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Abstract. In this paper, we make use of a Bayesian (supervised learning) ap-
proach in pricing American options via Monte Carlo simulations. We first present
Gaussian process regression (Kriging) approach for American options pricing and
compare its performance in estimating the continuation value with the Longstaff and
Schwartz algorithm. Secondly, we explore the control variates technique in combina-
tion with Kriging to further improve the estimation of the continuation value. This
method allows to reduce dramatically the standard errors and to improve the stability
of the Kriging approach. For illustrative purposes, we use American put options on
a stock whose dynamics is given by Heston model, and use European options on the
same stock as control variates.

Key Words: American options, Monte Carlo, Gaussian processes, Kriging, LSM,
supervised learning, Heston Model, control variates

1. Introduction

American options pricing efficiency remains a topic of heated interest and research
in Computational Mathematics and Finance. American style options offer great flex-
ibility in all financial and trading markets such as stock, equity, commodity, credit
and forex due to the possibility of an early exercise. However, there are no closed-
form analytical valuation of these types of derivatives because of the optimal exercise
problem created by the early exercise.

The increasing difficulty of pricing American options when the underlying fol-
lows a complex stochastic process dynamics have turned researchers to the use of the
Monte Carlo simulations. Monte-Carlo simulations complexity increases linearly with
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the dimension of the problem, whereas methods like finite difference’s complexity is
exponential. The Monte Carlo approach to price American options is accompanied
with the question on how to estimate the continuation value and execute the optimal
exercise. Most of the developed methods in this area are related to supervised learn-
ing i.e. estimating ’E[Y |X] = f(X) + ε’ via parametric/non-parametric techniques.
Many researcher attempted to solve the problem such as Tsitsiklis and Van Roy [15]
with parametric regression, Pizzi and Pellizzari [11] with Nadaraya-Watson kernel
regression and Li, Szepesvari and Schuurmans [7] with LSPI algorithm. A major
breakthrough in pricing American options with Monte Carlo approach was developed
by Longstaff and Schwartz [8] and it is considered a ”golden standard” in the indus-
try and literature. Longstaff and Schwartz method (LSM) uses parametric regression
onto basis functions. In this paper, the authors have proved that when increasing
the number of Monte-Carlo simulations and the basis functions (e.g. polynomial type
basis function) the LSM method converges. However, it has slow convergence rate
and the computational time increases exponentially as long as the number of basis
functions and dimension complexity increase.

In this paper, we review a supervised learning approach namely Gaussian pro-
cess regression (GPR) which was used the first time by Ludkovski [10] in estimating
the continuation value of American style options. Gaussian process regression, also
named Kriging, with squared exponential kernel requires only one basis function per
dimension to be able to learn the continuation value, creating a smoother exercise
boundary. We aim to improve it with the application of control variate and give
Kriging more flexibility in pricing American options over the LSM methodology on
multidimensional stochastic processes. Also, this will allow Kriging method to learn
the exercise policies from much smaller sample and can be applied to the rest of the
paths, ’sub-sample strategy’ Gramacy and Ludkovski [5].

Our result are mostly focus on the Heston model, a 2-dimensional process, to show
the efficiency of the Kriging with control variate over the LSM method. Heston model
offers more flexibility in pricing options on the stock market due to its stochastic
volatility which can replicate the implied volatility smile observed of the options
traded in financial markets.

The paper is structured as follows. In the section 2, we review the backward dy-
namics principle, LSM approach and Kriging algorithm. We explain how to apply
the control variates technique with the aid of the GPR. Section 3 contains our nu-
merical analysis where we test our approach on synthetic and market data. Finally,
we summarize our findings in the section 4.

2. Pricing American Options

We assume that the financial market has an underlying complete probability space
(Ω,F,P), a filtration {Ft}0≤t≤T with finite time horizon [0, T ] and FT = F. Under the
no-arbitrage condition, we can suppose the existence of equivalent martingale measure
Q ∼ P. Furthermore, let St be the state variable (i.e. price of the asset) and the h(St)
the payoff of the options restricted to the square-integrable space L2(Ω,F,P).

208 G. Mu, T. Godina, A. Maffia, Y. C. Sun



In the pricing framework, we will be using Heston 2-dimensional model to depart
from Black-Scholes 1-dimensional dynamics and to show the performance the Kriging
method on a multidimensional asset. Heston model is a mathematical model which
assumes a non-constant volatility of an underlying asset and was first introduced by
Heston [6]. Let St be the underlying asset under risk neutral measure with variance
vt that follows a CIR process:

d lnSt = (r − 1

2
vt)dt+

√
vtdW

Q
1,t

dvt = κ(θ − vt)dt+ σ
√
vtdW

Q
2,t

< dWQ
1,t, dW

Q
2,t > = ρdt

(1)

where S0 ≥ 0, v0 > 0 are initial value of the asset and its variance and WQ
1,t, W

Q
2,t

are standard Wiener process with the following parameters: r- risk free rate, |ρ| < 1-

correlation of WQ
1,t and WQ

2,t, κ > 0- mean reverting rate of variance, θ > 0- long run
variance, and σ > 0- volatility of variance.

American options with maturity T can be formulated as a process {Hτ ∈ Fτ}0≤τ≤T
which represents the discounted payoff of the option in case of exercise at time τ .
Denote T of admissible stopping time τ taking values [0, T ]. Then the initial price of
this option can be written as:

P0 = sup
τ∈T

E[Hτ ].

Let the financial asset Sτ follow Heston dynamics then an American put option with
maturity T and strike price K written on an asset Sτ has payoff h(Sτ ) = (K − Sτ )+

and the following price at time t:

P (S, v, t) = sup
τ∈T

E[e−rτ (K − Sτ )+] (2)

The supremum is achieved for stopping optimal time τ∗:

τ∗ = inf{τ ∈ T : Sτ ≤ Bτ} (3)

where Bτ is called optimal exercise boundary.

2.1. Monte Carlo Formulation

In order to be able to tackle numerically the American option pricing problem with
Monte Carlo method, we have to depart from the continuous case and restrict to op-
tion classes with discrete exercise. Bermudan options are a hybrid between American
options and European which allows the option to be exercised at specific dates before
maturity. In our case lets define uniform discretization of the time interval [0, T ] with
distance ∆t = T

N and 0 = t0 < t1 < ... < tN = T equidistant exercise opportunities.
The asset value St is also simulated at the same time steps {ti}i∈{0,..,N} as the dis-
cretization. The simulation of St1 , ..., StN is affected by discretization error which is
described in detail by Kloeden & Platen [9] and Glasserman [3].
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Monte Carlo methods for pricing American option are based on the backward
dynamic programming formulation which estimates recursively the value of the option.
Let’s denote X = (S, v) the underlying stochastic process, h(Xti) the discounted
payoff of the option, and Vti the discounted value of the option at time ti. The
recursive estimation of the option value is defined in the following way:

VtN = h(XtN )
Vti−1

= max{h(Xti−1
),E[Vti |Xti−1

]}
i = 1, 2, ..., N

(4)

The above equation states that the value of the option at expiration time tN is exactly
the payoff of the option h(XtN ). At any other time 0 ≤ ti < tN , the value of the option
V̄ti−1

is the maximum between immediate exercise h̄(Xti−1
) and the continuation value

E[Vti |Xti−1
] which is the discounted present value of holding the option rather than

exercising it at time ti. We denote the continuation value as:

Cti−1 = E[Vti |Xti−1 ]
i = 1, 2, 3, ..., N − 1

(5)

Since the payoff h(XtN ) ≥ 0 is always non-negative, we can set CtN = 0 i.e. at expiry
it is no longer optimal to hold the option. Conversely, we obtain the value function
Vti for i = 1, ...., N :

Vti = max{h(Xti),Cti} (6)

At the last step t0 = 0, we estimate the option value as:

V̄0 =
1

M

M∑
j=1

V
(j)
t0 (7)

where M is the number of simulated paths of the Heston process Xt.

2.2. Kriging Approach

The continuation value C remain a ’Black box’ and a pivotal piece in the valuation
of American option. In the Monte Carlo framework, the continuation value can be
viewed as following estimation problem:

Vti = C̃ti−1 + εti−1

= fi−1(Xti−1) + εti−1

(8)

where fi−1 is a measurable function and εti−1
is the error term with mean 0 and

variance σti−1
.

Longstaff and Schwartz [8] introduced an innovative parametric approach to derive
the continuation value. For in the money paths, they estimate C via linear combination
of K basis function φk(X) which are dependent on the underlying stochastic process
X:
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C̃(Xti) =

K∑
k=1

βk,i−1φk(Xti−1) = Φ(Xti−1)Tβi−1 (9)

with βi−1 minimizing error term εti−1 in equation (8):

βi−1 = (E[Φ(Xti−1
)Φ(Xti−1

)T ])−1E[Φ(Xti−1
)Vti)]. (10)

Although LSM is a reliable and precise algorithm, finding the sufficient number
of simulations and optimal number of basis function [4] is becoming more difficult to
perform with higher dimensional stochastic processes. For this purpose, we introduce
a non-parametric approach Gaussian process regression.

A Gaussian process (GP) is a collection of random variables where any subset has
a Gaussian distribution. A Gaussian process:

f(X) ∼ GP(m(X),K(X,XT )) (11)

is only defined by the mean m(X) and covariance matrix K(X,XT ) for a positive
and symmetric kernel K. There are many choices for kernel but one of most preferred
kernels is the squared exponential function:

K(x, y) = σ2
f exp

(
− 1

2l2
||x− y||22

)
(12)

Where the hyperparameters σf and l are found by maximizing the log-likelihood.
Since this kernel is symmetric and positive, it produces positive definite and symmetric
covariance matrix.

Due to the flexibility of GPR, we don’t need to use all the simulated paths to
estimated all the parameters. We select a random subset X ′ti−1

of the simulated
paths of size M ′ and V ′ti the corresponding path-wise option values. Using equation
(8), we can represent the option value as a Gaussian distribution:

V ′ti ∼ N
(
m(X ′ti−1

),K(X ′ti−1
, X ′Tti−1

) + σti−1
I
)

(13)

We have to find the optimal hyperparameters η = (σf , l, σti−1
). For this reason we

introduce the marginal likelihood p(V ′ti |X
′
ti−1

):

p(V ′ti |X
′
ti−1

) =

∫
p(V ′ti |f,X

′
ti−1

)p(f |X ′ti−1
)df (14)

We have V ′ti = f(X ′ti−1
) + ε(X ′ti−1

) and ε(X ′ti−1
) ∼ N(0, σti−1) ⇒ V ′ti |f(X ′ti−1

) ∼
N(f, σti−1

I). We get prior distribution f(X ′)|X ′ ∼ N (m(x),K(X ′, X ′)). Finally, we
arrive at log-likelihood:

log(p(V ′ti |X
′
ti−1

, η)) = −1

2
V ′Tti [K(X ′ti−1

, X ′ti−1
) + σti−1

I]−1V ′ti

−1

2
log[K(X ′ti−1

, X ′ti−1
) + σti−1

I]− M ′

2
log(2π)

(15)
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By maximizing the log-likelihood in (15), we obtain the desire parameters η =
(σf , l, σti−1) for the Gaussian process regression. We have divided the total number of
simulations into two sets X ′ti−1

(learning set) and the complement X∗ti−1
(prediction

set). If we apply same estimates to the prediction set we get a noise-free estimation
of the continuation value for the entire set:

[
f(X ′ti−1

)

f(X∗ti−1
)

]
∼ N

(
m(X ′ti−1

)

m(X∗ti−1
)
,

[
K(X ′ti−1

, X ′Tti−1
) K(X ′ti−1

, X∗Tti−1
)

K(X∗ti−1
, X ′Tti−1

) K(X∗ti−1
, X∗Tti−1

)

])
A more detailed derivation on GPR is discussed by Rasmussen and Williams [14].

Employing the GPR method, we obtain an estimation of continuation value:

C̃ti−1
= f(Xti−1

) = GPt(m(Xti−1
),K(Xti−1

, XT
ti−1

)) (16)

We can write C̃ti−1
= Pti−1

Vti where Pti−1
is the projection operator onto Fti−1

-
measurable Gaussian Processes. We can also apply the learning stage on a smaller
set than total amount of paths generated because GPR is computationally heavy with
O(M3) operations.

Lastly, we improve the Kriging approach by including control variates (CV) in sim-
ilar fashion as Rasmussen N. S. [13]. We use European put options control variates
YT = h(XT ) with maturity time T = tN written on the same underlying stochas-
tic process and apply it directly to continuation value. In terms Gaussian process
regression, we adjust the continuation value with the projection operator Pt, in the
following way:

CCVti−1
= Pti−1

Vti − ν̃ti−1
(Pt−1Yti − E[h(XtN )|Xti−1

]) (17)

where ν̃ti−1 minimizes the variance of CCVti−1
:

ν̃ti−1
=

Pti−1
(VtiYti)− Pti−1

Vti · Pti−1
Yti

Pti−1
(Y 2
ti)− (Pti−1

Yti)
2

(18)

We calculate the discounted price of European option pti−1
= E[h(XtN )|Xti−1

] at each
path via fast Fourier transform method described by Carr and Madan [2]. At each
step, we adjust the control variate as YtN = h(XtN ) Yti−1 = pti−1 if h(Xti−1) > CCVti−1

otherwise Yti−1
= Yti . At the last step, the control variate Yt0 is applied directly to

the value of the option Vt0 .

3. Numerical Study

We design the numerical test to compare the three mentioned algorithms: LSM,
Kriging and Kriging with CV over a set of different parameters. In the first part, we
use standard examples and benchmarks from literature [12] to test the algorithms’
efficiency. In the second part, we compare the methods on realistic parameters by
first calibrating the Heston model to the market data from CBOE on Russell 2000
Index Options (RUT) and S&P 500 Index Options (SPX).

212 G. Mu, T. Godina, A. Maffia, Y. C. Sun



3.1. Synthetic Data Experiment

Let t0 = 0, t1, ..., tN = T be the equidistant discretization of the interval [0, T ] with the
difference ∆t = T

N . Then for i = 1, 2, ..., N , we can rewrite the discrete risk-neutral
Heston dynamics (1) for sufficiently small ∆t:

logSti = logSti−1 + (r − 1

2
vti−1)∆t+

√
vti−1

√
∆tεS,ti

vti = vti−1 + κ∗(θ∗ − vti−1)∆t+ σ
√
vti−1

√
∆t(ρεS,ti +

√
1− ρ2εv,ti)

(19)

where {εS,ti , εv,ti}i=1,...,N are i.i.d. random variables with standard normal dis-
tribution. This discretization method is also known as Euler–Maruyama. We repli-
cate the correlation < dWQ

1,t, dW
Q
2,t >= ρ by constructing the random variable <

εS,t, ρεS,t +
√

1− ρ2εv,t >= ρ which has the same correlation and behavior. We
replace the terms vti−1 with max(vti−1 , 0) due to the fact that vti in discrete approx-
imation may reach negative values for some extreme states of volatility.

For the three methods, we use backward dynamic programming formulation in (4)
but we update the option value function:

Vti−1
=

{
h(Sti−1) if h(Sti−1) ≥ Cti−1

Vti otherwise
(20)

In this way, we don’t add the errors from the estimation of continuation value in the
option value function calculations.

In the LSM algorithm, we estimate the continuation value C as in equation (9)
with the following basis functions in terms of stock prices S and volatility v:

Φ(S, v) = {1, S, v, Sv, S2, v2, Sv, S3, v3, S2v, Sv2}. (21)

The interaction terms between S and v are necessary to capture the correlation ρ of
the Brownian motions of the stock price and its volatility. For the Kriging algorithm,
we are estimating the continuation value C via Gaussian process regression (16) on
the basis function {S, v} and a random learning subset of paths of size M0. Whereas,
in the Kriging with CV we adjusting previous continuation value C as in equation
(17), performing the other 3 GPR on the same set of basis functions.

In Table 1, we present the results for S0 ∈ {90, 100, 110}, T ∈ {0.25, 0.5} and
v0 ∈ {0.04, 0.09, 0.16} to account for in the money (ITM), at the money (ATM) and
out of the money options (OTM) options with different maturities T and riskiness
v0. For all of the test, GPR algorithm approximates the American options prices
with a precision of up to 3 fold than LSM. With the addition of control variate, GPR
algorithm further improves the precision (up to 10 fold) especially for high volatility,
OTM options and high maturity. In Figure 1, we show that all 3 algorithm converge
slowly as the number of simulated paths M increases with O(

√
M) speed. The GPR-

CV algorithm reaches a suitable error even with M as low as 2000. This showcases
that Kriging with CV algorithm needs little information to output high precision
results.
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LSM GPR GPR-CV

S0 v0 T PSOR Price Error % Std Price Error % Std Price Error % Std

90 0.04 0.25 10.1229 10.1653 0.4181 4.5720 10.1513 0.2806 4.3806 10.0990 0.2362 0.2808

100 0.04 0.25 3.4813 3.5240 1.2258 4.1948 3.5068 0.7329 4.2624 3.4632 0.5212 0.1663

110 0.04 0.25 0.8417 0.8741 3.8418 2.4929 0.8735 3.7729 2.4695 0.8282 1.6069 0.0929

90 0.09 0.25 10.9573 11.0423 0.7756 7.0613 11.0121 0.4997 6.8796 10.9374 0.1818 0.2927

100 0.09 0.25 4.9461 5.0244 1.5824 6.3102 4.9920 0.9284 6.0819 4.9339 0.2479 0.1751

110 0.09 0.25 1.8641 1.9244 3.2331 4.2084 1.9068 2.2883 4.1085 1.8581 0.3249 0.0918

90 0.16 0.25 12.1200 12.2376 0.9703 9.1855 12.1845 0.5320 8.8658 12.1059 0.1163 0.2680

100 0.16 0.25 6.4933 6.6016 1.6676 8.0982 6.5553 0.9551 7.8332 6.4841 0.1409 0.1753

110 0.16 0.25 3.1470 3.2385 2.9067 6.0491 3.2003 1.6923 5.8564 3.1444 0.0820 0.1061

90 0.04 0.5 10.5667 10.6314 0.6127 5.9602 10.6110 0.4198 5.8109 10.5373 0.2782 0.5463

100 0.04 0.5 4.6645 4.7266 1.3311 5.9187 4.6846 0.4295 5.6213 4.6460 0.3963 0.3512

110 0.04 0.5 1.7875 1.8421 3.0558 4.0904 1.8262 2.1650 3.9732 1.7741 0.7504 0.1807

90 0.09 0.5 11.7658 11.8552 0.7595 8.3687 11.8166 0.4318 8.0841 11.7463 0.1654 0.5730

100 0.09 0.5 6.2573 6.3427 1.3652 7.6451 6.2935 0.5799 7.3566 6.2435 0.2195 0.4012

110 0.09 0.5 3.0673 3.1497 2.6870 5.8725 3.1049 1.2273 5.6399 3.0602 0.2318 0.2432

90 0.16 0.5 13.2329 13.3473 0.8642 10.4700 13.2823 0.3733 10.0642 13.2159 0.1285 0.5669

100 0.16 0.5 8.0073 8.1207 1.4158 9.5221 8.0532 0.5739 9.1627 7.9973 0.1243 0.4255

110 0.16 0.5 4.6232 4.7312 2.3360 7.8025 4.6693 0.9967 7.4842 4.6194 0.0829 0.2936

Table 1. Convergence of American put option prices computed by Least Square
Method, Gaussian process regression with/without control variate averaged over 100
independent runs versus PSOR Benchmark. Parameters: K = 100, r = 0.05, κ = 3,
θ = 0.04, σ = 0.1, ρ = −0.7, N = 100 ,M = 5000 and M0 = 2000

3.2. Market Data Experiment

We aim to price American options on RUT and SPX indexes with LSM and GPR-
CV. We select European put and call option prices of the 2 indexes at ”24-08-2015”
having stock prices SRUT = 1111.69 and SSPX = 1893.2, with maturity ”19-12-2015”
(T=0.32) and ”18-03-2016” (T=0.57) and with strike prices K in range of 10% of the
stock price.

For both indices, we derive the dividend yield q and interest rate r using Put-Call
parity on the market data prices via a linear regression as in Ackerer [1]:

Cmkt − Pmkt = e−qTS0 − e−rTK. (22)

where Cmkt, Pmkt are the market prices of the call and put with strike price K
and maturity T on index S0. We calibrate the parameters of the Heston model by
minimizing the mean squared distance between the Black-Scholes implied volatility
of market option prices and Heston option prices [1]:

min
{σ,v0,κ,θ,ρ}

√
1

|O|
∑
o∈O

(σimpmkt − σ
imp
Heston)2 (23)

where O are the set of options on the same index, σimpmkt is the implied volatility of

market price of the option and σimpHeston is the implied volatility of the option price
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Figure 1. American put option price behavior averaged over 100 independent runs.
Parameters: S0 = 100, K = 100, T = 0.25, v0 = 0.09, r = 0.05, κ = 3, θ = 0.04,
σ = 0.1, ρ = −0.7, N = 100 and M0 = 2000

calculated via Car-Madan formula on Heston model. As a result, we obtain the
following parameters:

Index r q r − q σ v0 κ θ ρ

RUT 0.0229 0.0057 0.0171 0.8669 0.1098 6.4541 0.0487 -0.5751
SPX 0.0211 0.0060 0.0151 0.8497 0.1070 6.6356 0.0302 -0.5630

Table 2. Calibrated Parameters

With the calibrated parameters, we apply the same procedure as in Section 3.1 to
price the American options on RUT and SPX indices and report the results in the
Table 3. We arrive at the same conclusion that GPR-CV algorithm outperforms LSM
algorithm especially for OTM options.

4. Conclusions

We have laid down the backward dynamic principle for American options pricing in the
context of Monte Carlo methods. We have presented the LSM and Kriging approach in
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Index
LSM GPR-CV

K T PSOR* Price Error % Std Price Error % Std

RUT

1000 0.32 25.396 26.443 4.1219 62.190 25.411 0.0606 1.111

1110 0.32 61.684 63.057 2.2260 91.084 60.892 1.2830 2.989

1220 0.32 127.339 129.190 1.4535 110.985 125.774 1.2292 3.624

1000 0.57 36.524 37.902 3.7715 78.755 36.484 0.1114 1.862

1110 0.57 75.654 77.315 2.1956 107.009 74.502 1.5230 4.028

1220 0.57 138.775 140.580 1.3003 126.566 136.353 1.0245 5.352

SPX

1700 0.32 35.983 37.668 4.6825 95.029 36.013 0.0845 1.868

1900 0.32 99.744 102.115 2.3763 146.753 98.129 1.6194 5.538

2100 0.32 226.829 229.756 1.2905 176.642 224.018 1.2390 6.578

1700 0.57 49.137 51.341 4.4850 117.266 49.105 0.0651 3.164

1900 0.57 116.784 119.359 2.2041 166.954 114.949 1.5714 7.759

2100 0.57 237.415 241.384 1.6720 196.110 234.265 1.3269 9.638

Table 3. Performance of LSM, GPR-CV on RUT and SPX versus PSOR benchmark.
Parameters from Table 2 and N = 100 ,M = 5000, M0 = 2000.
* American Option price calculated via explicit scheme with discretization ∆S = 210, ∆v = 29 and

∆T = 220.

this framework together with control variate adjustment. In particular, we have shown
that GPR method always outperforms LSM algorithm especially when combined with
European counterpart as a control variate but at an additional computational cost.
The numerical results on OTM options illustrate that GPR-CV is well equipped to
deal with minimal amount of information and provide precise pricing results.
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