
Predicting Aggregated User Satisfaction in Software Projects

Łukasz Radliński*

Abstract. User satisfaction is an important feature of software quality. However, it was
rarely studied in software engineering literature. By enhancing earlier research this paper
focuses on predicting user satisfaction with machine learning techniques using software de-
velopment data from an extended ISBSG dataset. This study involved building, evaluating
and comparing a total of 15,600 prediction schemes. Each scheme consists of a different
combination of its components: manual feature preselection, handling missing values, outlier
elimination, value normalization, automated feature selection, and a classifier. The research
procedure involved a 10-fold cross-validation and separate testing, both repeated 10 times,
to train and to evaluate each prediction scheme. Achieved level of accuracy for best perform-
ing schemes expressed by Matthews correlation coefficient was about 0.5 in the cross-vali-
dation and about 0.5–0.6 in the testing stage. The study identified the most accurate settings
for components of prediction schemes.

Keywords: user satisfaction, prediction scheme, software projects, machine learning,
ISBSG.

1. Introduction

User satisfaction is one of the features of software quality. The ISO/IEC 25010:2011 stand-
ard, that is widely used in software quality studies, e.g. [9], [14], [25], and [39], defines two
quality models: (1) a quality in use model composed of five characteristics related to the
outcome of interaction when a product is used in a particular context of use, and (2) a product
quality model composed of eight characteristics related to static properties of software and
dynamic properties of the computer system. In the first of these models satisfaction is one of
top-level characteristics and is defined as a ”degree to which user needs are satisfied when a
product or system is used in a specified context of use” [15]. Usually related studies focus on
investigating which factors influence user satisfaction. Jones states that user satisfaction is
measurable but not predictable [17 p. 456]. The lack of extensive literature on predicting user
satisfaction partially confirms this claim.

* Faculty of Computer Science and Information Technology, West Pomeranian Univer-
sity of Technology in Szczecin, ul. Żołnierska 49, 71-210 Szczecin, Poland, lukasz.radlin-
ski@zut.edu.pl.

F O U N D A T I O N S O F C O M P U T I N G A N D D E C I S I O N S C I E N C E S
Vol. 43 (2018) No. 4

ISSN 0867-6356
e-ISSN 2300-3405DOI: 10.1515/fcds-2018-0017

However, some existing work, discussed later in Section 3, shows that there may be some
potential in dealing with the challenge of predicting software quality. Thus, this study focuses
on the following two goals:

1. To investigate what accuracy can be achieved in predicting aggregated user satisfaction;
2. To determine which settings for schemes’ components deliver the most accurate predic-

tions.

To achieve these goals this study used the extended edition of ISBSG R11 dataset of
software projects [13] that contains data on user satisfaction, expressed by eight distinct var-
iables. In this study, a total of 15,600 prediction schemes were built, trained, and evaluated
for predictive accuracy. Each scheme consists of different components for manual feature
preselection, handling missing values, outlier elimination, value normalization, automated
feature selection, and a classifier.

The paper contributes to the applied science and practice by investigating a large amount
of modelling/prediction algorithms and techniques in the context of their performance to pre-
dict user satisfaction. Presented results demonstrate how these algorithms and techniques
perform in comparison with others of the same type and focus.

The rest of this paper is organized as follows: Section 2 presents research method fol-
lowed and data for the experimental study. Section 3 discusses related work. Section 4 con-
siders limitations and threats to validity. Section 5 presents obtained results of comparing the
schemes and their components. Section 6 formulates conclusions and plans for future work.

2. Data and method

This study used the extended version of the ISBSG R11 dataset [13] on past software devel-
opment projects. The whole dataset contains data on 5024 software projects that were devel-
oped worldwide. These projects vary in terms of the type, size, duration, development activ-
ities involved, environmental factors, objectives, and documents and techniques used. In the
extended version of the dataset, used in this study, the projects are described by 205 attrib-
utes. Table 1 describes the basic statistics for the main numeric attributes. Table 2 describes
the most frequent states (values) for key environmental attributes. The dataset does not con-
tain attributes describing the country or geographical area where the project was developed.

Table 1. Selected basic statistics for numeric attributes

Attribute

Original extended da-
taset

After preprocessing

Range Median Range Median
Project implementation year 1989–2009 2002 1995–2008 2000
Functional Size (function
points)

3–19050 194 22–1670 143

Summary Work Effort
(hours)

0–645694 1746 82–18054 2381

Total defects delivered
(count)

0–2554 1 0–2554 6

336 Ł. Radlinski

Table 2. Most frequent states for non-numeric attributes

Attribute
Original extended dataset After preprocessing

Value % Value %
Development
type

New development
Enhancement
Re-development

39
59
2

New development
Enhancement
Re-development

51
46
3

Application
type

Accounting
Financial transaction pro-
cess
Transaction/production
Management inform. sys-
tem

19
19
8
7

Network management
Office information system
Management inform. sys-
tem
Process control

12
11
10
9

Business area
type

Communications
Telecommunications
Insurance
Banking

19
19
10
10

Manufacturing
Engineering
Marketing
Logistics

24
15
13
7

Organization
type

Communications
Insurance
Services
Banking

14
14
11
10

Manufacturing
Communications
Computers & Software
Banking

14
13
11
7

According to the author’s knowledge this is the only publicly available dataset of software

projects of sensible volume for prediction purposes that contains data on user satisfaction –
thus no comparison of predictions with another dataset was performed.

The research process, illustrated in Figure 1, involved the following stages and their steps:
Basic preprocessing and data selection: selecting only cases with ‘A’ or ‘B’ for data

quality rating, partitioning into the CV (65 cases) and test subsets (24 cases); cleaning and
adjusting/correcting the values; removing variables with few counts for their states or with
many missing values; creating dummy variables from multiple response nominal variables;
removing cases with missing user satisfaction values. After performing these tasks 89 pro-
jects were kept in the dataset. The significant data reduction was caused mainly by the fact
that only a small part of projects were supported with attributes describing user satisfaction
that are essential in this study.

 The target variable for prediction was calculated by aggregating the following eight in-
dividual variables:

• User satisfaction with the ability of system to meet stated objectives;
• User satisfaction with the ability of system to meet business requirements;
• User satisfaction with the quality of the functionality provided;
• User satisfaction with the quality of the documentation provided;
• User satisfaction with the ease of use;
• User satisfaction with the training given;
• User satisfaction with the speed of defining solution;
• User satisfaction with the speed of providing solution.

337Predicting Aggregated User Satisfaction in Software Projects

Basic preprocessing and
data selection

Defining potential
predictors

Data splitting

Dataset

Performance data

Analysis of results

Results

Initial cross-
validation subset Initial test subset

Prepared cross-
validation subset

Prepared test
subset

10-fold cross-validation with internal data splitting (training/validation)

Training Validation

Training the model Applying the model

Applying data
preparation components

Learning/applying data
preparation components

Trained
model

Data
preparation
components

Calculating and logging
performance

Testing

Training Validation

Training the model Applying the model

Applying data
preparation components

Learning/applying data
preparation components

Trained
model

Data
preparation
components

Calculating and logging
performance

Figure 1. Schematic of the research process

These variables were originally defined on the following 4-point ranked scale:

‘1’ – user needs met to a limited extent or not at all;
‘2’ – user needs largely met;
‘3’ – user needs fully met;
‘4’ – user expectations exceeded.

338 Ł. Radlinski

Because the focus of this study was the prediction of the overall, i.e. aggregated, user
satisfaction it was necessary to combine them into a single target variable. This was achieved
by calculating the mean of their numerical values for each case (project). Then, this calculated
value was dichotomized – set as ‘true’ if 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀) ≥ 2.5 and to ‘false’ if
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀) < 2.5 This dichotomization was motivated by the fact that there were
very few projects with mean satisfaction of ‘1’ or ‘4’ – thus, learning patterns and predicting
user satisfaction from very few projects would very likely fail.

Defining potential predictors. This step involved creating new potential predictors cal-
culated from regular variables such as rates, proportions or, for variables non-normally dis-
tributed, transformed variables with log and Box-Cox transformations. After completing this
and the previous step, the dataset contained projects described by 65 potential predictors
(columns): 32 numeric, 17 logical or nominal with two states, 12 multiple-response nominal
converted to logical dummy variables, and four other nominal with more than two states.

Preparation of prediction environment. The goal of this step was to create an environ-
ment capable of repeatable execution of the following main actions for different schemes:
loading and preparing data folds, setting up 10-fold cross-validation subprocess using the CV
subset, setting up a test subprocess that used a classifier trained on the CV subset to be eval-
uated on the test subset, setting up logging prediction performance for both CV and test sub-
processes, aggregating all main subprocesses into a process capable of multiple execution –
i.e. multiple passes each time with different splits of folds in the CV subset. A total of 15,600
prediction schemes were prepared as combinations of different settings for its components:
two settings for manual feature preselection performed by a human expert, three missing
value imputation algorithms, five outlier detection and removal algorithms, two for value
normalization, 13 for automated feature selection (including two algorithms and six settings
for number of features), and 20 classifiers. The complete list of these settings are presented
in Tables 3–8 Further information on these algorithms, their implementation and settings is
available in [6], [32] and partially in [30].

Table 3. Settings for manual feature preselection
Value Description

no No manual feature preselection was performed – All variables, that satisfied
data quality thresholds were used.

yes A manual feature preselection was performed – An author investigated each
variable’s description, value distribution, clearness of value definition and po-
tential usefulness as a predictor variable. A variable was removed from further
use if it was classified as non-useful according to author’s expertise after judg-
ing the above criteria. This was performed by investigating only the CV subset
to ensure that the test data are not ‘seen’ before evaluating predictions.

339Predicting Aggregated User Satisfaction in Software Projects

Table 4. Settings for missing value imputation algorithms
Value Description

mean/mode The missing value was substituted by a mean value (for a numeric varia-
ble) or a mode (for a logical or nominal variable) across all non-missing
values in the CV subset.

W-REPTree The missing values were estimated by applying a model trained to predict
them. In this setting the model was a WREPTree – a fast decision tree
learner that builds a decision or regression tree using information gain or
variance, respectively, and prunes it using reduced-error pruning (with
backfitting) [6].

k-NN The missing values were estimated by applying a model trained to predict
them. In this setting the model was k-NN algorithm that finds k neighbors
(k=7) and classifies the unknown case by a majority vote (for nominal
variable) or calculates the mean (for the numeric variable) of the found
neighbor.

Table 5. Settings for outlier elimination algorithms
Value Description

No No outlier elimination algorithm performed, i.e., no cases removed with
this setting.

INFLO lazy
and greedy

Outlier elimination performed with influenced outlierness (INFLO) algo-
rithm - a local density algorithm that considers the neighbors and the re-
verse neighbors when estimating the local density of a given point. It is
also based on the nearest neighbors set. The normal cases have a calcu-
lated outlier score of approximately 1, while outliers have a value greater
than 1 [32]. The ‘lazy’ setting means that cases with outlier score ≥ 1.8
were treated as outliers (i.e., very few cases) and removed from the da-
taset. The ‘greedy’ setting means that values with outlier score ≥ 1.2 were
treated as outliers (i.e., more cases than with the previous setting) and re-
moved from the dataset.

CBOF lazy
and greedy

Outlier elimination performed with the outlier score based on Connectiv-
ity Based Outlier Factor – an algorithm that improves the effectiveness of
a local outlier factor (LOF) algorithm when a pattern itself has similar
neighborhood density as an outlier. The normal cases have a calculated
outlier score of approximately 1, while outliers have a value greater than
1 [32], [38]. The ‘lazy’ setting means that cases with outlier score ≥ 1.5
were treated as outliers (i.e., very few cases) and removed from the da-
taset. The ‘greedy’ setting means that values with outlier score ≥ 1.2 were
treated as outliers (i.e., more cases than with the previous setting) and re-
moved from the dataset.

Table 6. Settings for value normalization
Value Description

no No value normalization was performed.
z-score Numeric values were transformed by a statistical normalization with a

formula (𝑣𝑣𝑀𝑀𝑣𝑣𝑣𝑣𝑀𝑀 − 𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀) 𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠 𝑠𝑠𝑀𝑀𝑣𝑣𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀⁄ .

340 Ł. Radlinski

Table 7. Settings for automated feature selection
Value Description

all All variables were used – no variable was removed by this component.
weights by
infor-
mation gain
ratio

For each variable the information gain ratio was calculated – the higher
value indicates the variable as the more relevant. Then top k variables were
kept in the dataset while others were treated as not relevant and removed.
The following values of k were considered: 3, 5, 10, 15, 20, and 30.

MRMR-
EFS

A mixture of Minimum Redundancy Maximum Relevance (MRMR) with
a correlation-based method using ensembles for feature selection (EFS). An
algorithm iteratively adds a variable with the most information regarding
the target variable and the least redundancy to the already selected variables
[4], [33]. Top k variables were kept in the dataset while others were treated
as not relevant and removed. The following values of k were considered: 3,
5, 10, 15, 20, and 30.

Table 8. Settings for classifiers† [6], [32]
Value Description

W-ZeroR A simple and naïve classifier that ‘predicts’ the mode (for a nominal
class as in the case of this study). Used as a baseline for comparisons
with ‘real’ predictive classifiers.

Naive Bayes A high-bias, low-variance classifier, and it can build a good model
even with a small data set. It is simple to use and computationally
inexpensive. Assumes that given the value of the target the value of
any attribute is independent of the value of any other attribute – but
is considered to perform well even with violation of this assumption.

k-NN The algorithm that finds k neighbors the closest to the predicted case
and classifies this case by a majority vote (for nominal variable) of
the found neighbor.

Decision Tree A classifier with a tree-like collection of nodes where each node
represents a splitting rule for a specific variable.

Random Forest An ensemble of a number of random trees created and trained on
bootstrapped subsets. A resulting set of trees delivers prediction by
voting of all random trees [32].

W-OneR An algorithm that builds a single rule for each predictive variable
(discretizing numeric attributes) and chooses the one with the mini-
mum-error for prediction [12].

W-PART An algorithm for generating PART decision list that uses separate-
and-conquer strategy – builds a partial C4.5 decision tree in each
iteration and makes the ‘best’ leaf into a rule [7]

W-DTNB A simple semi-naive Bayesian ranking method that combine naive
Bayes with induction of decision tables [10].

W-J48 An open source implementation of an algorithm for generating a
pruned or unpruned C4.5 decision tree [27].

† Classifiers prefixed with ‘W-‘ denote implementations in Weka [6], all remaining are native
RapidMiner implementations [32]. The values of the main parameters for these classifiers used in
this study are provided in Table 17 in Appendix 1.

341Predicting Aggregated User Satisfaction in Software Projects

Value Description
W-NBTree A hybrid of decision-tree and Naive-Bayes – the decision-tree nodes

contain univariate splits as regular decision-trees, the leaves contain
Naive-Bayesian classifiers. [21].

W-LMT An algorithm for building logistic model trees – classification trees
with logistic regression functions at the leaves [22], [37].

W-LADTree Builds a multi-class alternating decision tree using the LogitBoost
strategy [11].

W-BFTree A boosting algorithm that builds a Best-First decision Tree classi-
fier. Uses binary split for both nominal and numeric attributes. The
method of 'fractional' instances is used to handle missing values [8],
[35].

W-Logistic An algorithm for building multinomial logistic regression model
with a ridge estimator. An algorithm proposed in [23] with several
modifications for calculating probability, log-likelihood and han-
dling instance weights [6].

W-SimpleLogistic A classifier for building linear logistic regression models. Uses the
AIC criterion instead of cross-validation to prevent overfitting the
model. A weight trimming heuristic is used for a significant speedup
[37].

W-BayesNet A Bayesian network – a probabilistic graphical model (directed acy-
clic graph) that contains a set of variables and their conditional de-
pendencies [26]. Can be constructed from data using various search
algorithms and quality measures.

W-LWL Locally weighted learning – instance-based algorithm to assign in-
stance weights which are then used by a specified weighted in-
stances handler [1].

W-KStar An instance-based classifier – predicted class is based on the class
of those training instances similar to the predicted case, as deter-
mined by a similarity function. It uses an entropy-based distance
function [3].

W-DecisionTable A simple decision table majority classifier using the Inducer of De-
cision Table Majority (IDTM) – a decision table with default rule
mapping to the majority class [20].

W-HyperPipes For each category a HyperPipe is constructed that contains all points
of that category (records the attribute bounds observed for each cat-
egory). Test instances are classified according to the category that
‘most contains the instance’. Extremely simple algorithm, but has
the advantage of being extremely fast.

Training classifiers and logging performance data: This step involved executing de-

fined processes using prepared data and prediction schemes. To ensure a higher level of ran-
domness of splits in the CV subset the whole process of training and testing these schemes
was repeated ten times.

342 Ł. Radlinski

Analysis of results. The predictive accuracy in all analyses was based on the Matthews
correlation coefficient (MCC) recommended to evaluate prediction accuracy in classification
tasks [34]. The main benefits for using MCC are:

- Interpretation similar to the Pearson correlation coefficient – the same range of [-1,
1], a value +1 indicates perfect prediction, -1 indicates all predictions opposite to the
reality, and 0 indicates prediction at the random level.

- It is regarded as a balanced measure which can be used when the variable is class
(state) imbalanced.

- It is calculated from all four cells of the confusion matrix in contrast to often used
F1-score, recall or precision.

This analysis was divided into three parts: The first part involved pairwise comparisons
of schemes’ components by visualizing the accuracy distributions for all settings of pairs of
scheme’s components. This paper discusses three the most interesting and useful (in the au-
thor’s opinion) pairs of components investigated but more such analyses were performed.

The second part involved identification of ten best performing schemes in both CV and
test subsets. Its first goal was to investigate the highest level of accuracy that can be expected
to obtain using created prediction schemes. The second goal was to investigate which settings
and their combinations for particular components of prediction schemes deliver the most ac-
curate results.

The third part was focused on comparing schemes' components by ranks using four pre-
dictive accuracy measures: MCC, area under ROC curve, Cohen's kappa coefficient, and
balance [36]. As mentioned earlier, the MCC is a recommended evaluation measure. How-
ever, other measures highlight other aspects of accuracy, thus they also were included in this
third part of analysis to produce the distribution of accuracy measures. The overall perfor-
mance of the settings in each component was evaluated using the win-tie-loss procedure
(Algorithm 1) adapted from [19] and [24].

Algorithm 1. Calculation of overall performance

for-each pass p do
for-each accuracy measure ai do
 for-each component setting cj do
 run Wilcoxon signed-rank test against all other component settings ck

adjust p-values with Bonferroni procedure
 determine win, tie or loss
 winpij ← if adjusted p-value ≤ 0.05 AND Median(apij) > Median(apik)

losspij ← if adjusted p-value ≤ 0.05 AND Median(apij) < Median(apik)
tiepij ← if (adjusted p-value ≤ 0.05 AND Median(apij) = Median(apik) OR

adjusted p-value ≥ 0.05
calculate Sum(winj), Sum(lossj), Sum(tiej)
differencej ← Sum(winj) – Sum(lossj)
return Sum(winj), Sum(lossj), Sum(tiej), Sum(differencej)

This procedure was applied to the prediction results from the CV and test subsets joined

together. It involves repeatable running of the Wilcoxon signed-rank test, applying Bonfer-
roni correction procedure. Its main step uses prediction measures to calculate the number of
‘wins’, ‘ties’ and ‘losses’ – pairwise for each setting of a component of a prediction scheme

343Predicting Aggregated User Satisfaction in Software Projects

against all other settings in this component. Thus, the number of ‘wins’ and ‘losses’ tells how
many times a particular setting of a component delivered predictions statistically significantly
better or worse, respectively, than other settings. The number of ‘ties’ tell how many times a
particular setting delivered predictions not statistically different from other settings or when
the median value of particular evaluation measure was equal compared to the other setting.
The value of the ‘difference’ is the difference between the number of ‘wins’ and the number
of ‘losses’ for a particular setting of a component.

Preparation of prediction environment and running predictions were performed using
RapidMiner [32]. Other steps were performed in R [28].

3. Related work

The earlier study [30] that is the closest to the current one involved a similar research process
to the one described in Section 2 and on the same dataset. That work focused on a single
aspect of user satisfaction, i.e, with the ability of system to meet stated objectives, not on
predicting aggregated user satisfaction as in the current study. That study also evaluated
fewer schemes (288) compared to 15,600 in the current study. The schemes in the earlier
study were also simpler – they did not consider outlier elimination and value normalization.
Also, in the previous work each scheme was used once on the CV and test subsets; in the
current study this process was repeated ten times for each scheme. Finally, the analysis of
results in earlier study was simpler and did not contain three steps performed here. Thus, the
current study is a significant extension to [30]. That study reports that the median accuracy
of predictions was MCC=0.30 for the validation subset and MCC=0.24 for the test subset.
Two schemes with the highest accuracy (MCC=0.71) involve no manual feature preselection,
imputation of missing values by mean/mode, number of features selected was 30, and clas-
sifiers were W-LMT and W-SimpleLogistic, respectively.

A different study [29], that also involved the use of ISBSG dataset, used a classifier of
CN2 rules. Achieved prediction accuracy in a validation subset for 10-fold cross-validation
was MCC=0.42.

Two studies involved developing a Bayesian network. The first [5] was focused on pre-
dicting resources. The second [31] was focused on predicting various software quality attrib-
utes defined in the ISO 25010 standard [15]. In both models user satisfaction was one of the
target predictive variables. Unfortunately, none of these studies report achieved accuracy
predictions.

Another study [2] compared various schemes to predict project outcome, defined as either
‘success’ or ‘failure’. The authors made the following findings: feature selection using infor-
mation gain score improves accuracy, statistical and ensemble classifiers are robust for pre-
dicting project outcome, and Random Forest produced on average the most accurate predic-
tions.

4. Limitations and threats to validity

Results in this study are subject to some limitations and threats to validity. ISBSG dataset is
not a random sample from population of software projects, thus no generalization of results

344 Ł. Radlinski

or conclusions can be performed to other projects. Specifically, the ISBSG contains data on
software projects from different contributors who wish to share the data on their projects with
others. The investigated version of the dataset does not contain certain types of projects, e.g.
in military application area or modern mobile applications.

Secondly, the author made arbitrary decisions on treatment of several variables, e.g. those
with lots of missing data, transformations or adjustments of values. Also, the author made
arbitrary decisions on the definition of schemes and their components. The author used own
experience and recent literature when making such decisions to limit the bias caused by sub-
jectivity. As a result of such human-based data preparation, to treat the test data as ‘unseen’
until the evaluation of predictions, the process was performed once – i.e. the repetition of
data partitioning was performed ten times but only within the cross-validation subset, the test
subset was defined once for all these passes of the process.

The last step of the analysis involved repeated execution of the statistical test. To mitigate
the inflated possibility of false alarms this analysis involved adjusting p-values using a Bon-
ferroni procedure.

The aggregated satisfaction used in predictions averages over eight individual user satis-
faction variables from original dataset. This calculated mean treats each of them with the
same weight while in specific projects some individual variables may be more important
overall than others. However, the dataset did not contain information on the importance of
particular satisfaction variables.

Finally, to combine certain values this study often used the mean which is a non-robust
measure of central location. Recent literature recommend using robust measures such as the
trimmed mean [18]. However, the software packages used in this study very often had no
option/setting to use a more robust measure than the mean. Using robust measure would
require significant effort to re-implement or extend certain operators of these packages.
While this path is worth examining it is planned for the future work.

Also, the author made an arbitrary decision to use the mean when calculating the aggre-
gated user satisfaction from eight distinct variables. This choice was motivated by the fact
that in the author’s opinion this aggregated value should be prone to and reflect negative
deviations, e.g. when for a given project one of these satisfaction variables is significantly
worse than all others it is likely that overall satisfaction would be poor. Plans for future work
include examining this aspect in details.

5. Results

5.1. Pairwise comparisons of schemes’ components
Creating prediction scheme involved two steps of feature selection: initially performed man-
ually by a domain expert and then automated performed using a tool-supported algorithm.
Results in Figure 2 show that on average for the CV subset for each setting of automated
feature selection algorithm the prediction accuracy was higher when the features were earlier
preselected by a human expert than when no such preselection was performed. Thus, auto-
mated feature selection may not be sufficient on its own. In the test subset, on average,
schemes with automated feature selection usually performed no worse than with no such
preselection (by investigating the quartiles) but here the differences were smaller than in the
CV subset, sometimes hardly noticeable.

345Predicting Aggregated User Satisfaction in Software Projects

Figure 2. Accuracy by manual and automated feature selection

The second comparison involved a number of features in automated selection and a clas-
sifier (Figure 3). In the CV subset, classifiers produce different patterns of accuracy for var-
ying number of features selected. Several classifiers are more accurate with the increasing
number of features selected, i.e., Naïve-Bayes, k-NN, Random Forest, W-KStar, W-Decision
Table, and W-Hyper Pipes. Other group of classifiers, e.g. W-OneR, LMT, W-LADTree, W-
BFTree, on average deliver surprising predictive performance – the most accurate for very
few or a lot of features selected and the least accurate for medium number of features selected.
Decision Tree was the only classifier that on average performed less accurate with increasing
number of features selected. In the test subset the results were noisy and observations for
most classifiers in the CV subset were not confirmed in the test subset.

346 Ł. Radlinski

Figure 3. Accuracy by number of features in automated selection and a classifier

The last pairwise comparison involved missing value imputation and automated feature
selection (Figure 4). In both the CV and test subsets for information gain ratio as automated

347Predicting Aggregated User Satisfaction in Software Projects

feature selection on average a procedure of filling missing values by mean/mode performed
the better with the increasing value of number of features selected – both in absolute scale
and comparing to other procedures of handling missing data. For MRMR-EFS with different
values of features no such clear tendency for missing value procedures was observed – yet,
in the CV subset all missing value handling procedures seem to benefit from a higher number
of features.

Figure 4. Accuracy by missing value imputation and automated feature selection

5.2. Best and worst performing schemes

The next part of this analysis involve the identification of the best performing schemes in the
CV subset (Table 9) and the test subset (Table 10). These schemes were identified based on
the highest mean MCC across all ten passes of in evaluation process. In the CV subset all top

348 Ł. Radlinski

five schemes achieved the same mean MCC of 0.500 and shared the same setting for all
components except automated feature selection. Surprisingly, all five of them used a very
simple classifier – W-OneR.

Table 9. Best performing schemes for the CV subset
Feature pre-
selection

Impute
missing

Outlier elim-
ination Normalization Feature selection Classifier MCC

yes mean/mode INFLO lazy no Inf. Gain Ratio 20 W-OneR 0.500
yes mean/mode INFLO lazy no MRMR-EFS 20 W-OneR 0.500
yes mean/mode INFLO lazy no Inf. Gain Ratio 30 W-OneR 0.500
yes mean/mode INFLO lazy no MRMR-EFS 30 W-OneR 0.500
yes mean/mode INFLO lazy no All W-OneR 0.500
no mean/mode CBOF lazy no All W-OneR 0.490

Yes mean/mode CBOF
greedy no MRMR-EFS 20 W-OneR 0.483

Yes mean/mode CBOF
greedy no Inf. Gain Ratio 30 W-OneR 0.483

yes mean/mode CBOF
greedy no MRMR-EFS 30 W-OneR 0.483

yes mean/mode CBOF
greedy no All W-OneR 0.483

Table 10. Best performing schemes for the test subset
Feature pre-
selection

Impute miss-
ing

Outlier elimi-
nation Normalization

Feature selec-
tion Classifier MCC

no W-REPTree No z-score MRMR-EFS 15 W-KStar 0.598
yes mean/mode CBOF greedy no MRMR-EFS 5 W-KStar 0.527
yes mean/mode CBOF greedy z-score MRMR-EFS 5 W-KStar 0.527
yes mean/mode CBOF lazy no MRMR-EFS 5 W-KStar 0.520
yes mean/mode CBOF lazy z-score MRMR-EFS 5 W-KStar 0.520
no mean/mode No z-score MRMR-EFS 15 W-KStar 0.489

no mean/mode No z-score Inf. Gain Ratio
3 W-KStar 0.477

yes mean/mode INFLO lazy no Inf. Gain Ratio
5 W-KStar 0.471

yes mean/mode CBOF lazy no Inf. Gain Ratio
5 W-KStar 0.471

yes mean/mode INFLO lazy z-score Inf. Gain Ratio
5 W-KStar 0.471

yes mean/mode CBOF lazy z-score Inf. Gain Ratio
5 W-KStar 0.471

In the test subset different schemes performed the best, i.e. with different settings for most

schemes’ components. Surprisingly, in the test subset the best schemes achieved higher ac-
curacy than the best in the CV subset. The W-KStar turned to be the classifier with the best

349Predicting Aggregated User Satisfaction in Software Projects

performance in all top schemes. The best performing scheme involved imputation of missing
values with W-REPTree. However, this method of handling missing values appeared only
once in top performing schemes – all other schemes involved substitution with mean/mode.
Quite surprisingly, the best performing schemes usually were based on very few features
automatically selected: 5 or 3, with two exceptions of 15.

These results show that often quite simple schemes (or their components) perform the
most accurate, e.g., W-OneR classifier for the CV subset and using very few features in au-
tomated feature selection in the test subset. In addition, simple substitution of missing values
with mean/mode appeared to be the best choice in almost all top performing schemes in both
the CV and test subsets.

5.3. Comparing schemes’ components by ranks
The last and the most important step of this analysis involved each component by comparing
all settings used in a given component using the procedure explained in Section 2. The results
illustrated in this Section were sorted by the last column (‘difference’) from the best to the
worst. Table 11 shows that under this procedure of comparison using manual feature prese-
lection have always performed better than not performing such selection. Thus, a recommen-
dation for performing such feature preselection is strongly supported by obtained results.

Table 11. Aggregated accuracy for feature preselection
Preselection wins ties losses difference
Yes 40 0 0 40
No 0 0 40 -40

Table 12 shows that filling missing values by mean/mode on average performed the best

compared with other missing value handling procedures. However, the difference between
all three settings was not high and even the least performing k-NN achieved 23 ‘wins’ of 80
possible (the best average/mode achieved 34 ‘wins’).

Table 12. Aggregated accuracy for missing value handling procedure
Impute missing wins ties losses difference
mean/mode 34 22 24 10
W-REPTree 33 17 30 3
k-NN 23 21 36 -13

As illustrated in Table 13, the ‘lazy’ version of CBOF outlier detection algorithm, i.e.

detecting very few outliers, performed clearly the best compared to other algorithms. For
both CBOF and INFLO the ‘lazy’ versions performed better than ‘greedy’ suggesting that
the latter might have removed too many cases used to train the model. Three of four algo-
rithms delivered worse results than not applying any outlier elimination algorithm at all.

350 Ł. Radlinski

Table 13. Aggregated accuracy for outlier elimination
Outlier removal wins ties losses difference
CBOF lazy 124 22 14 110
No 99 7 54 45
CBOF greedy 60 31 69 -9
INFLO lazy 58 17 85 -27
INFLO greedy 19 3 138 -119

Table 14 shows that performing standardization with z-score resulted in better prediction

in very few cases. In most cases, i.e., 34 of 40, there was no difference if such standardization
was applied or not.

Table 14. Aggregated accuracy for normalization
Normalize wins ties losses difference
z-score 6 34 0 6
no 0 34 6 -6

Table 15 shows that automated feature selection using MRMR-EFS with 20 features per-

formed clearly the best compared to other feature selection algorithms. However, it is diffi-
cult to draw conclusions for other settings used. For example, usually the higher number of
features used resulted in better accuracy – but MRMR-EFS with 30 features selected and
using all available features preformed quite poorly, i.e., as one of the worst performing algo-
rithms. On the other hand, MRMR-EFS with only five features selected performed better
than nine of other settings investigated. Obtained results confirm a widely accepted practice
that training the model on all available features, i.e. with no automated feature selection,
delivers usually quite poor results – in this study the usage of all features was outperformed
by nine other analyzed settings and it outperformed only three other settings.

On average the best performing classifier was W-SimpleLogistic (Table 16). The
W-LWL achieved similar number of ‘wins’ but significantly higher number of ‘losses’ (213
vs 157). The Naïve Bayes achieved the third highest number of ‘wins’ but due to high number
of ‘losses’ it was ranked as the average classifier. In fact, its very low number of ‘ties’ show
that it performed usually as either significantly better or significantly worse compared to
other classifiers. Surprisingly, the W-BayesNet performed as the worst classifier – this may
be due to not optimal settings used in training the classifier and will be further investigated
later.

351Predicting Aggregated User Satisfaction in Software Projects

Table 15. Aggregated accuracy for automated feature selection
Feature selection wins ties losses Difference
MRMR-EFS 20 334 146 0 334
Inf. Gain Ratio 30 284 91 105 179
Inf. Gain Ratio 20 249 138 93 156
MRMR-EFS 5 213 197 70 143
MRMR-EFS 10 191 189 100 91
Inf. Gain Ratio 5 131 176 173 -42
Inf. Gain Ratio 10 119 190 171 -52
MRMR-EFS 15 108 203 169 -61
MRMR-EFS 30 115 178 187 -72
All 180 28 272 -92
Inf. Gain Ratio 15 108 149 223 -115
Inf. Gain Ratio 3 78 144 258 -180
MRMR-EFS 3 32 127 321 -289

Table 16. Aggregated accuracy for classifiers
Classifier wins ties losses Difference
W-SimpleLogistic 422 181 157 265
W-LWL 413 134 213 200
W-PART 369 212 179 190
W-J48 338 222 200 138
W-KStar 366 163 231 135
W-HyperPipes 393 106 261 132
W-BFTree 352 169 239 113
W-LMT 330 198 232 98
Decision Tree 330 185 245 85
Naive Bayes 401 25 334 67
Random Forest 291 223 246 45
W-Logistic 310 133 317 -7
W-DTNB 278 156 326 -48
W-ZeroR 335 41 384 -49
k-NN 216 217 327 -111
W-DecisionTable 232 166 362 -130
W-NBTree 200 183 377 -177
W-OneR 222 93 445 -223
W-LADTree 192 121 447 -255
W-BayesNet 84 124 552 -468

352 Ł. Radlinski

6. Conclusions and future work

Performed analyses led to achieving the goals stated in Section 1, i.e., to investigate what
accuracy can be achieved in predicting aggregated user satisfaction, and to determine which
settings for schemes’ components deliver the most accurate predictions. The identification of
the most accurate schemes may be defined in different ways. Thus, this study involved three
analyses. The first one covered pairwise comparisons of scheme’s components to observe
how settings for one component influence the accuracy of predictions with varying settings
of yet another component. The second one identified which component settings formed the
most accurate schemes and if the same schemes were the most accurate in the CV and test
subsets. The third aimed at ranking settings for each component – to deliver guidance on
which settings usually deliver the most accurate predictions.

Obtained results enable to draw the following conclusions:

1. The best performing schemes predict aggregated user satisfaction with accuracy of
MCC≈0.5 in the CV stage and MCC≈0.6 in testing. Compared to typical studies in soft-
ware engineering, e.g. effort and defect prediction, these values are low but open the pos-
sibility of improvement with planned extensions explained below.

2. Substantial set of prediction schemes deliver very low accuracy, with MCC<0, i.e. with
prediction worse than random selection. This is due to the construction of certain compo-
nents, i.e. specific combinations of component settings are not sensible but were still in-
cluded in the analysis of results.

3. Performance of most components of prediction schemes varies between the CV and test
subsets. It is likely that the projects in the test subset are different in their characteristics
than those in the CV subset.

4. Performing normalization on data values rarely results in more accurate predictions.
5. Although prediction schemes contain automated feature selection component, on average

manual feature selection improves the accuracy of predictions.
6. Usually selecting 20 or 30 attributes for automated feature selection provide the most ac-

curate predictions.
7. Identifying component settings that provide the most accurate results based on a single

evaluation measure (MCC) and for a single data subset produce different outcome than
when using more evaluation measures and both data subsets jointly.

Obtained results may serve as a base for further research focused on building accurate
schemes for predicting user satisfaction as they demonstrate how particular techniques and
algorithms perform in combination with other components and against competing techniques
and algorithms for the same component type. Successful construction of such schemes would
enable future practical applications, i.e. creating tools for informing software project manag-
ers and partially enhancing decision support functions.

The main extension of this study planned for future is to replicate it with enhancement of
prediction schemes such that the parameters for components, especially for classifiers, will
not be fixed but be optimized. Also, this replication may also involve performing a range of
passes of the process but each time with different split to the CV and test subset – this requires
automating data preparation step performed here by a human expert. Another planned exten-
sion involve the analysis of impact of particular features used in training on the accuracy of
results as well as identification of the most influential features. Finally, plans for future work

353Predicting Aggregated User Satisfaction in Software Projects

involve dealing with some issues raised in Section 4 – most notably with different ways of
aggregating satisfaction variables than their mean and with replacing the usage of a mean to
the more robust measure in various algorithms/components of prediction schemes.

References

[1] Atkeson C.G., Moore A.W., Schaal S., Locally Weighted Learning, Artificial Intelli-
gence Review, 11, 1-5, 1997, 11-73.

[2] Cerpa, N., Bardeen, M., Astudillo, C. A., Verner, J., Evaluating different families of
prediction methods for estimating software project outcomes, Journal of Systems and
Software, 112, 2016, 48–64.

[3] Cleary J.G., Trigg L.E., K*: an instance-based learner using and entropic distance meas-
ure, in: Proceedings of the Twelfth International Conference on International Confer-
ence on Machine Learning (ICML'95), Armand Prieditis and Stuart J. Russell (Eds.).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1995, 108-114.

[4] Ding, C.H.Q., Peng, H., Minimum redundancy feature selection from microarray gene
expression data, in: Proc. the 2nd IEEE Comp. Society Bioinformatics Conf., Stanford,
CA, IEEE Comp. Society, Los Alamitos, 2003, 523–529.

[5] Fenton, N., Marsh, W., Neil, M., Cates, P., Forey, S., Tailor, M., Making Resource De-
cisions for Software Projects, in: Proceedings of the 26th International Conference on
Software Engineering, IEEE Computer Society, Washington, DC, 2004, 397–406.

[6] Frank E., Hall M.A., Witten I.H., The WEKA Workbench. Online Appendix for “Data
Mining: Practical Machine Learning Tools and Techniques”, Morgan Kaufmann,
Fourth Edition, 2016, http://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appen-
dix.pdf, last accessed 2018/05/22.

[7] Frank E., Witten I.H., Generating Accurate Rule Sets Without Global Optimization. In
Proceedings of the Fifteenth International Conference on Machine Learning (ICML
'98), Jude W. Shavlik (Ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1998, 144-151.

[8] Friedman J., Hastie T., Tibshirani R., Special Invited Paper. Additive Logistic Regres-
sion: A Statistical View of Boosting, The Annals of Statistics, 28, 2, 2000, 337-374.

[9] Garcés, L., Ampatzoglou, A., Avgeriou, P., Nakagawa, E.Y., Quality attributes and
quality models for ambient assisted living software systems: A systematic mapping, In-
formation and Software Technology, 82, 2017, 121-138.

[10] Hall M., Frank E., Combining Naive Bayes and Decision Tables, in: D.L. Wilson & H.
Chad (Eds), Proceedings of Twenty-First International Florida Artificial Intelligence
Research Society Conference, AAAI Press, Coconut Grove, Florida, USA, 2008,
318-319.

[11] Holmes G., Pfahringer B., Kirkby R., Frank E., Hall M., Multiclass Alternating Decision
Trees, in: Proceedings of the 13th European Conference on Machine Learning (ECML
'02), Tapio Elomaa, Heikki Mannila, and Hannu Toivonen (Eds.). Springer-Verlag, Lon-
don, UK, 2002, 161-172.

[12] Holte R.C., Very simple classification rules perform well on most commonly used da-
tasets. Machine Learning. 11, 1993, 63-91.

354 Ł. Radlinski

http://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf
http://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf

[13] ISBSG Repository Data Release 11. International Software Benchmarking Standards
Group, 2009.

[14] Idri, A., Bachiri, M., Fernández-Alemán, J.L., A Framework for Evaluating the Software
Product Quality of Pregnancy Monitoring Mobile Personal Health Records, Journal of
Medical Systems, 40, 3, 2016, art. no. 50, 1-17.

[15] ISO/IEC: Software engineering Software product Quality Requirements and Evaluation
(SQuaRE) System and software quality models, volume ISO/IEC 25010:2011(E), 2011.

[16] Jin W., Tung A.K.H., Han J., Wang W., Ranking Outliers Using Symmetric Neighbor-
hood Relationship, in: Ng WK., Kitsuregawa M., Li J., Chang K. (eds) Advances in
Knowledge Discovery and Data Mining. PAKDD 2006. Lecture Notes in Computer Sci-
ence, vol 3918. Springer, Berlin, Heidelberg, 2006.

[17] Jones C., Applied Software Measurement: Global Analysis of Productivity and Quality,
McGraw-Hill Education, 3rd edition, 2008.

[18] Kitchenham B.A., Madeyski L., Budgen D., Keung J., Brereton P., Charters S., Gibbs
S., Pohthong A., Robust Statistical Methods for Empirical Software Engineering, Em-
pirical Software Engineering, 22, 2, 2017, 579-630.

[19] Kocaguneli E., Menzies T., Bener A., Keung J. W., Exploiting the Essential Assumptions
of Analogy-Based Effort Estimation, IEEE Transactions on Software Engineering, 38, 2,
2012, 425–438.

[20] Kohavi R., The power of decision tables, in: Proceedings of the 8th European Confer-
ence on Machine Learning (ECML'95), Nada Lavrač and Stefan Wrobel (Eds.).
Springer-Verlag, Berlin, Heidelberg, 1995, 174-189.

[21] Kohavi R., Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree hybrid,
in: Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD'96), Evangelos Simoudis, Jiawei Han, and Usama Fayyad (Eds.).
AAAI Press, 1996, 202-207.

[22] Landwehr N., Hall M., Frank E., Logistic Model Trees. Machine Learning, 59, 1-2, 2005,
161-205.

[23] Le Cessie S., Van Houwelingen J., Ridge Estimators in Logistic Regression, Journal of
the Royal Statistical Society. Series C (Applied Statistics), 41, 1, 1992, 191-201.

[24] Menzies T., Jalali O., Hihn J., Baker D., Lum K., Stable rankings for different effort
models, Automated Software Engineering, 17, 4, 2010, 409–437.

[25] Olsina, L., Lew, P., Dieser, A., Rivera, B., Updating quality models for evaluating new
generation web applications, Journal of Web Engineering, 11, 3, 2012, 209-246.

[26] Pearl J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Representation and Reasoning Series (2nd printing ed.). San Francisco, California: Mor-
gan Kaufmann, 1988.

[27] Quinlan R., C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San
Mateo, CA, 1993.

[28] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation
for Statistical Computing, Vienna, Austria, 2017.

[29] Radlinski L., How software development factors influence user satisfaction in meeting
business objectives and requirements?, in: Madeyski, L., Ochodek, M. (eds.), Software
Engineering from Research and Practice Perspectives, chapter 6, Nakom, Poznan-War-
szawa, 2014, 101–119.

355Predicting Aggregated User Satisfaction in Software Projects

[30] Radliński Ł., Preliminary evaluation of schemes for predicting user satisfaction with the
ability of system to meet stated objectives, Journal of Theoretical and Applied Computer
Science, 9, 2, 2015, 32–50.

[31] Radlinski L., Towards expert-based modeling of integrated software quality, Journal of
Theoretical and Applied Computer Science, 6, 2, 2012, 13–26.

[32] RapidMiner Studio, https://rapidminer.com/products/studio/, last accessed 2018/05/22.
[33] Schowe B., Morik K., Fast-Ensembles of Minimum Redundancy Feature Selection, in:

Okun O., Valentini G., Re M. (eds) Ensembles in Machine Learning Applications. Stud-
ies in Computational Intelligence, vol 373. Springer, Berlin, Heidelberg, 2011.

[34] Shepperd M., Bowes D., Hall T., Researcher Bias: The Use of Machine Learning in
Software Defect Prediction. IEEE Transactions on Software Engineering, 40, 2014, 603–
616.

[35] Shi H., Best-first Decision Tree Learning, Thesis, Master of Science. The University of
Waikato, Hamilton, New Zealand, 2007.

[36] Song Q., Jia Z., Shepperd M., Ying S., Liu J., A General Software Defect-Proneness
Prediction Framework, IEEE Transactions on Software Engineering, 37, 3, 2011,
356-370.

[37] Sumner M., Frank E., Hall M., Speeding up logistic model tree induction, in: Proceed-
ings of the 9th European conference on Principles and Practice of Knowledge Discovery
in Databases (PKDD'05), Alípio Mário Jorge, Luís Torgo, Pavel Brazdil, Rui Camacho,
and João Gama (Eds.). Springer-Verlag, Berlin, Heidelberg, 2005, 675-683.

[38] Tang J., Chen Z., Fu A. W. C., Cheung, D. W., Enhancing Effectiveness of Outlier De-
tections for Low Density Patterns, in: Pacific-Asia Conf. on Knowledge Discovery and
Data Mining (PAKDD). Taipei, 2002, 535-548.

[39] Vargas J.A., García-Mundo L., Genero M., Piattini M., A systematic mapping study on
serious game quality, in: Proceedings of the 18th International Conference on Evalua-
tion and Assessment in Software Engineering (EASE '14), ACM, New York, 2014, Ar-
ticle no. 15.

Received 7.08.2018, Accepted 19.10.2018

356 Ł. Radlinski

https://rapidminer.com/products/studio/

Appendix 1. Parameter settings for classifiers

Table 17. Values of main parameters used for classifiers
Classifier Parameters
W-ZeroR —
Naive Bayes laplace correction = true
k-NN k = 7, measure types = MixedMeasures, mixed measure = Mixe-

dEuclideanDistance

Decision Tree
criterion = gain ratio, maximal depth = 20, apply pruning = true,
confidence = 0.25, apply prepruning = true, minimal gain = 0.1,
minimal leaf size = 2, minimal size for split = 4, number of pre-
pruning alternatives = 3

Random Forest

number of trees = 10, criterion = gain ratio, maximal depth = 20,
apply pruning = true, confidence = 0.25, apply prepruning = true,
minimal gain = 0.1, minimal leaf size = 2, minimal size for split =
4, number of prepruning alternatives = 3, guess subset ratio = true,
voting strategy = confidence vote, other important settings as for
DT

W-OneR B = 6
W-PART C = 0.25, M = 2, U = false
W-DTNB X = 10, I = false
W-J48 C = 0.25, M = 2, A = true
W-NBTree —
W-LMT I = -1, M = 10, W = 0, A = true
W-LADTree B = 10
W-BFTree P = POSTPRUNED, M = 2, N = 5, C = 1.0
W-Logistic R = 1.0E-8, M = 100
W-SimpleLogistic I = 0, M = 500, H = 50, W = 0, A = true
W-BayesNet D = -Q, Q = K2, E = SimpleEstimator
W-LWL A = LinearNNSearch -A ”EuclideanDistance -R first-last”, K = 7,

U = 4, W = SMO
W-KStar B = 20, E = false, M = n (normal)
W-DecisionTable S = BestFirst -D 1 -N 5, X = 5, I = false
W-HyperPipes —

357Predicting Aggregated User Satisfaction in Software Projects

	1. Introduction
	2. Data and method
	3. Related work
	4. Limitations and threats to validity
	5. Results
	5.1. Pairwise comparisons of schemes’ components
	5.2. Best and worst performing schemes
	5.3. Comparing schemes’ components by ranks

	6. Conclusions and future work
	References
	Appendix 1. Parameter settings for classifiers

