11. Aggregated accuracy for feature preselection 
Preselection wins ties losses difference 
Yes 40 0 0 40 
No 0 0 40 -40 

 
Table 12 shows that filling missing values by mean/mode on average performed the best 

compared with other missing value handling procedures. However, the difference between 
all three settings was not high and even the least performing k-NN achieved 23 ‘wins’ of 80 
possible (the best average/mode achieved 34 ‘wins’). 

Table 12. Aggregated accuracy for missing value handling procedure 
Impute missing wins ties losses difference 
mean/mode 34 22 24 10 
W-REPTree 33 17 30 3 
k-NN 23 21 36 -13 

 
As illustrated in Table 13, the ‘lazy’ version of CBOF outlier detection algorithm, i.e. 

detecting very few outliers, performed clearly the best compared to other algorithms. For 
both CBOF and INFLO the ‘lazy’ versions performed better than ‘greedy’ suggesting that 
the latter might have removed too many cases used to train the model. Three of four algo-
rithms delivered worse results than not applying any outlier elimination algorithm at all. 
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Table 13. Aggregated accuracy for outlier elimination 
Outlier removal wins ties losses difference 
CBOF lazy 124 22 14 110 
No 99 7 54 45 
CBOF greedy 60 31 69 -9 
INFLO lazy 58 17 85 -27 
INFLO greedy 19 3 138 -119 

 
Table 14 shows that performing standardization with z-score resulted in better prediction 

in very few cases. In most cases, i.e., 34 of 40, there was no difference if such standardization 
was applied or not. 

Table 14. Aggregated accuracy for normalization 
Normalize wins ties losses difference 
z-score 6 34 0 6 
no 0 34 6 -6 

 
Table 15 shows that automated feature selection using MRMR-EFS with 20 features per-

formed clearly the best compared to other feature selection algorithms. However, it is diffi-
cult to draw conclusions for other settings used. For example, usually the higher number of 
features used resulted in better accuracy – but MRMR-EFS with 30 features selected and 
using all available features preformed quite poorly, i.e., as one of the worst performing algo-
rithms. On the other hand, MRMR-EFS with only five features selected performed better 
than nine of other settings investigated. Obtained results confirm a widely accepted practice 
that training the model on all available features, i.e. with no automated feature selection, 
delivers usually quite poor results – in this study the usage of all features was outperformed 
by nine other analyzed settings and it outperformed only three other settings. 

On average the best performing classifier was W-SimpleLogistic (Table 16). The 
W-LWL achieved similar number of ‘wins’ but significantly higher number of ‘losses’ (213 
vs 157). The Naïve Bayes achieved the third highest number of ‘wins’ but due to high number 
of ‘losses’ it was ranked as the average classifier. In fact, its very low number of ‘ties’ show 
that it performed usually as either significantly better or significantly worse compared to 
other classifiers. Surprisingly, the W-BayesNet performed as the worst classifier – this may 
be due to not optimal settings used in training the classifier and will be further investigated 
later. 
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Table 15. Aggregated accuracy for automated feature selection 
Feature selection wins ties losses Difference 
MRMR-EFS 20 334 146 0 334 
Inf. Gain Ratio 30 284 91 105 179 
Inf. Gain Ratio 20 249 138 93 156 
MRMR-EFS 5 213 197 70 143 
MRMR-EFS 10 191 189 100 91 
Inf. Gain Ratio 5 131 176 173 -42 
Inf. Gain Ratio 10 119 190 171 -52 
MRMR-EFS 15 108 203 169 -61 
MRMR-EFS 30 115 178 187 -72 
All 180 28 272 -92 
Inf. Gain Ratio 15 108 149 223 -115 
Inf. Gain Ratio 3 78 144 258 -180 
MRMR-EFS 3 32 127 321 -289 

Table 16. Aggregated accuracy for classifiers 
Classifier wins ties losses Difference 
W-SimpleLogistic 422 181 157 265 
W-LWL 413 134 213 200 
W-PART 369 212 179 190 
W-J48 338 222 200 138 
W-KStar 366 163 231 135 
W-HyperPipes 393 106 261 132 
W-BFTree 352 169 239 113 
W-LMT 330 198 232 98 
Decision Tree 330 185 245 85 
Naive Bayes 401 25 334 67 
Random Forest 291 223 246 45 
W-Logistic 310 133 317 -7 
W-DTNB 278 156 326 -48 
W-ZeroR 335 41 384 -49 
k-NN 216 217 327 -111 
W-DecisionTable 232 166 362 -130 
W-NBTree 200 183 377 -177 
W-OneR 222 93 445 -223 
W-LADTree 192 121 447 -255 
W-BayesNet 84 124 552 -468 
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6. Conclusions and future work 

Performed analyses led to achieving the goals stated in Section 1, i.e., to investigate what 
accuracy can be achieved in predicting aggregated user satisfaction, and to determine which 
settings for schemes’ components deliver the most accurate predictions. The identification of 
the most accurate schemes may be defined in different ways. Thus, this study involved three 
analyses. The first one covered pairwise comparisons of scheme’s components to observe 
how settings for one component influence the accuracy of predictions with varying settings 
of yet another component. The second one identified which component settings formed the 
most accurate schemes and if the same schemes were the most accurate in the CV and test 
subsets. The third aimed at ranking settings for each component – to deliver guidance on 
which settings usually deliver the most accurate predictions.  

Obtained results enable to draw the following conclusions: 

1. The best performing schemes predict aggregated user satisfaction with accuracy of 
MCC≈0.5 in the CV stage and MCC≈0.6 in testing. Compared to typical studies in soft-
ware engineering, e.g. effort and defect prediction, these values are low but open the pos-
sibility of improvement with planned extensions explained below. 

2. Substantial set of prediction schemes deliver very low accuracy, with MCC<0, i.e. with 
prediction worse than random selection. This is due to the construction of certain compo-
nents, i.e. specific combinations of component settings are not sensible but were still in-
cluded in the analysis of results. 

3. Performance of most components of prediction schemes varies between the CV and test 
subsets. It is likely that the projects in the test subset are different in their characteristics 
than those in the CV subset. 

4. Performing normalization on data values rarely results in more accurate predictions. 
5. Although prediction schemes contain automated feature selection component, on average 

manual feature selection improves the accuracy of predictions. 
6. Usually selecting 20 or 30 attributes for automated feature selection provide the most ac-

curate predictions. 
7. Identifying component settings that provide the most accurate results based on a single 

evaluation measure (MCC) and for a single data subset produce different outcome than 
when using more evaluation measures and both data subsets jointly. 

Obtained results may serve as a base for further research focused on building accurate 
schemes for predicting user satisfaction as they demonstrate how particular techniques and 
algorithms perform in combination with other components and against competing techniques 
and algorithms for the same component type. Successful construction of such schemes would 
enable future practical applications, i.e. creating tools for informing software project manag-
ers and partially enhancing decision support functions.   

The main extension of this study planned for future is to replicate it with enhancement of 
prediction schemes such that the parameters for components, especially for classifiers, will 
not be fixed but be optimized. Also, this replication may also involve performing a range of 
passes of the process but each time with different split to the CV and test subset – this requires 
automating data preparation step performed here by a human expert. Another planned exten-
sion involve the analysis of impact of particular features used in training on the accuracy of 
results as well as identification of the most influential features. Finally, plans for future work 
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involve dealing with some issues raised in Section 4 – most notably with different ways of 
aggregating satisfaction variables than their mean and with replacing the usage of a mean to 
the more robust measure in various algorithms/components of prediction schemes. 
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Appendix 1. Parameter settings for classifiers 

Table 17. Values of main parameters used for classifiers 
Classifier  Parameters 
W-ZeroR  — 
Naive Bayes laplace correction = true 
k-NN  k = 7, measure types = MixedMeasures, mixed measure = Mixe-

dEuclideanDistance 

Decision Tree 
criterion = gain ratio, maximal depth = 20, apply pruning = true, 
confidence = 0.25, apply prepruning = true, minimal gain = 0.1, 
minimal leaf size = 2, minimal size for split = 4, number of pre-
pruning alternatives = 3 

Random Forest 

number of trees = 10, criterion = gain ratio, maximal depth = 20, 
apply pruning = true, confidence = 0.25, apply prepruning = true, 
minimal gain = 0.1, minimal leaf size = 2, minimal size for split = 
4, number of prepruning alternatives = 3, guess subset ratio = true, 
voting strategy = confidence vote, other important settings as for 
DT 

W-OneR  B = 6 
W-PART  C = 0.25, M = 2, U = false 
W-DTNB  X = 10, I = false 
W-J48  C = 0.25, M = 2, A = true 
W-NBTree  — 
W-LMT  I = -1, M = 10, W = 0, A = true 
W-LADTree  B = 10 
W-BFTree  P = POSTPRUNED, M = 2, N = 5, C = 1.0 
W-Logistic  R = 1.0E-8, M = 100 
W-SimpleLogistic  I = 0, M = 500, H = 50, W = 0, A = true 
W-BayesNet  D = -Q, Q = K2, E = SimpleEstimator 
W-LWL  A = LinearNNSearch -A ”EuclideanDistance -R first-last”, K = 7, 

U = 4, W = SMO 
W-KStar  B = 20, E = false, M = n (normal) 
W-DecisionTable S = BestFirst -D 1 -N 5, X = 5, I = false 
W-HyperPipes — 
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