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1. Introduction

Software Engineering plays an increasingly critical role in our daily lives, whether
the developed software is in the computer applications we use in a wide range of
devices (e.g., PCs, tablets, smartphones), the vehicles we drive, the air planes we fly
in, or the medical equipment we require (e.g., pacemakers). The increasing inherent
complexity of software systems and market competitiveness pose real challenges that
need to be addressed by the Software Engineering processes, methods and tools, while
the proposed methods, related artefacts and tools, as well as delivered products need
to be evaluated. Software engineers continuously struggle to improve their software
engineering methods in order to deliver high quality software products. As the soft-
ware products built nowadays are bigger and bigger, bug free and quickly developed
software may seem like an unattainable goal. Nevertheless, researchers and practi-
tioners are obliged (and this is our aim) to improve and evaluate software engineering
methods and delivered products. According to Gartner, the size of the worldwide
software industry 5 years ago (in 2013) was over US$400 billion [6]. Hence, good
recommendations how to improve software engineering processes and how to deliver
high quality software are of huge (not only, but also monetary) value. The more so
that problems with the software quality are widespread, while at the same time our
life depends on software more and more every year.

According to MIT Technology Review [5], 48% of organizations planned to use
machine learning to gain a greater competitive advantage in 2017. Among them, 44%
were expecting to benefit from machine learning by improving the efficiency of inter-
nal processes (operations). With the advancements that have been made in the area
of data analytics and machine learning, we observe a growing importance of infor-
mation as an important component when solving many Software-Engineering-related
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Miroslaw.Ochodek@cs.put.poznan.pl

F O U N D A T I O N S  O F  C O M P U T I N G  A N D  D E C I S I O N  S C I E N C E S
Vol. 43 (2018) No. 4

ISSN 0867-6356
e-ISSN 2300-3405DOI: 10.1515/fcds-2018-0013



problems. The papers presented in this Special Issue follow this trend and focus on
applying data analytics/measurement, machine learning, and knowledge engineering
techniques to support software development.

This Special Issue contains six papers. The first two contributions regard using
measurement to support decision-making in software projects. The paper by Ka-
mulegeya et al. (“Measurements in the Early Stage Software Start-ups: A Multiple
Case Study in a Nascent Ecosystem”) aims at filling the existing gap [10] in under-
standing how measurement is performed in software start-ups in East Africa. The
results of a multi-case study involving 19 software start-up projects show that there
is a visible difference in the types of measures used in the start-up projects in Africa
and in their counterparts from more developed countries. The authors observed that
the early-stage software start-ups in the nascent East Africa ecosystem prefer to use
business and product metrics and to a less extent organizational performance metrics.

Continuous integration has gained a lot of attention in recent years [8]. In the
second paper (“Measurement and Impact Factors of Speed of Reviews and Integration
in Continuous Software Engineering”), Staron et al. aims at understanding which
factors influence the duration of code reviews and software-product integration in
companies employing continuous software development. After conducting a case study
in two large companies developing embedded software, they identified 19 factors that
affected the duration of review and integration. Although most of these factors were
specific for the studied companies, being aware of them could help other companies
to reduce the duration of code reviews and integration without compromising the
quality of their products.

The second group of three papers regards the applying prediction models to sup-
port software development activities. The paper by Vetrò et al. (“Combining Data
Analytics with Team Feedback to Improve the Estimation Process in Agile Software
Development”) concerns effort estimation in agile software development projects. In
agile projects, development effort is usually estimated using expert judgment or group
estimation methods [3, 11] and often at the level of a single requirement, user story,
or task since applying algorithmic estimation models at the level of a single task
could be difficult due to a large variability and number of factors (often unknown)
that affect the actual effort [4]. The authors of the paper, propose to combine data
analytics techniques with project team feedback to improve the estimation process
based on user stories and story points. In particular, they propose to use a shorter
non-numerical scale to express story points, an analogy-based estimation process, and
retrospective analyses on the accuracy of previous sprints estimates. They report a
major improvement in estimation accuracy (up to 45%) when the proposed approach
was implemented in a medium-size software development company located in Ger-
many.

The following paper by Radliński (“Predicting Aggregated User Satisfaction In
Software Projects”) aims at predicting user satisfaction in software development projects.
The author applies and evaluates the accuracy of different machine learning algorithms
to predict user satisfaction in the data from an extended ISBSG dataset [1]. After
building, evaluating and comparing a total of 15,600 prediction schemes the best
prediction scheme were selected that allowed obtaining the prediction quality mea-
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sured with Matthews Correlation Coefficient (MCC), as recommended by Shepperd
et al. [9], at the level of 0.6, which is a promising result for an early study.

Software maintainability is understood as the ease with which the existing software
can be modified. Over the years, numerous models to measure and predict maintain-
ability at different stages of the software development life cycle were proposed. In the
fifth paper presented in this Special Issue (“Comparative Analysis of Oriented Object
Software Maintainability Prediction Models”), Zighed et al. share the results of a
comparative analysis of Object-Oriented software maintainability prediction models
and propose a detailed classification of such models. The authors compare the mod-
els from three perspectives: architecture, design, and code levels, and discuss their
strengths and weaknesses.

Last, but not least, the paper “Universal Framework For OWL2 Ontology Trans-
formations” by Hnatkowska and Wroniecki addresses the problem of transforming
domain ontologies to software code. The authors propose a framework for univer-
sal ontology processing, dedicated to ontologies expressed in OWL 2 [2] and show a
proof-of-concept implementation capable of transforming OWL 2 to Groovy, which
complements efforts of transformation of UML diagrams to their OWL 2 representa-
tion [7]. The proposed framework is based on a component architecture with well-
defined interfaces used for communication, which makes it highly extensible.

The papers presented in this Special Issue follow the currently observed trend on
using information to support product development. They show different applications
of vastly understood data analytics, machine learning, and knowledge engineering to
support software development processes. We believe that the presented results will
inspire other researchers and allow practitioners to improve the software development
processes in their organizations.
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