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Abstract. Crowdsourcing is a very effective technique for outsourcing work to
a vast network usually comprising anonymous people. In this study, we review the
application of crowdsourcing to modeling systems originating from systems biology.
We consider a variety of verified approaches, including well-known projects such as
EyeWire, FoldIt, and DREAM Challenges, as well as novel projects conducted at
the European Center for Bioinformatics and Genomics. The latter projects utilized
crowdsourced serious games to design models of dynamic biological systems, and it
was demonstrated that these models could be used successfully to involve players
without domain knowledge. We conclude the review of these systems by providing 10
guidelines to facilitate the efficient use of crowdsourcing.
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1. Introduction

The term crowdsourcing was introduced in 2006 by Jeff Howe [32]. However, the
concept of crowdsourcing, which is understood as outsourcing work to a vast network
of anonymous people in the form of an open call, is much older. It has been discov-
ered that one of its first applications was a method for measuring the longitude of a
ship in 1714, for which the British government offered a prize [13]. Subsequently, re-
searchers and entrepreneurs have utilized the concept of crowdsourcing many times,
but its rapid progress started after the development of the Internet in the 1990s.
Successful examples of its application include services such as Wikipedia and Open-
StreetMap. An extended review of crowdsourcing systems available on the world
wide web (WWW) was provided in a survey by Doan et al. [17], and a more detailed
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discussion regarding the nature of crowdsourcing was given by Estelles and Gonza-
lez [19]. Crowdsourcing can bring many benefits. As observed by Francis Galton in
1907, the collective opinion of a crowd of individuals can be much more precise than
the opinion of any single individual in the crowd. This is an underlying principle of
the so-called wisdom of the crowd [23], which later evolved into the idea of collective
intelligence (CI) [7]. The term CI is a more general concept that is usually defined as
an intelligence emerging from the collaboration, collective efforts, and competition of
many individuals [58, 52]. In recent years, many platforms have been implemented
to support crowdsourcing, such as InnoCentive and CrowdAnalytix [29].

Crowdsourcing has been utilized successfully in many scientific and industry in-
spired areas. For example, crowdsourcing has been successfully applied in computing
science for collecting and processing data in projects such as Wikipedia [38, 57, 46],
reCaptcha [63], and OpenStreetMap [25], and many other areas including data mining
[73] and natural language processing [28]. Moreover, some platforms were designed
primarily to support crowdsourcing for tasks (micro-tasking platforms), with Amazon
Mechanical Turk [36] being the best-known example. This system allows requesters to
define simple tasks that can be performed easily by humans (such as transcribing au-
dio recordings), and matches them with crowdsourced workers. These workers receive
a payment for completed tasks. Other services that work on a similar basis include
Figure Eight (formerly Crowdflower [62]) and Prolific [48]. There are also platforms
that focus on more complicated projects by allowing employers to find employees to
complete time-consuming tasks, such as ClickWorker and Upwork [14].

Another fascinating application of the crowdsourcing concept is specialized com-
puter games where players can have fun and solve complex scientific problems at the
same time [55]. These games are called crowdsourced serious games (this term was
first introduced by Tellioglu et al. in 2014 [59]) and they have been employed success-
fully for solving problems that originate from various fields of science. One of the first
crowdsourced serious games was FoldIt, which allows players to fold a protein to ob-
tain its tertiary structure. The results obtained by the players were so good that all of
the participants were recognized as co-authors on the paper published in Nature [10].
Other biological applications of this concept include EteRNA [37], EyeWire [26, 3],
Phylo [33], Stall Catcher [9], Nanocrafter [4], MalariaSpot [41], and BioGames [43].
In addition, significant applications of crowdsourced serious games have been made
in fields other than biology, such as the applications developed by Verigames.com for
the formal verification of software [40] and the Throw the Hamster game designed for
deducing mathematical formulae from data [68].

Finally, another innovative implementation of the crowdsourcing technique is in
online judge systems [67, 66]. These online platforms allow the submission of algo-
rithm implementations (or their output data) to the cloud then they are evaluated in
a homogeneous, reliable environment. These systems can be used to rapidly organize
crowdsourced challenges where participants submit algorithms that an online judge
automatically collects, evaluates, and compares. Many of these systems have been
used to solve scientific problems, support teaching, support recruitment, or even to
develop software components in the cloud. A detailed review of these systems was
provided by Wasik et al. [67].
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Many of the applications listed above are related to systems biology, which is a rel-
atively new field of biology defined as the antithesis of the approach that was applied
previously for centuries. Previously, the development of biology was driven by a re-
ductionist approach, where in order to understand the functioning of an organism as a
whole, it is necessary to distinguish the fundamental life processes that occur in them
and understand each of them separately [47]. Researchers were convinced that if we
could describe each process accurately, then complete knowledge would be available
to understand the operation of the whole organism directly. This approach drove the
continuous development of observational methods that allowed observations of organ-
isms at an ever-increasing level of detail. This ranged from observing the operation
of whole organs, through tissues, to individual cells and the processes occurring in
them, and even biochemistry and biophysics at the levels of individual particles and
atoms. Finally, this process yielded precise descriptions of hundreds of processes that
occur in biological organisms, without providing answers to many vital questions. A
good example is a neuron in the brain. The transmission of electrical impulses that
allow neuronal communication and information transmission is very well understood,
but it does not explain how thoughts arise and how the process of thinking proceeds
[21].

The problem introduced above was first addressed in the second half of the twen-
tieth century when it was noted that a more global view is necessary in addition to
analyzing particular processes. This gave rise to a new field of biology called systems
biology, which involves studying the complex interactions occurring in biological sys-
tems. One of the primary goals of systems biology is to analyze what was lacking
in the reductionist approach. This involves analyzing properties that only emerge
in a global context (so-called emergent properties). Therefore, systems biology can
be considered the most important representative example of a holistic approach to
biology [35].

Formally, the term systems biology was introduced in 1966 by Mihajlo Mesarovic
through the organization of an international symposium on Systems Theory and Bi-
ology [44]. However, the first research in this field occurred much earlier with a
model of the propagation of signals along the axons of nerve cells, which combined
knowledge of the behavior of the sodium and potassium molecules found in neurons
to observe a more global impulse transmission process [30]. Subsequently, systems
biology has been systematically developed, with interest increasing since the 1990s.
This was due to two factors: the availability of large volumes of data in the area of
functional genomics, and the emergence of more efficient computers. This progress
was accompanied by the rapid development and improvement of computers, which
facilitated simulations and the analysis of the models. One of the most significant
achievements during this period was a model of metabolism in an entire hypothetical
cell in 1997 [60]. Currently, systems biology is a highly interdisciplinary field, which
combines research in fields such as biology, mathematics, computer science, chem-
istry, biochemistry, physics, biophysics, and even psychology and sociology. Research
conducted in the area of systems biology is used in diverse fields such as genomics,
transcriptomics, proteomics, and metabolomics.

In this review, we focus on the principal task related to systems biology; modeling
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biological systems [51, 70] using crowdsourcing. Modeling these systems has been ad-
dressed in many previous books and articles, such as [16, 1, 56]. However, an extensive
overview of the application of crowdsourcing to modeling these systems has not been
conducted, although Good and Su gave a comprehensive review of the application of
crowdsourcing in bioinformatics [24]. Thus, we first survey the applications of crowd-
sourcing to modeling biological systems that originate from systems biology. We then
present the results of several projects conducted at the Poznan University of Tech-
nology related to the modeling of dynamic, biological systems using crowdsourced
serious games by focusing on the different aspects of crowdsourcing. The objective of
all these projects was to design a game that could exploit the collaborative effort of
many players, who lacked any knowledge of dynamic systems modeling, to design a
model. Achieving these objectives involved designing a game that concealed all ex-
pert knowledge from the users, and exploiting the collaborative effort of the players.
Finally, we suggest some guidelines on how to make effective use of crowdsourcing to
achieve useful results.

2. Related work

Modeling biological systems is still an emerging application of crowdsourcing, but sev-
eral platforms have been successfully applied using this technique to obtain valuable
biological insights. In the following, we review three widely used platforms: EyeWire,
FoldIt, and DREAM Challenges. We also provide a brief review of the application of
crowdsourcing to the annotation of systems biology data.

2.1. EyeWire

The objective of EyeWire is to reconstruct the three-dimensional (3D) structure of
neurons and their mutual connections. To achieve this goal, players are asked to color
fragments of neurons that can be identified inside small cubes retrieved using serial
block-face electron microscopy. The initial solutions are constructed using machine-
learning based volume segmentation, and the solutions are then improved continuously
based on the inputs of the players. Players can investigate the cube using different
cross sections, and add new parts of neurons to the initial solution. Technically,
addition is achieved by clicking with a computer mouse on the subarea that the player
wants to include. To make the process faster, the flood fill algorithm is used to extend
this subarea to other areas wherever the algorithm is sure that the neuron continues.
The game presents 2D and 3D visualizations of the solution proposed by the player
to help them verify correctness. The EyeWire development team organizes special
events and contests for motivating players to spend more time solving game tasks.
Moreover, players can check daily, weekly, and monthly rank lists, receive badges and
achievements, and connect with other players using social networking features. Data
collected from the crowd are then used to model dendrite connections in a system of
starburst amacrine cells [34].
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Since the game was publicly published in 2012, it has helped to achieve many
significant results in both biomedical and computational areas. For example, in 2013,
the authors created a dense reconstruction of 950 neurons in the inner plexiform layer
of a mouse, and they identified the motifs responsible for detecting localized motion
[26]. Another important achievement was the publication of a digital library that
provides a 3D interactive view of 400 ganglion cells from a single patch of mouse
retina and graphs of their visual responses [3].

2.2. FoldIt

An important area of systems biology is interactomics, which focuses on the interac-
tions between molecules. One common applications is the analysis of protein–protein
interactions [8], which can be analyzed experimentally or computationally [61]. In
the latter method, the most important input data are the tertiary structures of pro-
teins. Thus, the FoldIt game is one of the oldest and best-known crowdsourced games
applied in bioinformatics.

FoldIt was first published in 2008, and as of July 2018 it had over 700, 000 registered
users. The objective of this game is to predict the tertiary structure of proteins with
the help of players. FoldIt presents proteins as 3D visualizations, and it ensures that
the distances between the atoms in the backbone are correct. The task of the user
involves changing the positions of the atoms to minimize the internal energy of the
molecule. Moreover, the user is provided with a set of tools to facilitate and accelerate
their work. Some incorrect structures are detected and marked automatically. In
addition, the player has the option of optimizing the designed structure by executing
an automatic parameter tuning procedure.

The highest ranked solutions designed by players are then checked and examined
by scientists to determine whether they can exist in reality. This approach has been
shown to be highly effective. For example, in 2012, FoldIt organized a challenge to
support the drug design process. The organizers asked players to remodel the back-
bone of a computationally designed molecule to allow additional interactions with
substrates, which led to the discovery of new and effective interaction structures [18].
Currently, the authors of the platform are trying to broaden its application range and
to adapt it for determining crystal structures. Accordingly, they organized a crys-
tallographic model-building challenge where they invited trained crystallographers,
undergraduate students, FoldIt players, and autonomous algorithms. The winner of
the challenge was a group of FoldIt players, thereby proving the usefulness of the
platform [31].

2.3. DREAM Challenges

Dialogue for Reverse Engineering Assessment of Methods (DREAM) Challenges is
an online judge platform that is similar to Kaggle, and it is a crowdsourcing website
dedicated to solving science data problems. The main difference is that DREAM
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Challenges focuses on problems originating from systems biology and translational
medicine [53, 11]. This platform allows the publication of biomedical challenges that
can then be solved by scientists. It also provides an intuitive interface for collect-
ing solutions generated by researchers and the implementation of scoring methods.
DREAM Challenges hosts challenges using the Synapse platform [15] developed and
maintained by Sage Bionetworks, and this collaborative research platform helps re-
search teams to share data, track analyses, and collaborate remotely.

DREAM Challenges have organized 50 successful challenges with a focus on the
field of biomedicine. In particular, some were related to systems biology, and one
of the most successful was the HPN-DREAM network inference challenge, where the
objective was to learn causal influences in signaling networks [42, 27]. The organizers
managed to collect and score over 2000 networks from the challenge participants, and
many of them were highly efficient at modeling the signaling network.

Another successful challenge focused on network topology identification and pa-
rameter estimation for gene regulatory networks [45]. This challenge comprised two
sub-tasks, where the objective of the first was to estimate the parameters of a nine-
gene regulatory network, and the participants also had to identify three missing links
in an 11-gene network in the second sub-task. By analyzing the results of the chal-
lenge, the organizers were able to identify new efficient variants of methods for model-
ing gene regulatory network. Moreover, they were able to combine components from
the various models submitted by participants to construct a new solution that scored
better than the winner of the challenge, thereby demonstrating that it is possible to
make use of the wisdom of the crowd to construct biological models.

2.4. Text annotation

Research related to systems biology primarily involves the analysis of biological net-
works such as protein–protein interaction networks, gene regulatory networks, and
metabolic networks. However, constructing these networks is a laborious process,
where the biggest problem is identifying edges that exist in the network. These edges
usually model interactions that have been observed in real biological systems, and
information about them can be found in various scientific studies. Unfortunately,
each edge is usually described in different studies, and identifying edges requires an
extensive literature review. Fortunately, this review process can be distributed among
many researchers who work in parallel. Thus, researchers have tried to crowdsource
this task to the academic community.

The best example of the utilization of a crowd to annotate biological network is the
study by Wang et al. [64]. In this project, a crowd of 70 researchers annotated and
analyzed over 4000 gene expression profiles available from the NCBI Gene Expression
Omnibus [5]. Consequently, Ansari et al. proposed a tool for verifying biological
networks. This tool visualizes networks and allows crowdsourced researchers to verify
the existence of interactions based on reported evidence [2]. Finally, WikiPathways
facilitates the sharing and editing of information about biological pathways using the
Wikipedia platform [49].
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3. Materials and Methods

We conducted three projects at the Poznan University of Technology. The objective
of the first project, called Throw the Hamster, was to verify the possibility of using
crowdsourcing games to model dynamic systems. Such systems are very often ana-
lyzed by researchers in the area of systems biology as they can model how the system
consisting of some biological entities changes in time. Using such a model they can
analyze various properties of the model. For example, during all projects, we tried
to construct a model of viral infection that can be used to support designing new
vaccines and treatment methods [69]. The project was very successful and the results
were published in 2015 [68], as summarized briefly in Section 3.1. The goal of the sec-
ond project was to improve the original approach by solving some problems identified
during the verification phase. Finally, we conducted the third project, called Race the
Hamster, to develop the most efficient method for integrating crowdsourced serious
games with micro-tasking services. In the following, we briefly discuss the results of
the latter two projects by focusing on aspects related to crowdsourcing.

During each project, the goal of the users was to construct a formula for a function
to characterize a dynamic system, i.e., a system such that for each time point t ∈ T ,
each point of the phase space m ∈ M is mapped onto another point m′ ∈ M . This
system can be described by a function:

T ×M →M, (1)

and it is usually defined by a differential equation or a system of equations that model
the changes in the values of points m in time, i.e.:

ṁ = f(m). (2)

We did not model the system directly by designing a system of differential equations,
which is a highly difficult task, but instead we tried to construct a single function
to give the values of points m in time, i.e., the solution of a system of differential
equations for some initial conditions m0:

m = f(t). (3)

To evaluate each solution f , we used a standard mean absolute error defined using
the following formula:

s(f) =
1

N

N∑
i=1

|mi − f(ti)| , (4)

where N denotes the number of points in a test dataset T , mi denotes the value of the
test data point collected at time ti, and f(ti) is the value estimated by the player’s
solution. The test dataset T contained data regarding hepatitis C virus infections
provided by Dahari et al. [12, 69], which described how the viral RNA level decreased
during therapy with PEGylated interferon alpha and ribavirin.

As the solution becomes more accurate, the value of the scoring function s(f)
decreases and extremely small values close to 0 are obtained for very good solutions.
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This behavior is not intuitive for users without a mathematical background, who
generally consider that it is better to have more points in the game. To make the
results more user friendly, we defined a transformation of the function s(f), which
always returns a positive number that is less than or equal to 10, 000, as follows:

p(f) =

⌊
10000

max(
√
s(f), 1)

⌋
(5)

To verify how the results obtained using crowdsourcing compared to the results
produced by a state-of-the-art artificial intelligence algorithm, we compared the re-
sults from the Throw the Hamster game to the results generated using symbolic
regression implemented in Eureqa software [54]. The comparison demonstrated that
the crowdsourcing approach could compete with the machine learning procedures (for
further details, see [68]). An essential step when assessing these two approaches was
comparing the complexity of the functions. The complexity of a model is usually
correlated with the accuracy that it can achieve, so we analyzed the complexity of
the models generated by both the Eureqa software and the crowd. This allowed us to
avoid over-fitting and generating excessively complex models. We used a method for
calculating the complexity of formulae implemented in the Eureqa, which assigns a
weight to each of the elementary operations that can be used to construct formula and
then sums the weights of all operations. The same procedure was used to compare
the results obtained by the Throw the Hamster and Race the Hamster games. The
weights used by this method are presented in Table 1.

Table 1. Weights for operations used to measure the complexity of the
solution.

Operation Weight Operation Weight
addition 1 negation 1

subtraction 1 exponentiation 5
multiplication 1 logarithm 4

sine 3 natural logarithm 4
cosine 3 division 2

tangent 4 constant 1
cotangent 4 variable 1

3.1. Original approach: Throw the Hamster game

The original approach was implemented as an Internet application in the form of a
game accessed via a web browser [68]. This game provided a platform that users
could employ to design and share their proposed model and improve existing ones.
The objective of the game was to design a spaceship for a hamster. The flight path
of the spaceship was predetermined by the function designed by the player by adding
improvements to the technological tree. Each improvement was then mapped to some
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mathematical operator. The value of the function’s argument modeled time, and it
corresponded to the horizontal position of the hamster. The value of the function
corresponded to the height at which the hamster was flying at a specific point in
time. The goal of the game was to develop a trajectory that matched (as closely as
possible) with the individual points from the test dataset T . The visualization phase,
for visualizing the designed function in the form of a flight, allowed the user to check
the quality of this function by observing how closely the hamster’s flight matched
with the stars representing the test dataset T . Finally, the quality was presented in
the form of a score calculated according to Equation 5. The user could then make
further corrections to his solution to make it fit closer to data points. The player
could also display the ranking of some of the best solutions posted by other players
then load them to continue improvement on these models. Thus, the players could
work together to build the best solution and take advantage of the wisdom of the
crowd.

The Throw the Hamster game was a great success. We found that by achieving
much lower complexity, the user-constructed functions were only slightly worse than
the solutions generated by Eureqa. In addition, many possible improvements were
observed, which motivated us to continue working on the next version of the game.
Based on the surveys conducted at the end of the experiment, it appeared that most
of the game players did not enjoy the game very much, which greatly hindered the
achievement of the intended purpose. We also found that users were concerned by
the fact that they did not understand the connection between the function building
stage and the flight path in the visualization. This design was due to the assumed
need to hide any elements that required mathematical knowledge from the players,
but it was only one reason for their concern. Finally, we observed that most of the
time spent by users during game playing involved tuning the parameter values in the
model, which is a task that could be easily automated.

3.2. Redesigned approach: Race the Hamster game

Based on the conclusions described in the previous section, we redesigned the game
and implemented a new version called Race the Hamster. In the following, we describe
the changes made to the game.

Change #1 The first change was a modification to the game play process. To make
the game more interesting for the players, the new version involved driving a race car
on a track (see Figure 1). This change introduced additional interactivity into the
game because the player must complete the track as quickly as possible by steering the
car with the arrow keys on the keyboard. At the end of the race, the player received
points that are awarded based on both the quality of the designed function and the
time needed to complete the entire track. The shape of the track itself was defined
by the function that the player designed, and this function was visualized in a polar
coordinates system. Therefore, the time corresponded to the angular coordinate and
the modeled value corresponded to the radial coordinate. To ensure that the track
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formed a loop (the beginning met with the end), we used Hermite interpolation to
generate a segment of track that connected the beginning and the end. The game
visualized points from the test dataset T above the track as boosters. These points
gave the car additional acceleration to allow the race to be completed in a shorter
time. Because of this modification, the player was interested in designing a function
that fitted the points as closely as possible.

The adjustment to the game play process required a change to the formula pre-
sented in Equation 5, which defines how the scores are awarded to the player. The
redesigned formula is defined as follows:

p′(f) = w1 · p(f) + 10000 · w2 ·max

(
k · tmin − tp
(k − 1) · tmin

, 0

)
, (6)

where tp denotes the time that a player requires to complete the track, tmin is the
minimal time required to complete the track, and k controls the difficulty (it is easier
to obtain more points when k is higher). The most important problem is how to
select the weights w1 and w2. Increasing w1 raises the importance of the quality of
designed function. Increasing w2 gives the player more fun during the racing phase
because the completion time is more important. After studying the players’ opinions,
we decided to use w1 = 0.25 and w2 = 0.75.

Figure 1. Part of the racing track generated based on the function presented in
Figure 2. The boosters that speed up the racing car are closer to the center of the
track when the function is closer to the data points.
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Change #2 In both versions of the game, the players constructed functions to
describe the modeled system by constructing its tree representation. However, the
original approach provided a non-intuitive interface for adding and removing new
nodes. In the new version of the game, the interface was changed to drag and drop.
An example screenshot showing a tree representation of a function is presented in
Figure 2.

Figure 2. Tree representation function: f(t) = 622.42− 0.02 · t− 0.96 · log2.96 t. The
red labels are not visible during the game, and they have been added to show how
the tree is translated into the formula. A visualization of the function represented is
shown below the tree.

Change #3 In the original version of the game, modifying the modeled function
required changes to the structure of the tree before executing the visualization proce-
dure to evaluate the quality of the newly created solution. This was a major problem
because each iteration of changes required launching an animation that lasted several
additional seconds. The solution to this problem involved previewing the function
continually during its creation. The function was visualized in the design stage by
presenting a graph in Cartesian coordinates based on a line plotted on a plane contain-
ing visualized points from the test dataset T (see Figure 2). Thus, the players could
immediately assess any positive or negative consequences of the change, thereby al-
lowing them to notice the relationships between the individual elements that modeled
the appropriate mathematical operations.
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Change #4 During the design of a function to describe the model, the elements
that occurred in each tree were constants. In the first version of the game, the numer-
ical values of these constants were determined by the player. This requirement was
very tedious because the player had to find the right structure of the whole tree and
optimize all of its constant values manually. Thus, most of their time spent designing
functions involved verifying how small changes in the values of the parameters in the
model affected the outcome of the game. The problem of tuning the parameter values
in the model could easily be automated using computational methods, thereby allow-
ing the player to avoid performing the longest and most boring part of the solution
design process. Therefore, this automated step was integrated into the redesigned
version of the game. The details of the algorithms employed are described in the next
section.

3.3. Automated parameter tuning

The problem of finding values for constants that maximize the score of a player is a
well-known nonlinear regression problem. The only requirement is that it should be
as computationally efficient as possible to return the results to the user in an accept-
ably short time. Moreover, because the player had full freedom when designing the
function, we assumed that a derivative-free method was required. Thus, we used a
constrained optimization by the linear approximation (COBYLA) algorithm ([50]),
which is currently the most efficient method (good results are obtained in a relatively
short time [22]). This numerical optimization method is applicable when the deriva-
tive of the objective function is not known, and it works by iteratively approximating
the constrained numerical optimization problem with linear programming problems.

3.4. Crowdsourced parameter tuning

In the tests with the COBYLA algorithm, we found that the method for estimating
the values of the real parameters could be improved, and it remains an active research
topic [39]. For example, according to our preliminary tests, we observed that it was
possible to achieve much better results in only a slightly longer time by designing
a hybrid method that uses COBYLA as a local optimization method and an evolu-
tionary approach to escape from local optima. Moreover, the problem of estimating
real parameter values formulated as a global optimization problem can be applied in
many other areas of systems biology (e.g., [74, 70]). Therefore, we decided to use
crowdsourcing to help solve this problem, which we implemented with the Trochilus
platform.

The objective of developing the Trochilus platform was to implement a black-box
evaluation of optimization algorithms. The architecture was inspired by the software
supplementing special session on real parameter optimization organized annually dur-
ing the IEEE CEC conference. During the session, the organizers announced the re-
sults of the challenge, where the task was to design the best-performing method for
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the optimization of real parameters. The original aim of the challenge was that the
evaluation software should conduct black-box assessments. Therefore, the algorithm
used to search for the parameter values did not know the optimized function, and
it was only allowed to query the values for some set of parameter values by sending
requests to the evaluation software. The algorithms were then evaluated based on the
number of requests required to find a solution.

There were two primary problems related to the CEC session: the evaluation pro-
cess was performed off-line only once each year, and the functions employed were
artificial functions with no relationships to any biological problem or other practi-
cal problem. Thus, we implemented a crowdsourcing platform with an online judge
architecture, which allowed the collection of algorithms to perform real parameter op-
timization and their comparison. An example screenshot of the platform is presented
in Figure 3. The resulting Trochilus platform was presented at several conferences.
The feedback from the community was so encouraging that it was expanded into a
general purpose crowdsourcing platform for evaluating algorithms to solve any op-
timization problems. The target platform called Optil.io has already been used to
support several international programming challenges [66, 65].

Figure 3. Screenshot of the Trochilus platform showing the results of tests with
submitted algorithms using five functions from the CEC 2013 challenge [39].

3.5. Integration of a crowdsourced game with micro-tasking ser-
vices

Having fun playing a game is often sufficient motivation to encourage players to spend
time playing a crowdsourced serious game. However, it is much easier to reach crowd-
sourced users if they are offered additional payments for completing crowdsourced
jobs. Thus, we investigated the possibility of integration with existing micro-tasking
services. The best possibility that offered application programming interfaces (APIs)
for integration with external services was Figure Eight. Unfortunately, playing the
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game required a sophisticated application that could not be integrated internally with
Figure Eight using the limited features provided on this platform. Thus, we used a
tokens mechanism that is available on the platform for integration with tasks that are
solved externally. The integration procedure is explained as follows.

1. The user navigated to the Figure Eight platform and found a page describing
the crowdsourced serious game.

2. The user was redirected to the game from the information page.

3. The user played the Race the Hamster game and the game generated a token if
the result was sufficiently high.

4. The user copied the token to the clipboard and was then redirected to the Figure
Eight website.

5. The user pasted the token into a dedicated text area.

6. Figure Eight sent a request to the game to verify whether the token was valid
and that it had not been used previously.

7. After positive confirmation, the user was paid for the task.

Unfortunately, the Figure Eight API was too limited to automate the process required
to send the token from the game to the platform.

4. Results

4.1. Testing procedure

We conducted three phases of tests: two used two versions of the Throw the Hamster
game (for details, see [68]), and the third employed the Race the Hamster game. We
collected no personal data, and players could provide a username to allow them to
correlate their consecutive attempts. However, this was not obligatory and we did not
check the uniqueness of different attempts. The numbers of players and games played
during each phase are presented in Table 2. Over 14,000 games were played, and this
allowed us to verify our approach in detail. The average number of games played by
each player in the Race the Hamster game was almost four times larger than that in
the previous version of the game (65.96 vs. 16.94). This was attributable to the more
exciting game play and the elimination of the tiresome process required for setting
the parameter values.

4.2. Results and analysis

Figure 4 compares the results obtained with the Throw the Hamster and Race the
Hamster games. These results show that the improved version of the game gener-
ated significantly better results for most of the solution complexities. The original
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Table 2. Number of games played during the first and second iteration of
tests with the Throw the Hamster game (#1 and #2) and the Race the
Hamster game (#3).

Iteration Players Sessions Games Games per player

#1 616 928 7628 12.38
#2 90 212 1525 16.94
#3 85 149 5607 65.96

Total 791 1289 14760 18.65

approach achieved slightly better results for complexities in the range from 14 to 17.
Moreover, it was possible to overcome the problem of poor quality solutions with high
complexities. After the automatic parameter tuning method was introduced, it was
much easier for the users to handle complex models. Furthermore, they were able to
make improvements, even for the model with a relatively high complexity (59). In
the tests of the original approach, the most complex model where the value of the
objective function increased had a complexity of 14, which probably also explains why
the original approach was better for the low range of complexities. The players found
it difficult to design more complex functions. Therefore, they focused on those with
lower complexity, but a much smaller subset of the solution space was searched.

Figure 4. Scores for the best solutions generated by players where the complexity
was less than or equal to a specific value.

The functions designed by the players are illustrated as follows. All of the functions
presented in the following have a complexity of 23, which was the first complexity
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at which the improved approach was always better. Equation 7 is the best function
designed using the Throw the Hamster game where the complexity is 23 and it scored
2614 points. Equation 8 is the best function with the same complexity, but it was
designed using the Race the Hamster game and it scored 2689 points. Equations
are not simplified because they are presented in a precisely same form as the player
designed them.

f(t) = 649.23 +

(
−1.019 · 20

log (1 + t)

log(2.715)

)
+

(−0.022 · t) + 1.13 + t · t · 0.0001 · 0.0001 · 0.2
(7)

f(t) = 649.23− 1.03 · log2.67(t)− 0.01 · t + t · t · −0.01 · 0.02 · 0.01 (8)

Finally, in both projects we tried to collect the opinions of the players regarding
the games. Our analysis of the collected opinions showed that the changes introduced
in Race the Hamster game were rated positively. On average, more people stated that
they liked the game, and that they would recommend it to a friend as an interesting
scientific contribution. In addition, fewer people stated that the game involved an
excessive amount of mathematical thinking.

5. Conclusions

The examples presented in this review demonstrate that crowdsourcing can have di-
verse applications to support the modeling of biological systems. First, crowdsourced
serious games can provide fun to the players as well as fulfilling a scientific purpose.
Second, many annotation tasks can be crowdsourced to collect significant amounts of
research data that could not be gathered automatically. These annotation tasks can
be distributed among solvers via micro-tasking platforms. In addition, micro-tasking
platforms can be used successfully with crowdsourced serious games or with any gen-
eral crowdsourced application that requires the development of a separate application.
Finally, some available platforms support the organization of crowdsourced challenges.
These include general-purpose platforms such as DREAM Challenges, which facilitate
the organization of any type of challenge, or dedicated platforms such as Trochilus
and Optil.io, which use an online judge architecture to allow the crowdsourcing-based
development of algorithms.

Based on this wide range of applications, it is possible to define several guidelines
to facilitate the design of successful platforms that utilize crowdsourcing. These guide-
lines are presented in the following where we focus on the task of modeling biological
systems. However, most of them should also apply to other areas of science.

Guideline #1: Communicating the goal Crowdsourced users are generally un-
skilled people who have no detailed domain knowledge, but they usually want to
know the scientific objective of the platform. Informing users about this objective
using simple and understandable language can convince them to spend more time
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solving tasks because they will identify with the mission of the platform. Having a
sense of mission is especially important in the case of biomedical research because
the users can readily appreciate the connection between solving the problem and the
potential benefits of medical discoveries, thereby motivating them to work more inten-
sively on the crowdsourcing platform. This guideline is implemented in all successful
crowdsourcing applications, including Throw the Hamster games, FoldIt, EyeWire,
and DREAM Challenges. Information about the goal is usually provided in a brief
tutorial, which the user must read before they start using the application to ensure
that it is read. Moreover, more detailed descriptions (including some scientific facts)
are usually provided in the documentation that supplements the application.

Guideline #2: Hiding domain knowledge To encourage many users to solve
crowdsourced problems, the tasks should be as easy to solve as possible and the
domain knowledge should be hidden from the user. This guideline is especially im-
portant when modeling biological systems because most people have only elementary
and insufficient biological knowledge. After hiding the domain knowledge, it is pos-
sible to recruit many solvers from an unskilled crowd. This guideline was one of the
central assumptions for the Throw the Hamster games. In these games, the construc-
tion of mathematical formulae is performed by simply dragging blocks that represent
various operations. The players assessed the solutions very successfully. In addition,
EyeWire smartly hides medical knowledge about the shapes of neurons from the user
by presenting tasks in the form of a coloring page.

Clearly, this guideline has to be interpreted in different ways when designing plat-
forms that publish challenges solved by domain experts, such as Trochilus or DREAM
Challenges. In this case, all of the domain knowledge must be described precisely be-
cause it can help the participants to develop better solutions. However, the platform
should simplify the solving of tasks as much as possible, such as by sharing visualizers
or modules for implementing the standard code that must be used by all participants.

Guideline #3: Ease of understanding After hiding the domain knowledge from
users, the mechanics of the application may become too difficult for the user to un-
derstand. In this case, a user may conclude that the rules are magical and give up
solving the tasks. This behavior was a major problem in the first version of the Throw
the Hamster game because the users could not understand how modifying the tree
representing the formula influenced the flight path. We solved this problem by pro-
viding general descriptions of how each element worked and by adding a preview of
the plot of the constructed function. According to the survey conducted at the end
of the experiment, these changes significantly helped users to understand how the
game worked. In general, it is better to reveal elementary biological or mathematical
knowledge related to the modeled system rather than hide everything possible.

Guideline #4: User friendliness User friendliness is a feature that should char-
acterize every computer application. However, in the case of crowdsourcing, it is
especially important because crowdsourced users generally receive no direct benefits
from solving the tasks. The user will rapidly stop using the application if it is difficult
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to use or it does not look attractive. In biomedical applications, a well presented visu-
alization could also have additional advantages. In particular, it is generally difficult
for the user to imagine certain biological concepts such as cells or genetic sequences
because they are usually unaware of their appearance. Therefore, a suitably designed
visual layer can facilitate access to the application.

This guideline is also partially correct even for micro-tasking websites that pay
users for solving tasks. A good example is Amazon’s Mechanical Turk, which has a
non-intuitive registration process that includes user validation that is difficult to pass.
This architecture discourages many users from accessing this platform.

Guideline #5: Automation It is essential to automate the crowdsourced prob-
lem solving steps that can be implemented using currently available algorithms and
methods. This saves the valuable time spent by the user solving tasks that cannot be
solved automatically and that actually require their attention. A good example is the
EyeWire game, which uses a flood fill algorithm to mark the parts of neurons that
actually belong to the cell according to the algorithm. In addition, FoldIt implements
automated protein shape improvement and the Race the Hamster game implements
automated parameter value tuning. These enhancements significantly improve the
efficiency of the work conducted by crowdsourced users and are generally easy to
implement, especially in the mathematical components of the modeling applications.

Guideline #6: Decomposition The problem should be decomposed into as many
simple tasks as possible, thereby allowing users to be rewarded more often because it
is easier to accomplish the task. However, this is not always possible. For example, in
the FoldIt game, it is not possible to split an amino acid sequence into subsequences
because the tertiary structure of the protein always depends on the whole sequence.
Moreover, in the EyeWire games, developers can divide the analyzed parts of the
brain into small cubes for separate handling, thereby allowing the generation of rank
lists for players based on the number of cubes solved.

Guideline #7: Validation In many cases, it is relatively easy to obtain a biolog-
ical model from the crowd that is very complex and it may be over-fitted to the test
data. Thus, a validation phase should always be conducted to test the collected solu-
tions against validation data. However, in many cases, it may be challenging to define
a validation procedure, particularly when the modeling process is divided into many
micro-tasks and the validation phase cannot be conducted before all of the micro-
tasks are solved. Therefore, mechanisms should be added to ensure that the collected
partial solutions are sufficiently simple to prevent over-fitting. This guideline can be
especially difficult to implement when using crowdsourcing for modeling biological
systems because it is usually difficult to collect sufficient test data. However, this is
not sufficient reason to omit a validation phase.

Guideline #8: Verification Crowdsourcing is prone to errors. When outsourcing
work to unskilled workers, they can submit an incorrect solution. This is especially
true for biomedical applications characterized by many domain-specific constraints.
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Thus, a verification procedure must be defined to address this problem. In the case
of the Throw the Hamster game, the correctness of the models were verified auto-
matically, and if the player did not include the required variables or constants in the
formula they were automatically added. In the case of the FoldIt game, manual veri-
fication was applied where domain experts verified each promising solution. Finally,
micro-tasking websites usually verify solutions by submitting the same task several
times to different users. However, regardless of the verification procedure employed,
at least one should be implemented.

Guideline #9: Wisdom of the crowd Galton [23] and many of his followers
suggested that combining the contributions of many participants can significantly in-
crease the quality of the final solution. This hypothesis was clearly supported by the
Throw the Hamster game, where the possibility of employing solutions submitted by
other users helped to achieve much better results [68]. Unfortunately, most of the im-
plementations of crowdsourcing still fail to exploit this beneficial effect. Accordingly,
much more attention should be paid to this aspect of crowdsourcing.

Guideline #10: Rewarding users A good motivation technique is the key to
recruiting people to use crowdsourcing applications. Paying money is certainly the
easiest method and the Race the Hamster game demonstrated that it is feasible to
integrate a crowdsourcing application with a micro-tasking platform to support the
provision of payments for solving tasks. However, it is also possible to use other
cheaper motivation methods, such as gamification elements or forcing people to solve
crowdsourcing tasks to receive access to some resources. More information about
motivating users to participate in crowdsourcing actions was given by Doan and Byn-
ghall [17].

The best evidence that the guidelines described above are crucial for designing
successful crowdsourcing platform is our experience with games dedicated to modeling
dynamic systems. In particular, we found that certain elements were lacking in the
first version of Throw the Hamster game. However, implementing them in the second
version of the game, and in the Race the Hamster game, significantly increased the
quality of the solutions submitted by the players. First, the game became much more
interesting, which increased the average number of games played by each player by
over four times. Second, the lack of domain knowledge was less of a concern for the
players. Finally, they were able to handle more complex models and generate higher
quality solutions.
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