FOUNDATIONS OF COMPUTING AND DECISION SCIENCES

Vol. 43 (2018) No. 2
ISSN 0867-6356
) 5 SRuYTER DOI: 10.1515/fcds-2018-0005 e-ISSN 2300-3405

G

On Monitoring and Self-Adaptation to Dynamic Nature
of SOA in RESERVE Environment

Anna Kobusinska *

Abstract. Reliability is one of the bigest challenges faced by service-oriented
systems. Therefore, to solve this problem, we have proposed RESERVE — Reliable
Service Environment. RESERVE increases fault-tolerance of SOA systems and ensures
consistent processing despite failures. However, the proposed environment imposes
also the performance overhead. Thus, in this paper, we extended RESERVE and added
a monitoring feature provided by the M? service. As a consequence, the extended
environment can adjust appropriately the load of its modules to the changing inter-
action and behaviour patterns of service oriented systems. We have experimentally
shown that the proposed solution, while providing the required level of reliability,
decreases significantly the performance overhead.

Keywords: SOA, fault-tolerance, recovery protocol, monitoring

1. Introduction

In recent years, the rapid proliferation of development and deployment of distributed
systems based on service-oriented architecture (SOA) has been observed [1, 17]. In this
approach, new applications are assembled from existing web services, implemented
by software modules operating according to the established criteria, and representing
specific functionality [13, 20, 26]. Such services are described, discovered and accessed
over the Internet by using standard protocols. They have several features, which
make them attractive components of distributed systems. Among the others they
are: reusable, loosely-coupled, autonomous, and platform-independent. They are
also self-contained, and do not depend on the context or state of other services.
Services are published by service providers and accessed by clients, who can benefit
either from a single service or from a composite one, implemented by composing
several services from independent providers in order to meet the objectives impossible

*Institute of Computing Science, Poznan University of Technology, Poznan, Poland,
anna.kobusinska@cs.put.poznan.pl

106 A. Kobusinska

to achieve through a single service. In consequence, the service-oriented approach
allows to create new, complex applications, as well as to easily integrate existing
systems. For that reason, in the SOA, an unprecedented so far flexibility in design of
distributed applications is achieved.

On the other hand, SOA-based systems inherit all the challenges related to the
construction of distributed systems. Among the others, they face the problem of
unreliability of computing infrastructure. This problem manifests itself in failures of
SOA components, leading consequently to limitations in availability of services, and
thus affecting dependability of the whole system. Failures of SOA components may
also cause problems with reliability of business processes (understood as a series of
interactions between services and their clients). The problem of reliable interactions
results from the possible inconsistency between the service state and its view at the
client’s side, which can appear after server or client failure and subsequent resumption
of work. In the result, the state of a business process may be incorrect, and hence,
further processing may be infeasible [9].

Above mentioned situations are highly undesirable from the viewpoint of service-
oriented system clients, who expect that provided services are available, and business
processing is reliable and uninterrupted. Since for many service-oriented applica-
tions the reliability aspect is particularly important, the provision of a satisfactory
level of fault-tolerance of SOA systems and applications is a crucial practical and
research problem. To solve this problem, we have proposed RESERVE — Reliable
Service Environment, which aims in increasing SOA fault-tolerance [4, 12, 14]. The
proposed solution preserves business process state during the failure-free processing,
in order to transparently recover a consistent processing state (i.e., one that could be
accomplished in the failure-free processing), in case of failure of one or more system
components. To achieve this, a well-known idea of logging interactions of business
process participants, and replaying them during the recovery procedure is applied [9].
The proposed protocol of message logging and recovery used in RESERVE is specially
tailored to requirements of service-oriented systems. The presented solution focuses
on seeking automated mechanisms that neither require user intervention in the case
of failures, nor the knowledge of service semantics. It also respects the independence
of service providers, allowing them to implement their own recovery policies and em-
ploy local methods to achieve fault-tolerance. But, although RESERVE has many
advantages, its performance could be improved.

In the proposed approach, in order to ensure reliability in a transparent way,
requests issued by clients are intercepted by Client Intermediary Modules (CTM),
and redirected to the Recovery Management Units (RMU). In turn, RMU modules
direct requests to Service Intermediary Modules (SIM), from where they reach the
service. There are many distributed RMU modules, but each CIM and SIM are
registered in one distinguished, default RMU that is responsible for coordinating the
recovery procedure in case of failures. RMU modules play the key role in RESERVE
environment, not only because of their impact on correctness of the processing, but
also for performance reasons. One RMU module can be a default module for many
clients and services, thus it is the most heavily loaded element of RESERVE. Moreover,
some RMU modules may be more overloaded, while the others are not fully used.

On Monitoring and Self-Adaptation to Dynamic Nature of SO... 107

This may, in turn, lead to a sudden drop in service performance, in particular when
a certain critical number of services and clients supported by RESERVE is exceeded.
Therefore, in oder to increase the environment performance, it is desirable to introduce
in RESERVE the mechanisms, which will prevent such situations.

Adaptation to a changing load is a non-trivial issue, which has been considered
in many systems of various characteristics [3, 15, 16]. The existing approaches have
to be tailored to SOA features and RESERVE requirements. Among the others, in
service-oriented systems, the mechanisms that impede overloading have to take into
account the continuous nature of load changes. The load does not have to be linearly
dependent on the number of clients or services. It is obvious that some services at
certain times may be more popular than others, and as such they will be invoked
more often. Similarly, clients can also generate a different number of requests. As a
consequence, the load of RMU modules can also vary over time.

In order to properly estimate the overloading of the proposed environment, it is
important to define the load and select the criteria that determine it. The criteria
commonly considered for this purpose in distributed systems, such as a number of
performed requests and a processor or a memory load, may be insufficient in the case
of SOA systems. In general, in service-oriented systems such criteria may depend
also on the service provider and client. Moreover, the criterion which is valid for one
provider may be irrelevant (or less important) for another one (for example the energy
consumption).

To solve above mentioned problems, in this paper we propose the solution that is
able to monitor on-line the RESERVE environment, in order to find, predict, and pro-
actively prevent overloading of its components. In the proposed solution, M? service,
being a part of DyMST tool [5], is responsible for monitoring, collecting and analyzing
various statistics related to RMU characteristics. On the basis of results gathered by
M3, it is possible to estimate the load of each RMU, and react appropriately when
such load increases. The monitoring feature, implemented by M3, does not interfere
with the primary RESERVE functionality, related to increasing fault-tolerance. Thus,
RESERVE overhead associated with introduction of monitoring is, in the proposed
solution, kept minimal. At the same time, due to monitoring and subsequent self-
adaptation to the changed load, the performance of RESERVE can be significantly
improved.

The rest of the paper is organised as follows. Section 2 presents the existing
services and platforms proposed for SOA monitoring. Next, system model is described
in Section 3. Section 4 describes the architecture and general idea of RESERVE
environment. The discussion on the possible approaches to monitoring RESERVE
is presented in Section 5. Finally, the proposed solution is given in Section 6, and
evaluated in Section 7. The paper is concluded in Section 8, which proposes also the
future work directions.

108 A. Kobusinska

2. Related Work

This section presents the contributions related to the monitoring of service-oriented
systems. The market for monitoring systems and tools that observe the run-time
behavior is evolving rapidly [8, 19, 21]. However, most of existing solutions have
not been designed and implemented with SOA applications in focus. Instead, they
are developed for general-purpose monitoring, such as monitoring of virtual machines
or network stacks, and then enhanced and integrated to be used in the SOA world.
Most current tools are focused on a particular monitoring aspect, for instance on
application performance (APM) [11], network performance (NPM) [18], and business
transactions (BTM) [27]. Below, solutions developed for service-oriented systems that
might be used with RESERVE environment are presented.

Paper [23] presents the solution that enables on-demand adjustment of the moni-
toring process to the changing SOA characteristics. The proposed solution discusses
how to gather and represent knowledge about the monitored system in order to ame-
liorate the monitoring process. Next, the authors propose the Dynamic Adaptive
Monitoring Framework (called DAMON), which can be installed in SOA-based envi-
ronments in order to provide it with adaptive monitoring features. The evaluation
results presented in the paper show that DAMON framework can significantly reduce
monitoring overhead and increase scalability of the monitored environment. Although
DAMON has many advantages, it is hard to integrate it with RESTful web services.

Another solution, presented in [7], is a monitoring framework, which ensures sus-
tainability of service-oriented systems at the infrastructure level. The framework
integrates several ontologies to monitor the performance of service oriented systems.
The paper introduces the Service Monitoring Ontology that captures all the informa-
tion about the service domain, and enables to merge other existing ontologies related
to SOA systems performance. The solution is strongly ontology-focused.

The monitoring and self-adaptation approach of service-oriented collaboration net-
works is presented in [22]. The proposed solution regulates local interactions to main-
tain desired system functionality. While monitoring, it uses the notion of socially
inspired trust. To solve the problem of monitoring, analyzing, and evaluating spe-
cific behavior of the SOA-based systems, the authors of [22] propose to integrate two
separate independent frameworks — one providing a real Web service testbed ex-
tensible for dynamic adaptation actions, and the other enabling the self-adaptation.
Unfortunately, the proposed solution is focused on the capabilities of human actors,
defined as Human-Provided Services (HPSs) [25] and traditional Software-Based Ser-
vices (SBSs). In the result, the business process users are engaged in the monitoring
process, which is avoided in RESERVE. In the proposed environment we assume that
users are not engaged in the processing related with the work of the environment.

Another solution for monitoring SOA applications is SOOM (Service-oriented On-
line Monitor). SOOM is focused on multiple monitoring aspects [28|, and enables
monitoring of interoperable services, observation of IT transactions, identification of
performance bottlenecks, locating and pro-actively predicting run-time errors. For
this purpose, the considered solution inserts its lightweight software components into
target SOA frameworks using various instrumentation techniques. The functionality

On Monitoring and Self-Adaptation to Dynamic Nature of SO... 109

of this solution is based on performing a collection of operations on monitored ob-
jects, which can be invoked unconditionally and conditionally. Moreover, by applying
various synchronization techniques, SOOM resolves conflicts when operations are ex-
ecuted concurrently. The advantage of SOOM is the support of RESP and SOAP
architectural styles. Unfortunately, SOOM is focused on monitoring the SLAs and
SLEs features at the service level, which makes it less appropriate from the viewpoint
of its integration with RESERVE

Finally, M3 (Metrics, Monitoring, Management) distributed management plat-
form, which manages loosely-coupled environments is proposed in [5]. M? follows
the SOA paradigm — all its components are in fact loosely-coupled RESTful web
services [10] with well-defined interfaces. M? main assumption is to keep the most
up to date knowledge on managed resources (components) and dependencies between
them. For this purpose, M?3 consists of distributed autonomic managers, and dis-
tributed registry that stores the information about their location, the components
managed by them, as well as the dependencies between these components. Managers
are self-configurable — they can automatically extend their own functionality by con-
tacting plug-in repository and requesting appropriate plug-ins that are downloaded
and dynamically loaded (sensors and effectors). Mangers are respousible for auto-
matic detection of the components present in their surrounding. Being focused on
keeping knowledge about dependencies between managed components, M3 enables
usage of mechanisms of failure and anomaly diagnostics, hence adding self-healing
property to the system. M3 is equipped with some mechanisms that ease human
administrators in their work, and try to replace them in part of their responsibilities.

In this paper we decided to focus on the M3 solution and to integrate it with
RESERVE service.

3. System Model

Throughout this paper a distributed service-oriented system is considered. The
system consists of a number of autonomous, loosely-coupled RESTful web services
[10, 24, 26], exposed as resources, and identified by a uniform resource identifiers
upon which a fixed set of HTTP operations is applied. Thus, a client who wants
to use a service communicates with it via a standardized interface, e.g., GET, PUT,
POST and DELETE methods [24], and exchanges representations of resources. It is
assumed that both clients and services are piece-wise deterministic, i.e., they generate
the same results in the result of a multiple repetition of the same requests, assuming
the same initial state. Services can concurrently process only clients’ requests that
do not require access to the same or interacting resources. Otherwise, the existence
of a mechanism serializing access to resources, which uniquely determines the order
of operations, is assumed.

The communication model used in the paper is based on a request-response ap-
proach, and does not guarantee the correct delivery of messages (they may be lost or
duplicated). The considered communication channels do not provide FIFO property.
Additionally, the crash-recovery model of failures is assumed, i.e., system components

110 A. Kobusinska

may fail and recover after crashing a finite number of times [2]. Failures may happen
at arbitrary moments, and we require any such failure to be eventually detected, for
example by a Failure Detection Service [6].

We assume that each service provider may have its own reliability policy, and
may use different local mechanisms that provide fault tolerance. Therefore, in the
paper, by a recovery point we denote an abstraction describing a consistent state of
the service, which can be correctly reconstructed after a failure, but we do not make
any assumptions how and when such recovery points are taken (to take a recovery
point logs, checkpoints, replicas and other mechanisms may be used). It is assumed
that each service takes recovery points independently (and has at least one recovery
point, representing it’s initial state). Similarly, the client may also provide its own
fault tolerance techniques to save its state.

4. RESERVE — Reliable Service Environment

In this Section, the concept and the general architecture of RESERVE environment
is presented. The detailed description of RESERVE has already been put forward in
[4, 12, 14], and it is summarized here in order to make a paper self-contained.

4.1. General idea

The idea of the proposed solution results from the fact that in SOA processing is
based on exchanging messages. The performance of the business process, understood
as a sequence of interactions between clients and services, results frequently in re-
source state changes and leads to client-service inter-dependencies. Upon a failure of
one of interacting business process participants, such dependencies may force remain-
ing participants that did not fail to rollback. Otherwise, the state of the business
processes can reflect situations impossible in any correct failure-free execution. On
the other hand, due to the SOA assumption on autonomy of services, the failure of
one process cannot influence the processing of the others. Since service providers do
not provide information on the internal implementation of services, it is not known
which interactions introduce inter-process dependencies and result in state changes.
Therefore, in general, the recovery of a failed business process component should be
isolated to avoid the cascading rollback of other processes.

Based on above observations, RESERVE environment intercepts the communica-
tion between processes during the failure-free processing, and logs all interactions
(requests of service invocations and the appropriate replies) in the persistent storage
offered by the environment. The intercepted messages reflect the complete history of
communication. Hence, after the failure of any client or service, replaying their mes-
sages in the same order as before the failure allows to recover the consistent processing
state. But, due to the fact that business process participants may have their private
mechanisms providing reliability, their state after the failure may be partially recon-
structed with the use of local mechanisms. Therefore, the recovery process should

On Monitoring and Self-Adaptation to Dynamic Nature of SO... 111

exclude the messages recovered with the use of local reliability mechanisms. The task
of RESERVE environment is to find such messages, and replay the remaining ones to
the service in the same order as before the failure. After re-execution of recovered
requests, the proposed environment intercepts replies from the service, because they
have already been sent to clients and other services during the failure-free execution.
RESERVE ensures idempotency of obtained requests. The client’s request, to which
the reply has already been obtained by RESERVE and saved in the persistent storage,
is sent to the client immediately, without the need of sending the request to the service
once again. Thus, the same message (i.e., the message with the same identification
number) may be send by a client multiple times, with no danger of multiple service
invocations.

4.2. RESERVE architecture and primary modules description

The architecture of RESERVE is shown in Figure 1. RESERVE has a modular con-
struction, and consists of Recovery Management Units (RMU), Client Intermediary
Modules (CIM) and Service Intermediary Modules (STM). Below, a description of
the components of RESERVE environment is shortly presented and tasks which they
perform are briefly characterized.

Recovery Management Units (RMUs) are the backbone of the proposed environ-
ment. The main task of these modules is to ensure durability of messages exchanged
among clients and services during the failure-free business process execution. For this
purpose RMU stores requests and replies sent among business process participants in
Stable Storage, able to survive all failures. The saved history of interactions is then
used during recovery of consistent processing state. It is assumed that RESERVE
consists of multiple RMU modules, which are distributed and located at different
system nodes. Since there are many RMUs, the history of interactions is dispersed
among them.

The RMU includes the following components: (1) Management Module — man-
ages the execution of specific operations associated with saving the state of communi-
cation and rollback-recovery actions; (2) Stable Storage — stores the data necessary to
recover the state of processing; (3) Garbage Collection Module — monitors the status
of non-volatile memory and removes unnecessary data, in order to ensure high perfor-
mance of RESERVE service; (4) Recovery Cache Module (RCM) — volatile memory
that stores information on services and RMU modules in which these services are
registered.

To make RESERVE environment transparent to business process participants, and
to fully control the flow of messages in the system, proxy servers, called Service Inter-
mediary Modules (SIM) and Client Intermediary Module (CIM), were introduced.
CIM and SIM serve as proxies for clients and servers, respectively. They also hide
the internal architecture of RESERVE environment, and the details of recovery pro-
cess. For this purpose, modules intercept requests and replies issued by clients and
services, and forward them to appropriate RMU modules. Additionally, proxy servers
implement some of tasks associated with processing, and thus they reduce the amount

112 A. Kobusinska

of work performed by services and clients. This allows to reduce the requirements for
clients and services that use the RESERVE environment.

In addition to above mentioned functionality, CIM provides the appropriate inter-
face for accessing RMU functions designed directly for clients. Among them are: the
ability to store the state of client’s processing, the acquisition of response to recent
request issued within any conversation (i.e. processing performed by a client during
realization of a business process), the acquisition of a list of active conversations,
and the list of RMU modules with which the client had communicated. Further-
more, C'IM module contains the client cache module, which is developed in order
to increase processing efficiency. When the client invokes the services registered in
RMU module other than client’s default module, then addresses of RMU in which
the requested service is registered, is saved in the cache of client’s CIM.

In turn, the main task of STM module is to monitor the service status, and to
react in case of the possible failures. It is the service proxy that is responsible for
initiating and managing the service recovery. For detection of service failure, FADE
service [6] is used. Service proxy is designed to operate in two modes: normal and
recovery. Normal mode is performed during failure-free processing. In normal mode,
the task of service proxy server is to manage clients requests sent by RMU to the
service, and to capture generated responses and returning them to the RMU module.
In turn, recovery mode is activated when the service is restarted after a failure. In its
first phase, called restore phase, SIM requires the service to roll back to the latest
possible recovery point (i.e. service internal state preserved specially for the purpose
of the recovery), taken by the service before the failure. Next, SIM asks RMU to
replay all requests obtained by the service after this recovery point was taken. In the
second, retry phase, service proxy server is responsible for receiving from RMU, and
sending to service all requests, which re-execution will allow to recover a consistent
processing state. Is should be mentioned that requests have to be replayed in the
appropriate order. SITM performs also the detailed analysis of requests directed to
the service. It filters out the outdated requests, i.e. the requests sent before the failure
but received by service after its rollback-recovery.

4.3. Outline of RESERVE processing

When processing starts, each of its participants registers itself in the selected RMU.
Each service is registered in one RMU (referred to as a service default or master
RMU), but the single RMU can be used by many services. In turn, the client can be
registered simultaneously in many RMUs, but always one of them (called a client’s
master RMU) stores information on other RMU’s used by the client.

Let us assume, that in Figure 1 client A and service Y have the same default
RMU module: RMU y, while client B default RMU is RMU; and service X default
RMU is RMUy. When client A invokes service Y, the request issued by a client is
intercepted by the client’s CIM (1), and forwarded to the client’s default RM Uy (2).
If the required service is registered in this RMU, like in the considered example, the
request is saved in the RMU’s Stable Storage, and forwarded to the service through

On Monitoring and Self-Adaptation to Dynamic Nature of SO... 113

Client B ReServE

Failure
Detector

Figure 1: ReServE architecture

its STM (3). The service processes request (4), and sends the response back to RMUpy
(5). The response is saved in the stable storage and forwarded to the client through
its CIM (6). If the RMU module obtains the client’s request, to which the response
has already been saved, then such a saved response is sent to the client, and there is no
necessity to send this request once again to the service (in this way the mechanism of
communication history is also used to ensure idempotency of all requests). However,
when client B invokes service X (client and invoked service have separate default
RMU modules), then a client obtains the URI of requested service default RMU
from its default RMU (7,8), and sends back this information to the CIM (9), which
reissues the request to a proper RMU (10, 11).

In case of client’s application failure, we assume that there are three ways to resume
the processing of a business process, which can be intermixed. The first one depends
on the state explicitly saved by the client in it’s default RM U, along with the identifier
of the latest request, for which a response has been received and processed before
saving the state. The second one is based on repeating all requests issued by the client
after saving its state in the RMU. The third one uses the special RMU’s resource that
represents the latest service response sent from RMU to the client. In the case of web-
driven applications, the latest response from the service is enough for client’s recovery,
as it enables the client to determine the progress of the business process and its
continuation (according to the HATEOAS principle of Resource Oriented Architecture
[10]). Since, in general the client communicates with many RMU modules, such a
latest response should be chosen on the basis of information received from each RMU,
the client contacted before its failure. Therefore, CIM obtains from its default RMU
a list of all such RMUs, contacts with them, and asks them for the identifier of the
last response. The response with the highest request identifier represents the last
response, which was received by the client.

114 A. Kobusinska

After the service failure, its STM starts the rollback-recovery of the service state by
getting from the service the information on its available recovery points taken before
the failure, along with the information on the identifier of the last message contained
in each recovery point. Simultaneously, SIM asks the service default RMU to send
to it an identifier of the oldest request, which has not received a response yet. Based
on obtained information, STM indicates the recovery point to which the service has
to be rolled back (the one that contains the responses which have not been saved in
the RMU). When the service state is rolled back to the chosen recovery point, STM
requires RMU to resubmit all requests performed by the service before the failure,
and not saved in the chosen recovery point. All such requests are designated, sent
again by the RMU, and re-executed by the service, in the same order as before the
failure.

5. Discussion on possible approaches to monitoring and adap-
tation of RESERVE

The proposed RESERVE environment, does not prevent the overloading of its RMU
modules, which may lead to reduced RESERVE performance. One of the reasons of
such a situation is the changing interest in services registered in the RMU, result-
ing, for example, from the greater popularity of a given service at a certain period
of time. With the increased service popularity, also the number of its invocations
increases, which has the impact on the increased RMU processing and reduction of
its performance.

Also, in the existing RESERVE environment, there is still a high probability that
a large number of clients and services will choose the same RMU as their default
module. This is due to the currently used method of assigning default RMU modules
to clients and services, which is done statically, by using the configuration file. As a
consequence, some RMU modules have to process disproportionately large number
of requests obtained from clients and replies from services, in comparison with other
modules. Consequently, also the stable storage of such RMU modules is overfilled. As
a result, the performance of the overloaded RMUs (and thereby also the RESERVE
environment) may be unsatisfactory from the viewpoint of some of business process
participants.

In order to solve this problem and prevent overloading of RMU modules, the RE-
SERVE environment should monitor the changing number of supported clients and
services, and varying amount of interchanged messages, and adapt to the observed
changes. While introducing the above mentioned functionality to RESERVE environ-
ment, it is important to guarantee that monitoring and adaptation to the changing
nature of the processing will not affect the correctness of the recovery protocol applied
in RESERVE. On the other hand, it has to be underlined that the adaptation to the
changing load does not need to result in the load balancing, but it’s aim is to prevent
the overloading of modules.

One of the possible solutions to solve this problem is the dynamic changeover
of default RMU modules. In the consequence, users whose default RMU module

On Monitoring and Self-Adaptation to Dynamic Nature of SO... 115

is excessively overloaded are allocated and registered in another module, which will
become their default RMU. Another solution consists in giving the possibility to
choose a given RMU module as a default one, only if the number of users registered in
such RMU does not exceed a settled limit value. In both approaches, the question of
who, when, and under which conditions settles the default RMU has to be answered.
It also should be indicated how the new default module is designated.

Let us consider first that the dynamic changeover of default RMU modules is
allowed. In the most straightforward solution, the RMU module itself decides when
its load is too high and it cannot serve as a default module for all registered clients and
services (the most complete knowledge about the load of the RMU module at a given
moment has this module itself). In such case, RMU informs some of registered STM
and CIM modules that they have to change their default RMU. The considered
solution enables fast reaction in the case of RMU load changes.

Unfortunately, despite its undoubted advantages, such a solution is difficult to be
deployed in RESERVE, because the continuous changing over default RMU would
require a significant modifications in the recovery protocol. Those modifications are
related to the necessity of providing the access to the history of interactions among
business process participants, which is used during the recovery of the consistent
processing state. In the current solution, the messages that form such a history are
saved by the default RMU modules. It means that along with changing over the
default RMU module, the appropriate messages from its stable storage will have to
be moved to the stable storage of a newly chosen default RMU. Such a solution is
impractical, due to the size of the history of interactions. Alternatively, the history
of interactions could be left unaltered on current RMU, but then, the request and
replies which are required by recovery procedure have to be obtained from all RMU
modules, which played a role of default RMUs for a given client or service. Both
above mentioned approaches introduce an unacceptable performance overhead.

Another difficulty encountered in the considered solution is related to the deter-
mination of the moment in which the changeover of default RMU modules occurs.
It is assumed that the default RMU initiates the switching procedure. However, this
solution, although seems to be uncomplicated, may encounter some difficulties during
the realization. Let us consider that RMU resigns from being a default RMU but
it has not obtained all service replies. Such a reply is thus forwarded to the newly
chosen default module. However, in the meantime, new default RMU might have
also changed over. As a result, the reply will circulate among RMU modules, and
may not reach the client. The solution of this problem may rely on the introduction
of a minimum time between consecutive changing over, or switching only after all
required replies have been received by the considered default RMU module. The first
method does not provide the flexibility, while the second one introduces the delay in
the business process execution.

An alternative to the solution in which each RMU module itself determines when
default modules should be changed, is the approach in which all RMUs determine to-
gether which of them are overloaded, and designate the moment of switching. On the
basis of the obtained knowledge they also select the modules which will play the role of
default modules. For this purpose, RMU modules may use the distributed consensus

116 A. Kobusinska

protocol. Unfortunately, such a solution introduces an unsatisfactory communication
overhead. Moreover, it is necessary to mark the initiator of consensus protocol in
such an approach. Also, the problems discussed earlier, related to the exchange of
history of communication saved by default RMU modules, or to the determination
of the moment of change over of default RMU are encountered here.

Regardless of the approach discussed above, the dynamic switching of default
RMU modules requires notifying clients and services on the new default module. It
should be pointed out that the procedure of swapping default RMUs has to take into
account the needs of clients and services taking part in the business processes, not
only RMUs themselves. Since the needs of business process participants can change
dynamically, clients and services should also take part in the process of determining
which RMU can swap with the current default module.

After considering pros and cons of the solution based on the dynamic swapping of
default RMU modules, let us consider the alternative approach, in which the RMU
load is examined during the registration of business process participants in RESERVE
service. In this approach, RMU may refuse to register a new client or service if it is
too overloaded. Although such a mechanism is not flexible, its important advantage
is simplicity and efficiency.

It was noted that a large part of RMU load is introduced by clients who register
(log in) for one session, and when it ends, they log out. Since the subsequent sessions
are usually not related to the previous one, clients may register in another RMU to
perform the new session. Therefore, in the next Section we will fo cus on the solution
in which the RMU load is verified along with registration in RESERVE service.

6. The proposed solution — integration of RESERVE and M3

In this Section, the protocol that increases the performance of RESERVE environ-
ment is put forward. The proposed solution monitors the load of RMU modules and
allows the appropriate adaptation to the load changes. Based on the analysis of the
existing solutions that allow monitoring of SOA systems, we have decided to choose
M? platform |5] and integrate it with RESERVE environment. M3 has several advan-
tages over the remaining solutions, presented in Section 2: it focuses on monitoring
of non-functional parameters of the system and performance metrics. Moreover, it
supports the RESTful web services, and is self-configurable, which eases the task of
its management.

6.1. M?3 architecture and functionality

Figure 2 presents M? architecture. M? platform consists of three components: Man-
ager, Registry and Repository.

Managers are independent services that are responsible for management of one
or more resources. The management actions include among the others: automatic

On Monitoring and Self-Adaptation to Dynamic Nature of SO... 117

detection of resources in Manager surrounding, self-configuration with Registry and
Repository services, or the support for consumers metrics (i.e. memory, graphs, db).
Registry service can be described as a central knowledge repository for the whole
M3platform. Registry is responsible for keeping information about active Managers
present in the system and about their monitoring and management capabilities.
Finally, Extensions Repository is a simple service, often combined with the Reg-
istry, which stores the extensions, e.g. plug-ins that extend Manager functionality.

‘ Resource - ~
” \\
‘ Manager // -\ “ Management
% h Application

~~~~~~~
- ~
e

M3 ¥

Manager }

1

© 5

1

/l'
Managers

y m3 ‘Registw
anager

8 ‘ Extensions
=™ Repository

m3
Manager

Manager
Extension

Figure 2: M? architecture

Each Manager detects resources in its surrounding, and registers itself in the Reg-
istry, along with the information about detected resources. In general, this informa-
tion contains locations of managed resources, as well as monitoring and management
capabilities, i.e. sensors and effectors.

Extensions are automatically uploaded and deployed in Managers if particular re-
sources managed by the extension are detected. The range of functionalities provided
by extensions is very wide, including: the possibility to define managed resource, dis-
covery of managed resources, defining effectors and sensors for resources, and defining
metrics for sensors that return performance values. The above mentioned sensors are
extensions that provide functionality for collecting various monitoring data. They
also provide definitions of metrics. In turn, effectors provide endpoints for controlling
the environment in which a Manager is placed. In collaboration with sensors they can
create control loops in order to continuously make impact on the environment. An
example of sensor can be an extension that collects CPU usage from the operating
system and provides average CPU usage metric for the last hour. Successively, one
can use the effector to control the number of threads assigned to a web application,
depending on the current and the predicted number of requests.

Registry and Extensions Repository send corresponding extensions to the Man-
ager, that are meant to be used with the detected resources. Manager installs exten-
sions and configures itself in order to support new functionality. It updates its new
monitoring and management capabilities in the Registry and periodically checks for
new versions of installed extensions.



118 A. Kobusinska

Combining knowledge from Managers, Registry possesses a complete knowledge
on the managed system. In order to keep the knowledge database up to date, the
Registry sustains a simple pulse mechanism with all active Managers in the system.
When a Manager registers or disconnects, Registry updates its knowledge repository
accordingly. Similarly, Managers are obliged to monitor its surrounding for occur-
rences of new resources and inform the Registry about this fact. The Registry also
provides a search feature, which can be used by external management application to
search the knowledge database for managed resources, sensors and effectors.

The architecture does not depict it explicitly, but all platform components have
RESTful Web services API.

6.2. Monitoring RMU functionality

As mentioned in the Section 5, different service providers can theoretically opt for
different load measures, depending on their specific needs. It is difficult to predict all
possible criteria according to which one can evaluate the RMU burden. Therefore,
in this Section, we focus on the following performance metrics:

e system related metrics (average load, CPU usage, memory usage, throughput,
storage device usage, network interface traffic),

e utilization of service/node,
e intensity of requests per second to a service,

e average request processing time for a service.

Additionally, we enable using metrics, which can be composed as an aggregation
and normalization of above mentioned metrics. The function used to determine the
value of this metric can be an average, a weighted average or e.g., a logistic function.
Such a calculated metric can be used as an input for the extension used by the
Manager from M?3 platform.

In the proposed solution, each RMU facilitates the configuration file with the
URI that indicates where the desired metrics are located. This enables clients and
services to choose the appropriate plug-in, which will be used by M? service to monitor
RMU. Such a solution allows also the service provider to propose its own plug-in for
calculation of any complicated load measure.

To add the monitoring functionality, M?3 service has to be launched at the same
node as the RMU module. The service should be started before clients and services
begin to register in RMU. The selection of RMU is made during the first registration
of the CIM module in the system, and is based on the analysis of values of load
metrics. In the proposed solution, such values are exposed by M? under the network
address <M3 URL>/resources/load. The registration process and the selection of the
appropriate RMU module is described in the Algorithm 1. Its outline is presented
below.



On Monitoring and Self-Adaptation to Dynamic Nature of SO... 119

Upon startup of client C;

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

:: Load values from the configuration file
electionOn < RMU from configuration file
MasterRMU < RMU from configuration file
RMUSet <+ RMU from configuration file
RMUMS3ManagersSet < RMU from configuration file
:: Set the RMU indicated in configuration file as a default one
CurrentRMU < MasterRMU
.2 If client is not interested in elecion of the least overloaded RMU, leave the current
RMU as a default
if lelectionOn then
return
end if
;2 Complete the RMU file with the main RMU
RMUSet < RMUSet U MasterRMU
RMUM3Managers[MasterRMU| < MasterRMUM3Manager
:: Get the metrics values from M?> Managers
for RMU in RMUSet do
LoadMap[RMU] <« getLoad( RMUM3Managers[RMU] )
end for
:: Set the initial values
CurrentLoad < inf
for RMU in RMUSet do
if CurrentLoad > LoadMap[RMU] then
CurrentLoad < LoadMap[RMU]
CurrentRMU < RMU
end if
end for

Upon recovery of client C;

27:

28
29

30:

31

32:

33

34:
35:
36:
37:
38:

2 Get the values from the configuration file
MasterRMU < RMU from configuration file
RMUSet +— RMU from configuration file

=2 Add current RMU to the set of RMU
RMUSet <+ RMUSet U MasterRMU

1 Register in RMU which has a default RMU role before the failure
for RMU in MasterRMU do

if isMasterRMU( RMU ) then
CurrentRMU < RMU
return
end if
end for

Algorithm 1: Selection of the RMU module by C'IM based on the monitoring knowl-
edge from M3

Each client intermediary module has a configuration file with the list of RMU
modules available in RESERVE service. One of the RMUs (the one which is located




120 A. Kobusinska

in the nearest geographical distance from CTM module) is designated as the default
RMU module. In the file there is also additional information: the M? communication
ports of the load monitoring Managers for each RMU module, and the boolean value
that indicates wheather the election of the least overloaded RMU has been started
(lines 1-5).

If the client is not interested in choice of the least overloaded RMU it uses the
default module, which is set in the configuration file (line 7). Otherwise, CIM checks
if the RMU used by a client as a default one during his previous usage of the RESERVE
service is on the list and tries to register in this RMU module. If such module is not
available, or it is overloaded and does not allow the registration, CIM starts the
process of election of the new default RMU module. For this purpose, CIM contacts
with M3 Managers and retrieves the value of the chosen load metric (lines 13-18).
Out of the obtained values the minimal one is chosen (line 20). Next, the RMU
associated with the chosen value is elected as a default RMU (lines 21-26). After the
registration confirmation, the client starts its processing, and acts correspondingly
to the description presented in section 4.3, and in the paper [12](lines 27-38). In
case of a negative response, the client sends a registration request to RMU, which
metric value directly precedes the previously selected one. Finally, when all RMU
module deny to register CIM, it starts the selection procedure from the beginning.
For further processing purposes, the information on the chosen default RMU module
is added to the configuration file of CIM.

The described approach does not influence the work of RESERVE related with
providing the reliability, and does not influence its burden. It also does not have an
impact on the quality of work of other clients or services registered in the chosen RMU
module. Moreover, all decisions made by RMU are based on its local knowledge,
avoiding in this way the problems related to coordination between RMU modules
described in the previous section.

Analogous adaptation mechanisms are implemented during the registration of new
services in RESERVE environment.

7. Simulation Experiments and Performance Evaluation

In this section, the performance of the proposed integrated approach, in which RE-
SERVE service and M? service are integrated is evaluated. The purpose of the per-
formed simulation experiments was to estimate the overhead introduced by the pro-
posed integrated solution during failure-free processing, and to examine how the in-
tegrated environement affects the recovery time. The obtained results are compared
to the results obtained by RESERVE environment without the monitoring feature.
In experiments, workstations with the following characteristics: SuSE Linux 11.3
kernel 2.6.34.8-0.2-desktop x86 64, with Intel Pentium 4 3.20GHz x 2 processor, and
8 GB RAM were used. Workstations served as clients, services and RMU modules.
In the performed experiments, a specially developed application, called Patient
Registry, was used as a service. The main porpose of the service was to record all
basic personal data of patients of the emergency room in the health center. Patient



On Monitoring and Self-Adaptation to Dynamic Nature of SO... 121

Registry fulfills the requirements of RESERVE environment. We assumed that each
service and its STM module run on the same workstation — the service is implemented
with the RestLet 1.1. environment, while its proxy server uses proxy server called
MProxy 0.4 [5].

The task of workstations acting as clients was to generate requests issued to ser-
vices and to measure the time of their processing from the moment of sending the
request until the receipt of reply. Due to limitated number of available workstations,
each physical node simulated the work of multiple logical clients (up to 40 clients per
1 node). Such a configuration was achieved by running many logical threads of client
applications within a single physical machine. To implement client application, the
Apache JMeter 2.3.4 software was used. In turn, client proxy, similarily to service
proxy, was build with the MProxy 0.4 [5].

Other workstations were used to run RMU modules. Each of them had an access
to the local PostgreSQL database, which was used as a stable storage.

Simulation experiments were performed for RESERVE architecture with 1, 2 or 3
RMU modules. Additionally, each of the considered configurations, was integrated
with M? service. Table 1 presents the considered simulation environment architec-
tures. In the performed experiments 6 workstations were used as clients, and 6 work-
stations played a service role. Services joined RESERVE service sequentially. For 10
to 100 threads representing logical clients were running per client workstation. As
a result, the simulation experiment involved up to 600 threads representing clients,
and each thread repeated the simulation experiments 500 times. Moreover, it was
assumed that the time associated with the service processing is constant, and is set
to 100 ms (in general, the service’s request processing time depends neither on the
number of clients, nor on the size of data).

In the first configuration all clients and services were registered in one, common
RMU module (Table 1 (a)). The second approach assumed the existence of two RMU
modules, where in each RMU 3 services and 3 clients workstations were registered
(Table 1 (c)). In the next configuration there were already all 3 RMU modules, with
2 clients workstations and 2 service workstations registered in each of them (Table 1
(e)). Next, for each of above mentioned configurations, each RM U module is extended
by the Manager of M? service (Table 1 (b,d,f)). In considered configurations, logical
clients running on one machine contacted one service running on the corresponding
node (i.e. K1 invokes U1, K2 invokes U2, etc.) by sending 32kB requests to it.

During the monitoring, M3 Managers use system load metric, which is calculated
as the average number of runnable processes over the given period of time (we include
also the processes in the uninterruptible sleep state, that is, those processes which are
waiting for disk I/0O). The value of this metric is obtained with the use of the uptime
command. The higher the metric value is, the higher is the burden of the monitored
component.



12

N

A. Kobusinska

I
2

i

Q
<

5

i

x

gw
'Q
<

i

=
¥

g

i

gz
J;

i

(LG
(a)

i

=

e

Py
&

/g
5
Wz

!
U

(c) Test environment: 2 RMU

Ks

CPE
=>

Ke

EO
=

(e) Test environment: 3 RMU

N,
7

st environment: 1 RMU

)i

i

Ve
o
P

I

V <

/'.Z
c
c
N

x
9

N EE 8

Q

H
I3
H

f

f
I

RMU1

M3

TO
Ve

o
(3
ﬁ

c
I

RMUq

o

Q
2
o
72
=
&

i
I

!’g
(2}
‘[/g
V o\l

i
U

m ®
12 { Z12 {
A A
! c c ! c c !

gm gm Qb Qw QN g

U
M

> R:gi:?;’s Management

= Extensions (@ Application
Reposilory

(b) Test environment: 1 RMU + M3

K1 U
@ cm sim

!

2

72

]

Ve
~

H
) A

1]
2
£
l‘/’g
|

4 a4

f

l(g
w

i
i/ 2
&

‘

c
&

g:sias?;rs -— ‘ Management
Extensions ~eeenen B8 Y Application
Repository =>

(d) Test environment: 2 RMU + M?

(2
T/Z
i

/\m
T/'g 7
i

@
i/’i

—

c

»
/’g
mw

@
H

RMU3

g:;;g;rs _ )\- Management

. ‘ Application
xtensions. =

Repository &

(f) Test environment: 3 RMU + M3

Table 1: RESERVE test architecture



On Monitoring and Self-Adaptation to Dynamic Nature of SO... 123

[ Client | RMU | RMU+M? | 2RMU [ 2RMU+M? | 3RMU [ 3BRMU+M? |

24 596,94 997,73 373,17 371,72 366,24 362,50
48 1347,01 1349,13 474,65 470,13 387,26 385,32
72 2081,15 2082,00 698,59 697,41 932,605 532,38
96 2853,30 2855,28 1017,42 1016,82 712,46 710,01
120 | 3677,42 3678,24 1342,81 1342,11 936,75 932,94

144 | 4390,53 | 4392,13 | 1682,83 1681,22 | 119933 | 1189,98
168 | 5160,39 | 5162,41 1978,22 1977,00 | 144347 | 1441,23
192 | 5974,60 | 5975,60 | 2276,89 227427 | 1719,16 | 1713,98
216 | 6701,23 | 6702,33 | 2543,93 2541,30 | 1950,04 | 1942.48
240 | 749504 | 7496,92 | 2856,130 | 2853,21 | 2160,20 | 2169,91

Table 2: The processing time [ms| of 32kB request during failure-free processing

The first simulation experiment investigates how the integration of RESERVE with
M? service impacts the overhead introduced by the environment during the failure-
free processing. For this purpose, the obtained results are compared with the overhead
introduced by the pure RESERVE environemnt, which uses the corresponding number
of RMU modules. In the performed experiments, for each of the above mentioned
configurations, the response times recorded by clients were compared. Table 2 presents
the obtained results — the average processing time of requests (in milliseconds)
depends on the number of RMU modules and different number of clients. The graphic
representation of data from Table 2 is presented in Figure 3.

The obtained results meet expectations — the time of processing requests increases
linearly with the increasing number of clients, which is related to the increased number
of performed requests, and time needed to save them in the Stable Storage. But,
surprisingly, response times recorded by clients in the presence of six independent
services were higher than in the case of one service, even though the load of each
service in such a situation is effectively six times smaller. To verify this phenomenon,
proactive tests were carried out, which tested the total processing time of individual
fragments of the RMU module’s code. For this purpose, the Visual VM application in
version 1.3.2 was used. The performed tests revealed that the significant processing
time (around 20%) was used to support RMU 1/0 buffers. On this basis, it was
suspected that increasing the number of simultaneously serviced services, which were
the subjected of a high load, caused a significant increase in the response data stream.
In the consequence, the requests issued to services cannot be handled by RMU in
real time, so they must be cached. As a result, the total processing time is increased.
However, even if the load of RMU module is increased, the more RMU modules,
the lower is the response time in the RESERVE environment. This observation is
natural, because in the configurations with 2 and 3 RMU modules, the effective
number of clients using one RMU module, and thus also the number of requests
performed by the module, is correspondingly smaller. It can be noted that a gain
from the introduction of the third RMU module is smaller, comparing with the case
of introducing a second RMU module. It results from the fact that in the first case
half of requests is handled by the newly connected RMU module, while in the second



124 A. Kobusinska

8000 TR

2x RMU /
7000 % 3x RMU A

— 1x RMU+M3

—%— 2'xRMU+M3
—0— 3x RMU+M3
6000
5000 /}

4000

3000 // —
2000 o /‘/ ]

1000 /2/ /"/‘:ﬁ/

Response time [ms]

24 48 72 96 120 144 168 192 216 240
Number clients

Figure 3: Processing overhead introduced by RESERVE during failure-free comput-
ing

case, only 1/3 of all requests. Moreover, the benefits of offloading the stable storage
are smaller if it works under a small load from the very beginning, like in the case
when 2 RMU already exist.

The interesting results are obtained for the solution where RESERVE is integrated
with M3 service. It was observed that the decrease in the processing time related
with increasing number of services served by RESERVE did not occur, contrary to the
solution without M3 service. Due to that fact, the general performance of RESERVE
integrated with M? service has not decreased in the case of failure-free processing,
despite the fact that M?3 introduces the additional processing related with monitor-
ing, The differences in the overhead introduced by RESERVE environment, and by
the environment with the same RMU numbers integrated with M3 service can be
ignored, because the decrease in processing time due M? introduction is balanced
by the increase of processing time due to the lack of RMU overloading. Such a
result is related to the established way of the integration, and the necessity of the
communication with M? only at the beginning of RESERVE work.

The purpose of the next simulation experiments was to examine the recovery time
of the processing depending on the configuration of the environment. The obtanied
results are presented in the table 3 and illustrated in Figure 4. The results show the
total recovery time (in seconds) for each of the adopted architectures. As previously,
we consider RESERVE environment with 1, 2 and 3 RMU modules respectively, and
RESERVE with 2 and 3 RMU modules integrated with the M? service.

In the simulation experiments, the number of clients, which simultaneously use the
RESERVE environment does not affect the simulation results. However, the impact



On Monitoring and Self-Adaptation to Dynamic Nature of SO... 125

[ Req. [ IRMU [ IRMU M3 | 2RMU | 2RMU [ M3 | 3RMU | 3RMU + M3 |

2000 | 186,59 186,00 46,22 38,82 31,30 27,56
4000 | 371,68 372,83 79,44 70,40 60,40 47,16
6000 | 556,49 957,92 128,45 113,59 90,33 71,75

8000 | 741,85 742,53 165,27 149,76 117,18 89,94
10000 | 928,18 930,28 204,80 170,83 149,31 110,38

Table 3: Recovery time [s] in different RESERVE environment configurations

1000 . T
1x RMU T

2x RMU é
3x RMU K
1Xx RMU+M3 ~ —&—
2’x RMU+M3  —®—

3x RMU+M3 —O—

800

Recovery time [s]
(=2}
s

'S
(=3
o

200

2000 4000 6000 8000 10000
Number of reguests

Figure 4: Business process recovery time in in different RESERVE environment con-
figurations

on the obtained results has the number of requests that have to be replayed. The
recovered requests are read from the stable storage, and send by RMU module to
SIM of the recovered service. The obtained results show that existence of multiple,
distributed RMU modules improve the work of RESERVE environment, which is
related with the fact that recovery procedue is performed concurrently, and each
RMU module has to replay less requests to recover a consistent processing state.
The results of the carried out tests show also that monitoring of RMU load results
in further reduction of the overhead introduced by the recovery procedure. It is
related with fact that RMU modules have to recover less requests, so the process of
obtaining them from the stable storage and relaying to appropriate SIM modules is
more efficient.



126 A. Kobusinska

8. Conclusions and Future Work

In this paper, we have discussed the ways to improve the efficiency of RESERVE
environment, which aims at increasing reliability of service-oriented systems. Since
reliability issues are particularly important and imperative in SOA, we decided to
provide the solution that focuses on enhancement of RESERVE functionality. For
this purpose we integrated RESERVE with M? service, being a part of Dynamic
Management SOA Toolkit (DyMST). M? monitors and controls crucial components
of SOA-based systems. In the case of RESERVE the monitoring pertains to RMU
modules.

Due to its flexible architecture and design, M?3 is capable of monitoring RMU
modules without significant modifications in the recovery protocol applied in RE-
SERVE environment. The integration of RESERVE and M3 enables to monitor and
measure the quantity of work that RMU modules carry out and accordingly to ob-
tained results it proposes new RESERVE participants to register in the RMU module,
which burden is the lowest.

In the paper we have discussed the possible alternative ways of RESERVE monitor-
ing, and presented the chosen solution. The proposed solution has been experimen-
tally evaluated. The obtained results confirm the successful deployment of integration
of RESERVE and M3.

During performed simulation experiments the metric, which determines the system
load was considered. As compelling problem is the answer to the question what needs
to be monitored to obtain the most valuable knowledge on the RMU burden. Thus, in
the future work we will propose other monitoring metrics, and analyse their impact
on the RESERVE functionality in the simulation tests. A valuable element of the
future work would be also the assessment of costs related to the implementation of
alternative monitoring solutions and possible ways of integration of RESERVE and
M3 discussed in this paper. In particular, the experimental evaluation of the impact
of dynamic changeover of default RMU modules on the quality of processing can be
interesting.

References

[1] Armbrust M., Fox A., Griffith R., Joseph A. D., Katz R., Konwinski A., Lee G.,
Patterson D., Rabkin A., Stoica 1., et al. A view of cloud computing. Commu-
nications of the ACM, 53(4):50-58, 2010.

[2] Avizienis A., Laprie J.-C., Randell B., and Landwehr C. Basic concepts and tax-
onomy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing, 1(1):11-33, Jan. 2004.

[3] Biyani K. N. and Kulkarni S. S. Assurance of dynamic adaptation in distributed
systems. J. Parallel Distrib. Comput., 68(8):1097-1112, 2008.



On Monitoring and Self-Adaptation to Dynamic Nature of SO... 127

4]

5]

6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

Brzezinski J., Danilecki A., Hotenko M., Kobusiriska A., Kobusinski J., and Zier-
hoffer P. D-reserve: Distributed reliable service environment. In Proceedings of
the 16th Fast Furopean Conference on Advances in Databases and Information
Systems, ADBIS’12, pages 71-84, Berlin, Heidelberg, 2012. Springer-Verlag.

Brzeziniski J., Dwornikowski D., Kobusinska A., Kobusinski J., Sajkowski M.,
Sobaniec C., Szychowiak M., Wawrzyniak D., and Wojciechowski P. T. Depend-
ability infrastructure for SOA applications. In Ambroszkiewicz S., Brzezinski J.,
Cellary W., Grzech A.; and Zieliniski K., editors, Advanced SOA Tools and Appli-
cations, Studies in Computational Intelligence, vol. 499, pages 203-260. Springer
Berlin Heidelberg, 2014.

Brzezinski J., Dwornikowski D., and Kobusiniski J. FADE: RESTful service for
failure detection in SOA environment. In Malyshkin V., editor, Parallel Com-
puting Technologies, volume 6873 of Lecture Notes in Computer Science, pages
238-243, Kazan, Russia, Sept. 2011. Springer Berlin.

Chen C., Zaidman A., and Gross H. A framework-based runtime monitoring ap-
proach for service-oriented software systems. In Proceedings of the International
Workshop on Quality Assurance for Service-Based Applications, QASBA 2011,
Lugano, Switzerland, September 14, 2011, pages 17-20, 2011.

Drusinsky D. Run-time monitoring using bounded constraint instance discovery
within big data streams. ISSE, 12(2):141-151, 2016.

Elmootazbellah N., Elnozahy, Lorenzo A., Wang Y.-M., and Johnson D. A sur-
vey of rollback-recovery protocols in message-passing systems. ACM Computing
Surveys, 34(3):375-408, Sept. 2002.

Fielding R. T. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000.

Funika W., Godowski P., Pegiel P., and Krél D. Semantic-oriented performance
monitoring of distributed applications. Computing and Informatics, 31(2):427—
446, 2012.

Hotenko M., Kobusiriska A., Wawrzyniak D., and Zierhoffer P. The impact of
service semantics on the consistent recovery in SOA. In Proc. of the 12th IEEFE In-
ternational Symposium on Parallel and Distributed Processing with Applications,
ISPA’14, pages 109-116, Milano, Italy, Aug. 2014. IEEE Computer Society.

Huhns M. N. and Singh M. P. Service-oriented computing: Key concepts and
principles. volume 9, pages 75-81. IEEE, 2005.

Kobusinska A. and Hsu C.-H. Towards increasing reliability of clouds environ-
ments with restful web services. Future Generation Computer Systems, page in
press, 2017.

Lahami M., Krichen M., and Jmaiel M. Runtime testing approach of structural
adaptations for dynamic and distributed systems. IJCAT, 51(4):259-272, 2015.



128

A. Kobusinska

[16]

[17]

(18]

[19]

[20]

21]

22]

23]

24]
[25]

[26]
27]

(28]

Lim A. S. Automatic analytical tools for reliability and dynamic adaptation of
complex distributed systems. In Ist IEEE International Conference on Engineer-
ing of Complex Computer Systems (ICECCS ’95), November 6-10, 1995, Fort
Lauderdale, Florida, USA, pages 1-8, 1995.

Mell P., Grance T., et al. The NIST definition of cloud computing, computer se-
curity division, information technology laboratory, national institute of standards
and technology gaithersburg. 2011.

Moradi F., Flinta C., Johnsson A., and Meirosu C. Conmon: An automated
container based network performance monitoring system. In 2017 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM), Lisbon, Por-
tugal, May 8-12, 2017, pages 54—62, 2017.

Najem M., Benoit P., Ahmad M. E., Sassatelli G., and Torres L. A design-time
method for building cost-effective run-time power monitoring. IEEE Trans. on
CAD of Integrated Clircuits and Systems, 36(7):1153-1166, 2017.

Newcomer E. and Lomow G. Understanding SOA with Web services. Addison-
Wesley, 2005.

Neykova R., Bocchi L., and Yoshida N. Timed runtime monitoring for multiparty
conversations. Formal Asp. Comput., 29(5):877-910, 2017.

Psaier H., Juszczyk L., Skopik F., Schall D., and Dustdar S. Runtime behav-
ior monitoring and self-adaptation in service-oriented systems. In Fourth IEEFE
International Conference on Self-Adaptive and Self-Organizing Systems, SASO
2010, Budapest, Hungary, 27 September - 1 October 2010, pages 164-173, 2010.

Psiuk M. and Zielinski K. Goal-driven adaptive monitoring of SOA systems.
Journal of Systems and Software, 110:101-121, 2015.

Richardson L. and Ruby S. RESTful Web Services. O'Reilly Media, 2007.

Schall D., Truong H. L., and Dustdar S. Unifying human and software services
in web-scale collaborations. IEEE Internet Computing, 12(3):62-68, 2008.

Thomas E. SOA Principles of Service Design. Prentice Hall PTR, 2007.

Wagner S., Fehling C., Karastoyanova D., and Schumm D. State propagation-
based monitoring of business transactions. In 2012 Fifth IEEE International
Conference on Service-Oriented Computing and Applications (SOCA), Taipet,
Taiwan, December 17-19, 2012, pages 1-8, 2012.

Zoraja I., Trlin G., and Sunderam V. S. Eliciting the end-to-end behavior of
SOA applications in clouds. Computing and Informatics, 35(2):259-281, 2016.

Received 27.02.2018, Accepted 25.04.2018



