
Measurement and Impact Factors of Speed of Reviews and
Integration in Continuous Software Engineering

Miroslaw Staron ∗, Wilhelm Meding †, Ola Söder, Magnus Bäck ‡

Abstract. Continuous integration and continuous software deployment depend on
the mix of automated and manual activities. The automated build and test processes
are often intertwined with manual reviews and bug-fixing activities. In this paper,
we set off to study how these manual and automated activities influence the speed
of reviews and integration. We conduct a case study of two companies developing
embedded software, measure the time required for reviewing and integrating software
code (alias speed), and conduct a workshop to identify factors which explain the
quantitative results. Our results show that the measurement of speed is a good alias
for calendar time and triggers improvements better than using measures for velocity.
We have also found that the distribution of code repositories, frequent reminders and
team proximity decrease the time needed to deploy the software. Our findings are that
there is a difference in the structure of code repositories between the fast and slow
integration cases, which contributes to the debate on the pros and cons of different
repository structures in modern companies.

1. Introduction

Continuous software integration and deployment aims to improve the quality of soft-
ware products and their availability to the market [5]. However, they require software
development to progress at a higher speed than today and work in ecosystems of soft-
ware development organizations [6]. In order to achieve this higher speed, companies
focus on customer agility, customer analytics and optimization of software develop-
ment towards faster deliveries. Which measure of speed gets chosen is important in
this context as different types of measures can lead to different effects.

One of the challenges in achieving high development speed is the combination of
automated and manual activities – certain activities need to be done manually, e.g.

∗Chalmers | University of Gothenburg, Gothenburg, Sweden, miroslaw.staron@gu.se
†Ericsson, Sweden, wilhelm.meding@ericsson.com
‡Axis Communications, Sweden, ola.soder, magnus.back@axis.com

F O U N D A T I O N S O F C O M P U T I N G A N D D E C I S I O N S C I E N C E S
Vol. 43 (2018) No. 4

ISSN 0867-6356
e-ISSN 2300-3405DOI: 10.1515/fcds-2018-0015

code reviews. In modern companies, code review is part of the process of delivering
the code from the team branch to the product’s main branch. The goal of these
reviews is to keep the quality of the code (and the product) high, and it can lead to
effects such as spreading the knowledge of the code within the team [2]. However,
conducting this manual activity can slow down the process of delivery, as it is based
on the availability of the reviewers and the possibilities to find and remove problems
in the code (not only defects).

Typical measures of speed of activities, used in industry, are variations of the
measure of velocity (e.g. story points per sprint, number of integrations per day, [1]).
Although these measures help companies to increase their customer responsiveness,
they are dependent on two factors: estimated size of the work done and period of time
– velocity quantifies the size in terms of story points and the period of time in terms
of sprint. However, the challenge with velocity is that it can be manipulated. An
organization can adjust the way in which story points are counted, which affects the
number of story points delivered during one sprint. In this way, the organization can
become faster without actually increasing speed of their development. The difference
between the velocity and speed is the same as the difference between the bandwidth
and latency.

At the same time, the organizations cannot change estimates or add resources to
projects, as they have limitations on the size of teams (e.g. the well-known “two-
pizza” principle showing decrease in efficiency after the size reaches a certain limit,
[7]). The increased resources in turn increase the cost, so in order to get more efficient,
organizations need to find ways to increase speed without increasing the cost, i.e.
without the need to increase resources.

In this paper, therefore, we address the research problem of Which factors are
important when optimizing speed of reviews and speed of integration in continuous
software development? In particular, we focus on the ability of modern companies to
quantify, monitor and improve the speed of reviews and integrations software devel-
opment in ways alternative to velocity. We address this by addressing three research
questions:

1. What is the most relevant and practically usable definition and measure of speed
of reviews and integration in the studied companies?

2. Given the definition of the measure of speed, what is the speed of reviews, and
integration in continuous software development in modern companies?

3. Which factors are perceived by the studied organizations to affect the speed of
reviews and integration?

We conducted a case study at two software development companies which use
continuous integration as part of their development practices. Our results show that
the measure of speed which helps the companies to become faster is based on time.
Although the measure of time is usually recognized as the measure of duration, we
have found that using it under the alias of speed focuses the company’s improvements
on the activities that increase speed. Since using velocity-related measures allow for
unnecessary level of subjectivity in the measurement, using velocity risks to lower

282 M. Staron, W. Meding, O. Söder, M. Bäck

the trust in measurement results. The measure of speed which is based on time
is objective and requires the companies to make process improvements in order to
become faster.

The rest of the paper is organized as follows. Section 2 outlines the most important
related work to our study. Section 3 describes the design of the case study presented
in this paper. Section 4 presents the results and discusses threats to validity. Section
5 presents the answers to our research questions and conclusions.

2. Related work

Before the introduction of continuous integration, a lot of research has been conducted
on inspections and reviews. This included the research on speed or cycle time of in-
spections [22] and [24]. As inspections are a much more complex process [12], involving
also defect fixes and meetings, the results often include these activities and presented
remarkable improvements [22] when focusing on the entire process. However, with the
introduction of continuous integration, the focus of software companies changes into
more narrow field of conducting code reviews continuously, on code changes (rather
than entire code base when using inspections). Therefore, our research focuses on the
reviews and integrations in the context of continuous integration.

Thongtanunam et al. [31] studied the process of review of open source projects and
have found that slow reviews are often caused by large amount of code and previously
slow reviews. We expand on their work and add new factors that can make the reviews
slower than usual.

Velocity is one of the most prominent ways of measuring speed in software devel-
opment [9], [1]. The concept of velocity is based on the concept of a story point [10],
[8]. First, a team defines the story point in reference to their user stories and then
they use this measure to quantify size of each of their stories. As a team progresses,
each story is developed and therefore the team’s velocity is the number of story points
for the finished user stories, divided by the calendar time for the development of these
user stories. The measurement of velocity is similar to the measurement of velocity
in the automotive sector, e.g. km/h.

Meding has shown how velocity can be visualized at Ericsson [19]. The study
showed that software development teams see burn-up and burn-down charts as good
indicators of their progress, at the same time admitting the limitations of velocity as
the measurement of speed.

Speed, on the other hand, has been recognized as an important factor when devel-
oping software in modern companies [4]. In particular, when the distributed software
development requires fast feedback loops [6].

Current studies, like Hütterman’s [13], use the measures of turnaround times for
defects or features as measures of speed. They also focus on DevOps as a concept
which contributes to the optimization of speed through optimization of knowledge
and competence exchange.

A recent study of advantages and disadvantages of having a single repository, con-
ducted at Google [14], has shown that distribution of code repositories has significant

283Measurement and Impact Factors of Speed of Reviews ...

advantages in the flexibility while the monolithic repository has significant advantage
in terms of reuse of APIs. Our study contributes with a new angle in this discussion –
having multiple repositories seems to have a positive impact on the integration speed.

3. Case study design

Our work has been designed and structured according to the guidelines for conducting
and reporting of empirical studies by Runeson et al. [26], [25].

3.1. Research questions

In order to address the main research problem in our study on how to optimize speed
of software development, we needed to address a number of research questions:

1. What is the most relevant and practically usable definition and measure of speed
of reviews and integration in the studied companies?

2. Given the definition of the measure of speed, what is the speed of reviews, and
integration in continuous software development in modern companies?

3. Which factors are perceived by the studied organizations to affect the speed of
reviews and integration?

We identified the first research question as important, because we noticed the
difficulties with the existing measurements of speed – the aforementioned problem
with adjusting velocity by changing the way story points are estimated. Instead, the
sought measure of speed needed to be objective and independent of the measurer.
In order to study the aspect of the measurement of speed, we focused on a selection
of phases of software development – code reviews, and integration including the in-
tegration testing. We chose these phases as we could identify that these phases are
often supported by similar processes, as many of continuous integration companies
use the same tools – Git for code repositories, Gerrit for code reviews, Jenkins for
code integration/build and unit/integration/component testing.

Once we identified the measure of speed, which fulfilled our requirements of being
objective and free from the factor of size, we applied it to two cases. This application
provided us with the possibility to quantify the speed at two companies. First, this
provided us with the possibility to observe how fast modern companies are. Second,
it provided us with the ability to study factors affecting the speed.

The study of the factors, i.e. addressing our third research question, required both
quantitative analyses and workshops. The quantitative analyses were enabled by the
objective measure and provided the input to the workshops. The workshops provided
us with the possibility to understand which non-measurable development practices
contribute to high/low speed.

284 M. Staron, W. Meding, O. Söder, M. Bäck

3.2. Case and subject selection

In this work, we had a unique opportunity to study two different organizations in two
different companies.

Company A: The company is a large infrastructure provider from Sweden. The
studied organization within this company has over 100 developers who work in a com-
bination of Agile and Lean principles. They develop an embedded software product
which has been on the market for over ten years and has a stable, mature code base.
It is based on the proprietary operating system. The product is sold to the infrastruc-
ture operators, who in turn provide the services to their customers. The organization
has adopted practices of continuous integration for over five years.

Company B: The company is a medium-size consumer product provider from Swe-
den. The studied organization within this company has over 100 developers who work
according to Agile principles. They develop an embedded software product, based on
Linux and they adopted continuous integration for over five years. Compared to Com-
pany A, Company B’s product is much smaller (at least an order of magnitude) and
has much larger variability as it is sold to consumers.

Similarities: Both companies use a similar set-up of modern software development
tools, including Jenkins for continuous integration and Gerrit for code reviews. The
process of code reviews, code integration and testing is the same for both companies.
The size of the teams is similar too.

Differences: Testing tools and equipment are different, as the products are differ-
ent. The roles in the companies, which are involved in the processes, are also different.
At Company A, the reviews are done within the same team, whereas at Company
B, the reviews are often done by external roles to the team. The set-up of the code
repositories is also different, which we describe in the Results section (4.4).

3.3. Data collection procedure

First, we collected quantitative data from the code review and integration tools –
Gerrit and Jenkins. The data was in form of measures of time (seconds) between:

• submission of the code to Gerrit and having two reviewers accepting the sub-
mission,

• code being submitted to Jenkins for integration to end of build,

• start of unit test until the end of unit test,

• start of function test until the end of function test, and

285Measurement and Impact Factors of Speed of Reviews ...

• queue time between the end of review and beginning of compilation in the main
branch.

Although we collected data from both finished and unfinished revisions/integrations,
we used only the data from the finished ones.

Both Company A and Company B provided us with a detailed description of
their state-machine of code review and integration. These state-machines detailed
the progress of each code commit. Although the details of the state-machines are not
important for this study, it is important to report that the state-machines states were
similar for the periods measured in our study.

In order to identify the factors affecting the speed, we reviewed the literature on
code reviews, and identified 58 factors (e.g. length of comments, number of com-
ments). During a workshop with Company B, we presented these 58 factors and the
company pointed to seven factors, which they deemed as relevant. Company B has
also added two factors which were not in our list. These factors were then used in
correlation analyses with the integration speed.

3.4. Cross-company Workshop

In the cross-company workshop, we showed the results of the measurement to both
companies (the same figures as we have in the paper) and we showed them the av-
erage times, min-max and outliers. Then the companies were asked to describe their
integration process. Company B provided a diagram in advance for Company A
to examine and identify differences. Once everyone provided their questions to the
descriptions of the process, each company asked the other about how they perform
certain activities, e.g. ”How many repositories do you have?” and follow up questions,
e.g. ”So, how often do you integrate all the code from all repositories?”

3.5. Analysis procedures

In the analysis of quantitative data, we used descriptive statistics, visual analysis
and correlation analysis. For workshops, we used brainwriting techniques [11] and
moderated discussions.

4. Results

The results from our study are structured per research question, beginning with the
general description of the execution of the study.

286 M. Staron, W. Meding, O. Söder, M. Bäck

4.1. Case and subjects description

For both companies, we collected the quantitative data as planned in Section 3.3.
For Company A we collected 43,217 reviews and for Company B we collected 67,324
reviews from a period of 5 years. We also collected 623 integrations for Company A
for approximately six months and for Company B, 155,273 integrations for the same
period.

The data sets are not balanced, but the company representatives assessed the data
sets as representative for both companies.

4.2. What is the most relevant and practically usable definition
and measure of speed of reviews and integration in the studied
companies?

Before starting to review measures for speed in general, we reviewed the measurable
concepts in this area, as prescribed by the ISO/IEC 15939 standard [21]. These
measurable concepts provided us with the ability to narrow the set of measures for
speed and these were:

1. Velocity – the number of story points per unit of time,

2. Speed of delivery – the time for delivering the product to the customers,

3. Speed of development – the duration of development,

4. Speed of integration – the duration of integration of different product parts into
a complete product, and

5. Speed of response to change – the duration between the submitted change re-
quest and the decision made for the request.

We used these measurable concepts as input to the discussion of ”What do we ac-
tually want to measure?” We intended to find the concepts that are important for the
stakeholders. Given different viewpoints of different stakeholders, we could measure
any of the measurable concepts, but we decided that we start with the concepts that
are related to software development, i.e. quantify the measurable concept of speed of
development (item #3).

We started the search for the measures by reviewing the literature from the con-
ferences in this area and from the internet sources citing these publications. Our
search criteria included the following keywords: speed, review, integration, agile,
lean, software development, devops, empowered teams and lead time. We combined
these keywords in the way appropriate to the search engines in IEEE eXplore, ACM
Digital Library, ScienceDirect, Wiley and SpringerLink. We reviewed the relevant
publications and identified a list of measures.

We discussed the measures of speed of development with a number of stakeholders
at both companies. In particular, we discussed the possibility to use the following
measures, which were mentioned by the companies at the beginning of the study:

287Measurement and Impact Factors of Speed of Reviews ...

1. Time for the feature to be ready for delivery to customer (after main branch
delivery) [20], which is the time that the organization needs to finish the product,

2. Time for the feature to be taken up by customers [20], which is the time between
the availability of a feature and its “purchase” by customers,

3. Time to arrive at ’done’ according to the definition of done [20], which is the
time from the start of development until the delivery criteria for a feature are
fulfilled,

4. Cycle and Lead times [20], which is the time needed to finish a work package
(cycle time) and the time before the work on the work package starts (lead
time),

5. Velocity [20], which is the number of story points delivered per unit of time,

6. Cumulative flow [23], which is the cumulative number of items (e.g features,
defects) in the development project,

7. Process cycle efficiency [20], which is the number of work items delivered during
one cycle,

8. Mean Time To Detect per defect (MTTD) [13], which is the time between the
integration of the code and detection of the defect in the code,

9. Mean Time To Repair per defect (MTTR) [13], which is the time between the
discovery of a defect and the removal of that defect,

10. Queue Time [28], which is the time that each item was present in the project
backlog,

11. Throughput [28], which is the number of items per unit of time,

12. Execution Time, which is the time of the project, from the start to the end, and

13. Feedback loop time, which is the time from the delivery of the software item
until it is commented in the review.

The last two items were identified by our industrial contacts at Company A and
Company B as important to consider. After the discussions with the company repre-
sentatives, we decided to pursue the measures that were related to two activities in
software development – review of code and integration of code (including integration
testing). We focused on these two activities as we could rely on production systems
to obtain accurate quantitative data for selected measures. The researchers and the
practitioners from the companies selected “Time to arrive at definition of done” for
the reviews. We naturally defined the relevant beginning of the activity and the end
of the activity for the measurement method. These start and end points are presented
in Figure 1

The definition of the measure is presented in Table 1, using the format presented
in ISO/IEC 15939 standard for specifying Quality Measure Elements (QME) [21],
[29].

288 M. Staron, W. Meding, O. Söder, M. Bäck

Table 1. Measures of speed of review

QME Attribute Definition
Information need How much time does it take to review a commit? /

Alias: What is the speed of software reviews?
Measurable concept Change of source code committed to Gerrit
Relevant entities Change
Attribute 1 Commit time stamp
Attribute 2 Merge time stamp
Base measures Time between start and end of review / Alias: Re-

view speed
Measurement method

1. Export all revisions for the change from Gerrit

2. Sort the revisions ascending by time stamp

3. Commit time stamp (CT) is the time stamp for
the first revision

4. Find the revision where all reviewers change
their status to +1, +2 or when the status of
the change is set to “merged”

5. Merge time stamp (MT) is the time stamp of
the revision from step 4

6. Review speed is the difference between the
merge time stamp and the commit time stamp
(MT – CT)

Type of measurement
method

Objective

Type of scale Ratio
Unit of Measurement Second

289Measurement and Impact Factors of Speed of Reviews ...

Implementation
branch

Gerrit
static analysis

Gerrit
review n

Gerrit
review 1

…

Unit test Component
test

Function
test

Review speed

Build

Integration speed

Main code branch

Figure 1. Start and end points of the measures

For the integration (and integration testing), we selected “Time to arrive at defi-
nition of done” and “Queue time”. Table 2 presents the measures.

These definitions of measures are based on the calendar time, and therefore free
from the manual estimations.

4.3. Given the definition of the measure of speed, what is the speed
of reviews, and integration in continuous software develop-
ment in modern companies?

The review time for Company A was 0.022 days on average (approx. 30 minutes),
whereas for Company B, this was 8.5 days on average. This difference between these
two companies helped us to show the relevance of further discussion between the
companies; a discussion about the differences between ways of working, which can
contribute to this difference in review speed. We report on these differences in Section
4.4.3.

Company A’s and B’s box-plots for speed of integration are presented in Figure 2.
We scaled these plots to the same values on the Y-axis, in order to be able to com-

pare the companies. The figures show that the integration speed is not significantly
different between the companies. The main difference is the length of the queue – it
is longer for Company B.

4.4. Which factors are perceived by the studied organizations to
affect the speed of reviews and integration for the studied
companies?

These results are organized into three parts. The first is the list of factors, which we
identified in the literature review. The second is the analysis of correlation between

290 M. Staron, W. Meding, O. Söder, M. Bäck

Table 2. Measures of speed of integration

QME Attribute Definition
Information need How much time does it take to integrate software

into the main branch? / Alias: What is the speed of
integration?

Measurable concept Source code commit checked-in to the main branch
Relevant entities Source code commit
Attribute 1 Time stamp when merged to the main branch
Attribute 2 Time stamp for the start of build
Attribute 3 Time stamp for the start of unit test
Attribute 4 Time stamp for the start of function test
Attribute 5 Time stamp for the start of component test
Attribute 6 Time stamp for the end of function test
Base measure 1 Duration of build / Alias: Build speed
Base measure 2 Duration of unit test / Alias: Unit test speed
Base measure 3 Duration of component test / Alias: Component test

speed
Base measure 4 Duration of function test / Alias: Function test speed
Measurement method

1. Export the commit data from Jenkins

2. Sort the events by time stamp

3. Find the time stamp for the start of build event
(BD)

4. Find the time stamp for the start of the unit
test event (UT)

5. Build speed is the difference between UT and
BT (UT-BT)

6. Find the time stamp for the start of component
test event (CT)

7. Unit test speed is the difference between CT
and UT (CT-UT)

8. Find the time stamp for the start of function
test (FT)

9. Function test speed is the difference between
CT and FT (FT-CT)

10. Find the time stamp for the event after the
function test (ET)

11. Component test speed is the difference between
ET and FT (ET-FT)

Type of measurement
method

Objective

Type of scale Ratio
Unit of Measurement Second

291Measurement and Impact Factors of Speed of Reviews ...

(a) Company A (b) Company B

Figure 2. Box-plots for integration speed

speed and a selection of these factors. The third, and the last, is the model which is
based on the workshop with Company A and Company B.

4.4.1. Initial list of factors

Initially, we reviewed the literature in the area of code review. We performed a search
in ScienceDirect, IEEE Explorer and ACM digital library for these papers. The list
of the identified factors is shown in Table 3.

Table 3. Factors identified as relevant in literature review

Factor name Ref. Selected
by Com-
pany

Size (LOC) [15] x
Code quality after the review (defects/LOC) [15]
Software quality in test (defects / LOC) measured
during the testing

[15]

Initial code quality (defects/LOC) measured before
code review (e.g. unit testing)

[15]

Code review coverage (% of code that is reviewed) [18]
Code complexity (McCabe) [18]
Churn (added, removed, changed code) [18]
Change entropy (changes spread over many files) [18]

292 M. Staron, W. Meding, O. Söder, M. Bäck

Number of previous patches [17]
Module location [16] x
Number of resubmits [16]
Number of comments per bug [17]
In-house (Ratio of internal contribution in the entire
history of the current branch. Calculated in the same
manner as Reviewed Commit)

[27]

Code review rate (LOC/hour) [15] x
Task type (e.g. adaptive and corrective) [3]
Total number of authors [18]
Minor authors (contributed to less than 5% of the
changes)

[18]

Major authors (contributed to more than 5% of the
changes)

[18]

Author ownership (proportion of changes attributed
to the author who made the largest % of changes)

[18]

Number of developers [3]
Number of reviewers [3] x
Number of review tasks [3]
Number of reviews / task [3]
Number of review rounds [3]
Number of changed files [3]
Number of reviewed files [17]
Proportion of reviewed changes [18]
Proportion of reviewed churn [18]
Proportion of self-approved changes [18]
Proportion of hastily reviewed changes [18]
Proportion of changes without discussion [18]
Developer ability (defects/LOC) measured as average
of previous assignments

[15]

Number of writer’s previous patches [17]
Review queue (number of pending reviews per re-
viewer)

[17]

Reviewer/writer experience (number of completed re-
views)

[17]

Reviewer/writer experience for module (number of
completed reviews for the module in question)

[17]

Defect removal effectiveness of code review (review
defects of all defects)

[15]

Priority (priority of the found bug) [17]
Severity (severity of the found bug) [17]
Super review of core-code which usually is more
defect-prone

[17]

293Measurement and Impact Factors of Speed of Reviews ...

Number of developers in CC [17]
Number of commenting developers [17]
Average number of comments per developer [17]
Number of reviewer comments [17] x
Number of writer comments [17]
Number of iterations [30]
Discussion Length (same as review comments) [30]
Proportion of Revisions without Feedback [30]
Number of Non-Author Voters [30]
Proportion of Review Disagreement (A proportion of
reviewers that vote for a disagreement to accept the
patch, i.e. assigning a negative review score)

[30]

Response Delay (Time in days from the first patch
submission to the posting of the first reviewer mes-
sage)

[30] x

Average Review Rate (Average review rate
(KLOC/Hour) for each revision)

[30]

The factors in boldface were identified during the workshop with Company B as
important to investigate further. Company B also complemented this list with two
more factors, as they identified them to be relevant for Company B’s context: (i)
Acceptance of comment (number of accepts for comments) and (ii) Indication that a
reviewer looked at the file when reviewing the patch (from Gerrit).

After the workshop, the results were sent to the reference group at Company A,
who confirmed that these factors were indeed relevant for the comparison.

4.4.2. Correlation analysis

In the correlation analysis, the first step was the visual analysis using scatter plots.
The Spearman correlation coefficient between these measures are presented in Table
4.

For Company A, the scatter plot for the relation between the review speed and
the size of the modules is presented in Figure 4(a). For Company B, the scatter plot
for the relation between the review speed and the size of the modules is presented in
Figure 4(b).

Visually, we can observe that there is no correlation between the size of the module
and the review speed. The same trend was observed for all other measured factors.
As we can also observe, the trend is the same for both Company A and Company B.

However, an important difference between Company A and Company B is the
number of reviewers assigned to review a module, which we present in Figure 4.

The numbers at Axis Y show that the number of reviewers assigned to review a
module is much larger for Company B than for Company A. We conduct the workshop
with the companies, in order to find what can contribute to the difference in the review

294 M. Staron, W. Meding, O. Söder, M. Bäck

(a) Company A (b) Company B

Figure 3. Scatter plot of review speed vs. size of module (LOC)

Table 4. Correlations

Company A / Company B LOC number of re-
viewers

review speed

LOC 1.00/1.00 -0.01/0.01 -0.01/-0.02
number of reviewers -0.01/0.01 1.00/1.00 0.22/0.10
review speed -0.01/-0.02 0.22/0.10 1.00/1.00

speed.

4.4.3. Factors affecting the review and integration speed – a model

After the workshop, we summarized the good practices in form of a contingency
matrix, presented in Figure 5. The figure is organized into two dimensions – phase
[review and integration] and speed [slow and fast].

We found that these two companies focus on two different activities and therefore
one of the companies reviews faster while the other integrates faster. When focusing
too much on the speed of reviews, Company A risked integration problems and slower
integration. Whereas focusing on the review quality, Company B risked spending too
much time for reviewing. In order to balance the speed of reviews with the speed
of integration, the software development organization needs to find which practices
contribute to either increasing or decreasing of the speed. Below, we summarize the
practices found in our study.

Fast reviews are achieved when the team does the reviews within the team, as
it is shown by Figure 4. Teammates can agree on the needed time for a review,

295Measurement and Impact Factors of Speed of Reviews ...

(a) Company A (b) Company B

Figure 4. Scatter plot of review speed vs. number of reviewers

Figure 5. Factors affecting speed.

296 M. Staron, W. Meding, O. Söder, M. Bäck

they can remind each other, and they have the joint responsibility for their product.
It is also important to set reminders for the overdue reviews. In Company A, the
reminders were set to two hours, which provided an implicit deadline; even if this was
not a requirement to have the review ready within two hours, teammates recognized
that the review is expected to be done in a matter of minutes, hours and not days
or weeks. Having the reviews within one team leads to high quality review culture,
increased trust and knowledge of the code being committed. However, in order to
reach there, the team needs to prioritize the reviews – select which code commits
have the full review and which ones get the quick one; the team also uses automated
static code analysis checks to decrease the risk of missing obvious problems in a quick
review. Finally, the team has identify the practice of “commit often, commit little”
as important – they commit small code increments (e.g. 10-20 lines of code) and do
that very often.

Fast integration is achieved when the company organizes their code base in a
distributed manner. Company B has their code base distributed over more than 100
repositories. These repositories are integrated at different speeds and one repository’s
integration problems do not propagate to other repositories. Company B also makes
a full review of all code commits and assures that the commits get external review;
although it makes the review process slower, it increases the quality of the code
and therefore increases the integration speed (a.k.a. fewer test case failures). The
commits are also small (as for Company A and for fast reviews), but not as small as
for Company A; Company B can have reviews of code of over 100 lines, spread over
multiple files. However, their recipe for fast integration is “Integrate often, integrate
little”. During the workshop, both companies agreed that integration in a global way,
with the ability to integrate and test round-the-clock (in different time zones) speeds
up the development.

Slow reviews are often caused by being over-protective of the code. A development
team might ask for an external review of the code of each commit, which leads to
leaving the responsibility to a third party (Company B does it in another department).
This means that the external party needs to put aside the time for the review and
to be able to “switch context” to the code developed by the submitting department.
Asking for all code commits to get the full review also decreases the speed. We have
also observed that slow reviews can start a negative spiral, when the submitters wait
for a larger part of the code to be finished before submitting, thus asking for more
time from the reviewers.

Slow integration is often caused by the fact that the code is complex and inter-
dependent. The interdependency can require more code to be committed, more to
be reviewed, taking longer time. This leads to risks that code contains defects and
triggers failures of tests. Having the integration during specific hours of the day also
decreases the speed.

297Measurement and Impact Factors of Speed of Reviews ...

4.5. Evaluation of validity

In reporting the validity of our study, we follow the guidelines from Runeson et al.
[26]. We discuss them per research question.

4.5.1. Construct validity

When addressing the first research question (What is the most relevant and practically
usable definition and measure of speed), the main threat to validity is the process of
conducting the literature review. Since we did not conduct a systematic review, we
used snowballing to minimize the risk that the review was done without a rigour. We
used the original paper by Fagan, 1976, to start the snowballing. Another threat to
construct validity is the lack of review of literature of the factors that can theoretically
influence the speed of integration. Since we have experienced professionals in our
workshop and given the experience of the researchers in this particular field, we believe
that this is not a major threat to the construct validity.

When addressing RQ2, we collected them from source systems, i.e. systems which
are used for software development, not for reporting. Using these kind of measures
reduce the researcher bias in data collection procedures; in particular, it reduces the
probability of obtaining data points that are incorrect. We also used calendar time as
the main measure, which is objective as the clocks of the source systems are computer
clocks which are updated in real-time. One important aspect, however, is the fact
that we only use the measures from finished reviews/integrations; this means that the
reviews which are very long, never finished, are not part of our analysis. However,
it was difficult to include the relevant ones (e.g. the ones that should be included
because they should have been finished vs. the ones that are still in progress and are
not expected to be finished yet).

When addressing RQ3 (Which factors are perceived by the studied organizations
to affect the speed), we identified the threat that we missed important factors as
we conducted a workshop, but not a survey. The participants of the workshop were
expert integration managers, senior designers and architects, working with the process
of code review. We see that their experience minimizes this risk.

4.6. Internal validity

For RQ1, we discussed the measures with the companies and therefore we perceive
the risk of missing important measures as minimized.

For RQ2, we collected the data using scripts, which reduces the risk of errors in
measurement. The scripts were tested before they were used.

For RQ3, we used workshops and close collaboration with industrial partners to
validate the measures taken. In the workshops we also discussed whether we should
expect certain causality relations in the data. When we examined the correlations
visually, we noticed that there is no correlation, and therefore we did not report the

298 M. Staron, W. Meding, O. Söder, M. Bäck

numbers.

4.7. External validity

For all research questions, we used two companies in our case study to increase the
external validity. We believe that our observations at two case companies are an
evidence that the results are not specific to one set-up, but they are more related to
the way of working – Agile and Lean software development, continuous integration
and deployment.

4.8. Reliability

For all research questions, since we reported our method and used standard tools
to collect the data, we believe that other researchers could replicate the study with
the same results. The company representatives in the workshops represented larger
groups and they did not provide their own opinion, but stated facts that can be
verified by others (e.g. number of repositories, size of commits).

5. Summary and Conclusions

In this section, let us summarize the main findings and recommendations from our
study.

5.1. Summary

What is the most relevant and practically usable definition and measure of
speed of reviews and integration in the studied companies? We have found
that the definition of speed is a very good alias for the measurement of duration
and is practically the most usable one. Since time is the only parameter in this
measure, this measure of speed cannot be manipulated by changing the prerequisites.
The objectiveness means that this measure forces companies to implement changes
(improvements) in their ways-of-working in order to change (improve) their speed.
The definitions of these measures are provided in Table 1 and Table 2. Although
the measure of speed using time seems like common sense, our results show that in
practice, as indicated by the companies, it has very valuable benefits.

Given the definition of the measure of speed, what is the speed of reviews
and integration in continuous software development in modern companies?
We have found that despite being described as continuous, the average speed of review
and integration can be measured in days. The speed is determined by low priorities

299Measurement and Impact Factors of Speed of Reviews ...

of the review tasks or problems with quality during the integration. Our contribution
here is the presentation of how fast modern organization are. Although we only pro-
vide the data from two companies, this kind of data comes from proprietary software
development, i.e. not open source, voluntary based software development.

Which factors are perceived by the studied organizations to affect the
speed of reviews and integration for the studied companies? The studied
organizations have identified 19 factors which affect the speed of review and integra-
tion. These factors varied from organizational (e.g. only selected persons were allowed
to approve the code reviews) and product-oriented (e.g. difficult to divide features
in small commits). Although these factors were not measured, they were identified
as different – one company was able to divide features in small commits and could
integrate fast while the other did not and therefore integrated much slower.

We believe that the findings from our study can help companies to structure their
code reviews and integration in such a way that they can achieve high speed without
the need to decrease quality.

5.2. Conclusions

In this paper, we set off to study how manual and automated activities influence
the speed of software development’s review, integration and integration testing. Our
results show that the measurement of speed can be done using calendar time rather
than velocity, which contributes to the discussion of how to measure speed. The
distribution of code repositories (and thus ability to divide large features into smaller
commits), reminders and team proximity decrease the time needed to deploy the
software.

Based on the discussions of which factors affect the speed and this measurement,
we can conclude that when companies evolve in their agility, they realize that in order
to be faster, they need to focus on developing their software products in shorter time.
They realize that there is a limit to how much parallel development can be done and
that no other means supersede their ability to shorten their development time. They
realize that the shorter development cycles bring both obvious and hidden benefits.

Our future work is to expand the study by conducting another case study on
importance of the identified factors on other measures (e.g. number of reviewers vs.
quality of reviews).

References

[1] Alleman G. B., Henderson M., and Seggelke R. Making agile development work
in a government contracting environment-measuring velocity with earned value.
In Agile Development Conference, 2003. ADC 2003. Proceedings of the, pages
114–119. IEEE, 2003.

300 M. Staron, W. Meding, O. Söder, M. Bäck

[2] Baum T., Liskin O., Niklas K., and Schneider K. Factors influencing code review
processes in industry. In Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, pages 85–96. ACM,
2016.

[3] Beller M., Bacchelli A., Zaidman A., and Juergens E. Modern code reviews in
open-source projects: Which problems do they fix? In Proceedings of the 11th
working conference on mining software repositories, pages 202–211. ACM, 2014.

[4] Blackburn J. D., Scudder G. D., and Van Wassenhove L. N. Improving speed
and productivity of software development: a global survey of software developers.
IEEE Transactions on Software Engineering, 22(12):875–885, 1996.

[5] Bosch J. Continuous Software Engineering. Springer, 2014.

[6] Bosch J. Speed, data, and ecosystems: The future of software engineering. IEEE
Software, 33(1):82–88, 2016.

[7] Choi J. The science behind why jeff bezos’s two-pizza team rule works, 2014.

[8] Coelho E. and Basu A. Effort estimation in agile software development using
story points. International Journal of Applied Information Systems (IJAIS),
3(7), 2012.

[9] Cohn M. User stories applied: For agile software development. Addison-Wesley
Professional, 2004.

[10] Cohn M. Agile estimating and planning. Pearson Education, 2005.

[11] Coskun H. Cognitive stimulation with convergent and divergent thinking exer-
cises in brainwriting: Incubation, sequence priming, and group context. Small
group research, 36(4):466–498, 2005.

[12] Fagan M. Design and code inspections to reduce errors in program development,
IBM Systems Journal, vol. 15, 1976.

[13] Hüttermann M. DevOps for developers. Apress, 2012.

[14] Jaspan C., Jorde M., Knight A., Sadowski C., Smith E. K., Winter C., and
Murphy-Hill E. Advantages and disadvantages of a monolithic repository: a case
study at Google. In Proceedings of the 40th International Conference on Software
Engineering: Software Engineering in Practice, pages 225–234. ACM, 2018.

[15] Kemerer C. F. and Paulk M. C. The impact of design and code reviews on
software quality: An empirical study based on psp data. IEEE transactions on
software engineering, 35(4):534–550, 2009.

[16] Kononenko O., Baysal O., and Godfrey M. W. Code review quality: how de-
velopers see it. In Proceedings of the 38th International Conference on Software
Engineering, pages 1028–1038. ACM, 2016.

301Measurement and Impact Factors of Speed of Reviews ...

[17] Kononenko O., Baysal O., Guerrouj L., Cao Y., and Godfrey M. W. Investi-
gating code review quality: Do people and participation matter? In Software
Maintenance and Evolution (ICSME), 2015 IEEE International Conference on,
pages 111–120. IEEE, 2015.

[18] McIntosh S., Kamei Y., Adams B., and Hassan A. E. The impact of code review
coverage and code review participation on software quality: A case study of the
qt, vtk, and itk projects. In Proceedings of the 11th Working Conference on
Mining Software Repositories, pages 192–201. ACM, 2014.

[19] Meding W. Effective monitoring of progress of agile software development teams
in modern software companies: An industrial case study. In Proceedings of the
27th International Workshop on Software Measurement and 12th International
Conference on Software Process and Product Measurement, IWSM Mensura ’17,
pages 23–32, New York, NY, USA, 2017. ACM.

[20] Nicolette D. Software development metrics. Manning, 2015.

[21] Organization I. S. and Commission I. E. Software and systems engineering,
software measurement process. Technical report, ISO/IEC, 2007.

[22] Perry D. E., Porter A., Wade M. W., Votta L. G., and Perpich J. Reducing
inspection interval in large-scale software development. IEEE Transactions on
Software Engineering, (7):695–705, 2002.

[23] Petersen K. A palette of lean indicators to detect waste in software mainte-
nance: A case study. In Agile processes in software engineering and extreme
programming, pages 108–122. Springer, 2012.

[24] Porter A., Siy H., Mockus A., and Votta L. Understanding the sources of vari-
ation in software inspections. ACM Transactions on Software Engineering and
Methodology (TOSEM), 7(1):41–79, 1998.

[25] Runeson P. and Höst M. Guidelines for conducting and reporting case study
research in software engineering. Empirical software engineering, 14(2):131, 2009.

[26] Runeson P., Host M., Rainer A., and Regnell B. Case study research in software
engineering: Guidelines and examples. John Wiley & Sons, 2012.

[27] Shimagaki J., Kamei Y., McIntosh S., Hassan A. E., and Ubayashi N. A study
of the quality-impacting practices of modern code review at sony mobile. In
Proceedings of the 38th International Conference on Software Engineering Com-
panion, pages 212–221. ACM, 2016.

[28] Staron M. and Meding W. Monitoring bottlenecks in agile and lean software
development projects–a method and its industrial use. Product-Focused Software
Process Improvement, pages 3–16, 2011.

[29] Staron M. and Meding W. Software Development Measurement Programs: De-
velopment, Management and Evolution. Springer, 2018.

302 M. Staron, W. Meding, O. Söder, M. Bäck

[30] Thongtanunam P., McIntosh S., Hassan A. E., and Iida H. Investigating code
review practices in defective files: An empirical study of the qt system. In
Proceedings of the 12th Working Conference on Mining Software Repositories,
pages 168–179. IEEE Press, 2015.

[31] Thongtanunam P., McIntosh S., Hassan A. E., and Iida H. Review participation
in modern code review. Empirical Software Engineering, 22(2):768–817, 2017.

Received 19.06.2018, Accepted 19.11.2018

303Measurement and Impact Factors of Speed of Reviews ...

