
Cost Effectiveness of Software Defect Prediction in an
Industrial Project

Jaroslaw Hryszko, Lech Madeyski ∗

Abstract. Software defect prediction is a promising approach aiming to increase
software quality and, as a result, development pace. Unfortunately, the cost effec-
tiveness of software defect prediction in industrial settings is not eagerly shared by
the pioneering companies. In particular, this is the first attempt to investigate the
cost effectiveness of using the DePress open source software measurement framework
(jointly developed by Wroclaw University of Science and Technology, and Capgemini
software development company) for defect prediction in commercial software projects.
We explore whether defect prediction can positively impact an industrial software
development project by generating profits. To meet this goal, we conducted a defect
prediction and simulated potential quality assurance costs based on the best possible
prediction results when using a default, non-tweaked DePress configuration, as well
as the proposed Quality Assurance (QA) strategy. Results of our investigation are
optimistic: we estimated that quality assurance costs can be reduced by almost 30%
when the proposed approach will be used, while estimated DePress usage Return on
Investment (ROI) is fully 73 (7300%), and Benefits Cost Ratio (BCR) is 74. Such
promising results, being the outcome of the presented research, have caused the accep-
tance of continued usage of the DePress-based software defect prediction for actual
industrial projects run by Volvo Group.

Keywords: software defect prediction, industrial application, quality assurance,
quality assurance cost

1. Introduction

The first attempts to use machine learning for software development quality assurance,
were made in the early 1990’s [27]. Since then, this approach has gradually improved.

∗Faculty of Computer Science and Management, Wroclaw University of Science and Technology,
{jaroslaw.hryszko, lech.madeyski}@pwr.edu.pl

F O U N D A T I O N S O F C O M P U T I N G A N D D E C I S I O N S C I E N C E S
Vol. 43 (2018) No. 1

ISSN 0867-6356
e-ISSN 2300-3405DOI: 10.1515/fcds-2018-0002

Why then, has it not gained wider popularity in commercial projects so far? One
reason is the wide variety of data necessary to perform a prediction as well as the many
different sources of data which are encountered in commercial software development
projects. The need to gather data from a wide range of sources, of different formats
and using different access protocols or application programming interfaces (APIs) was
an obstacle. Combining data with different machine learning algorithms of different
characteristics was another barrier. Software defect prediction has been considered to
be too complex a process, too cost and time-consuming, and there have been no known
solutions for wrapping it into one, universal, defect prediction application which could
be used for a different projects.

To fill this gap, Madeyski and Majchrzak [21] proposed a new, extensible (plugin-
based) framework called DePress. DePress (Defect Prediction for Software Systems)
builds upon the KNIME framework [18] and allows development of graphical workflows
and uses an intuitive, user-friendly interface (see Figure 1). Being intuitive and highly
customizable, DePress makes itself a perfect tool which can be conveniently utilized
(thanks to its user-friendly interface and a wide range of plugins to different tools
widely used in software development) in different commercial software development
projects for software defect prediction. Detailed description of the DePress framework
and its capabilities can be found on the DePress website [22] and in the article by
Madeyski and Majchrzak [21].

Figure 1: DePress tool

This work is an extension of our previous conference paper [9], which investigated

8 J. Hryszko, L. Madeyski

cost effectiveness in industrial software development project.
The extension includes, e.g., details of investigated software development project,

what readers can find important for the possible reuse of the proposed approach in
their research (Section 2), as well as details of a prediction model construction (new
Section 3) later used to calculate potential costs when quality assurance1 is supported
by defect prediction (Section 4).

The discussion of threats to validity also has been extended (Section 5) to better
sketch the limitations of the conducted empirical research, as well as discussion of
results in general (Section 6), where possible result improvements and future work
proposals were made.

This work extends the previous study by presenting how the prediction model was
built using DePress framework, showing how values crucial for costs calculation were
obtained and allowing for a wider discussion and further reproduction for example by
software development practitioners in industry. This should streamline deployment of
software defect prediction in general, and DePress framework in particular in other
industrial settings. It is important to obtain an independent empirical evidence how
useful is the proposed approach and the tool set. The more so that potential benefits
of using the DePress framework [21] for defect prediction in commercial software
development projects have not been investigated yet in other settings than presented
in this paper. To change this, our study aimed to answer the following research
questions:

RQ1: What is the highest level of defect prediction, measured by F-measure,
achievable by the DePress tool (using a default, non-tweaked configuration) in an
industrial software project?

The possible benefit varies, depending on the potential prediction effectiveness.
This implies the need of first verifying what is the highest F-measure (harmonic mean
of precision and recall [35]) value of the defect prediction process handled entirely
by the DePress tool. DePress can be highly customizable thanks to its plugin-based
architecture, as well as its open source nature. However, such adjustments can generate
additional costs. Therefore, for the sake of simplicity, we decided to restrict the DePress
usage only to its default set-up.

RQ2: How cost effective is defect prediction using the DePress framework, in
the default configuration, for defect prediction in an industrial software development
project?

The next step is to verify what will be the profit from the best prediction achievable
using the default DePress’ set-up. To achieve this, we used value of the recall measure
(the proportion of code units predicted as defective that were actually defective [49])
corresponding to the highest F-measure value, as recall reflects the impact of the
prediction effectiveness on the overall effort allocation strategy and possible quality
assurance cost savings. This last factor as well as expected Investment costs then can
be used to calculate Benefit Cost Ratio and NetReturn factors.

RQ3: Will usage of the DePress framework pay off for an industrial project?

1Quality assurance is a very wide notion not limited to defects handling only – it encompasses the
whole software development process and relates to all project artifacts; in the context of the paper it
is used in a more narrow sense which some would call quality appraisal.

9Cost Effectiveness of Software Defect ...

To answer this question, we had to compare the costs of introducing and using the
DePress based defect prediction to the potential benefits generated by its introduction.
To achieve this, we used values such as return on investment (ROI) and benefit-cost
ratio (BCR) [26].

The next section specifies the context of the project, while the information what
kind of software processes and projects are good for the application of the concepts
presented in the article, stemming from the software project under investigation, may
be found at the end of Section 2.1.

2. Project Context

Volvo Group, one of the leading automotive companies, was invited to take part in
this research. The primary motivation for Volvo Group’s interest was to verify, if their
company can use DePress and its software defect prediction to increase quality and
cost-effectiveness of quality assurance (QA) in their software development projects.

Business context of the presented approach, including software project and process
is summarized in Section 2.1.

2.1. Target Software Project and Process

An important criteria for selecting the proper software development project for the
purpose of this research, was that such a project would be mature enough, to provide
historical information which can be used as a source of training data. A special survey
was conducted by Volvo Group to select the suitable candidates for initial research.

During our previous research, we recognized elements occurring in projects that
hindered or prevented completion of prediction [8]. The most important of these
elements are:

• Unavailability of data necessary to create a prediction model;

• Lack of possibility to link code changes with defects;

• Lack, or incorrect version, of available data;

• Inappropriate use of a version control system: avoiding atomic commits, mixing
defect fixes and other changes in single commits, etc.

It is worth mentioning that the Unified Change Management (UCM), known from
Rational Unified Process (RUP), unifies the activities used to plan and track project
progress and the artifacts undergoing change addressing also the need for careful defect
handling (e.g., separated handling of change requests resulting from defects together
with their careful management).

Among few available to us for research, we selected project called Texas – which
develops subsequent versions of the application under the same name. Reasons for
selecting this particular project were:

10 J. Hryszko, L. Madeyski

• The Texas project provides all the data necessary to achieve the highest possible
recall of prediction, such as:

– Information on defects found;

– Registered code changes as a result of defects;

– Code metrics.

• In the Texas project, it is possible to clearly distinguish which code changes
apply only to defect fixes. This is possible thanks to the practice adopted by its
developers: any modification of source code is committed to the code repository
with an appropriate comment.

• In the case of a modification resulting from the fix of a particular defect, a
unique identifier is included in the comment. Moreover, such a feature is an
example of the correct usage of a version control system.

• Information on the number of subsequent versions of the software are available,
and the naming of each version is standardized.

From an organizational perspective, the Texas application is a document man-
agement tool that supports the Vehicle Type Approval (VTA) certification process
for vehicle components and completed vehicles produced by Volvo Group. The VTA
certificate confirms that the production samples of a design will meet specified per-
formance standards. Key users of the Texas tool are Volvo Group’s Certification
Managers and engineers, as well as their brand representatives and European market
companies. The certification process is crucial for the company, as availability of
Volvo Group’s products directly depend on it, making the reliability, development and
maintenance of the Texas software highly important. Defects in the application can
delay the work of certification engineers, which is unacceptable as such delays affect
the scheduled dates for approval of certificate documents and publication process and,
therefore have a negative impact on the date of product availability.

From a technical perspective, Texas is a Java-based application written using the
Java Enterprise Edition computing platform [28]. The main development environment
used for the development process is Eclipse Integrated Development Environment [44]
and Apache Maven [42], its main build automation tool. To assemble a complete
application, 13 different Maven projects are needed to be built by default. For the
purpose of this research, 18 consecutive software versions were available, ranging from
Texas version 4.0.0 to version 6.0.0, stored in a code repository managed by the Apache
Subversion (SVN) version control system [43].

In the investigated project, software development process uses methodology similar
to the waterfall model [3]. In the Texas software development process we observe the
following phases2:

1. Requirements analysis

2. Software design

2The notion of ”phases” is used by the IS-GDP4IT software process used in the Texas project.

11Cost Effectiveness of Software Defect ...

3. Implementation

4. Testing

5. Deployment

6. Maintenance

Due to fact, that in considered project defects were registered and fixed only dur-
ing implementation, testing and maintenance phases, only these three phases were
considered in the later research.

The proposed approach can be used in projects using the waterfall process, as well
as software processes where the aforementioned phases are iterated.

An interesting question is whether the presented approach is good for software
products just having a sequence of versions each targeted to all customers (IT company’s
market) or if the approach is applicable also for product-lines context (customers’
market). In both cases there is enough historical data to use the approach presented
in the paper. Hence, we do not see obvious obstacles to use the presented approach in
both cases. That said, the product-lines context, where there are many versions of
a product for different customers, is more challenging than the investigated context
of software products having a sequence of versions, each targeted to all customers,
and thus needs further investigation to answer the question whether the presented
approach may be used with good results in both contexts. Similarly, the presented
approach was applied for software products distributed internally and its ability to
extend to other contexts was not investigated. That said, the proposed methodology
should be useful for different software products, not only these distributed internally,
as long as there is possible to create an effective training dataset.

2.2. Related Work

The first publication related to an industrial application of defect prediction was
published in 1997 by Khoshgoftaar et al. [13]. It was a case study of quality modeling
for a very large telecommunications system. Two other publications of Khoshgoftaar
and Seliya from 2004 [15] and 2005 [16] continued with the previous concept and
focused on commercial data analysis, but were not applied to a real-world environment.
A similar approach can be found in publications by Ostrand and Weyuker [29], Ostrand
et al. [31], Tosun et al. [45], Turhan et al. [47, 48]. Examples of industrial applications
of information gathered by using defect prediction can be found in publications by
Wong et al. [50], Succi et al. [41] and Kläs et al. [17]. Complete cases describing
the introduction of defect prediction in industrial environments were presented by
Ostrand et al. [30], Li et al. [19] and Tosun et al. [46]. Unfortunately, none of the
aforementioned works contain information on cost effectiveness of applied prediction
techniques and tools. To the best of our knowledge, the only research focused on the
cost effectiveness of software defect prediction in an industrial project, is conducted
by Monden et al. [24]. However, they investigated cost effectiveness only from the
acceptance testing effort perspective and do not use any quantitative measure of

12 J. Hryszko, L. Madeyski

potential cost of quality assurance-focused work and cost of investment during the
entire software life-cycle period. Thus, in our research we also followed approaches
used when cost effectiveness of other than defect prediction quality assurance technique
was investigated, such as Test-Driven Development return on investment research
conducted by Müller and Padberg [26].

3. Construction of Defect Prediction Model

3.1. Training and Dataset Evaluation

Two factors related to the dataset used, greatly affect the quality of defect prediction:

• Size of the dataset;

• Number of defects found in the dataset’s source version.

Size of the dataset is important, because in machine learning, an effectiveness of
the process in most cases is proportional to the size of the dataset: the larger the
dataset, the greater the efficiency of the machine learning mechanism.

Number of defects has a direct relation to the possible occurrence of a class
imbalance problem – such as when the total number of data instances from a single
class of data (in this case defective) is far less than the total number of another class
of instances (non-defective). If a relatively low number of defects were detected for
a relatively large application in a particular version, we should expect a large class
imbalance.

Considering the above factors, we analyzed each available version for its size and
number of defects registered. For the size determinant, we selected the number of
separate code modules (Java classes – not to be confused with data classes). To obtain
the number of modules per each version, code metrics had to be collected. Collecting
code metrics has to be conducted during the process of building projects (in this case
by Maven tool). To minimize impact on the Texas project team work, we decided to
copy the source code and build each version, project by project, locally within the
Eclipse Integrated Development Environment. To collect the metrics during the build,
Eclipse Metrics 2 tool was used. Eclipse Metrics 2 is a CPL-license based Free Software
tool, which works as an Eclipse IDE plugin [5] and was created as continuation of
Eclipse Metrics – original metrics collection Eclipse plugin [37]. Eclipse Metrics 2
permits the collection of different kinds of code metrics (see Table 1) and exports
them to an XML file. The metrics data can then be read by a dedicated DePress node
(also called Eclipse Metrics) and converted into DePress’ internal data format.

The best source for obtaining information about the number of defects registered
in each version is a tool used for defect tracking. In the case of the Texas project, the
software used for that purpose was JIRA created by the Atlassian company [2]. It
means that in our research we considered all defects registered in the JIRA defect/issue
tracker (and leaving any traces of code changes due to defect fixing in the SVN source
code repository) regardless of their origin including requirement tests, integration tests,

13Cost Effectiveness of Software Defect ...

Table 1: Java class-level code metrics measured by Eclipse Metrics 2 tool

Metric name Metrics

NumberOfOverridenMethods Total number of methods in Java class that
are overridden from an ancestor class

NumberOfAttributes Total number of Java class’ attributes

NumberOfChildren Total number of Java class’ direct sub-
classes

NumberOfMethods Total number of methods in Java class

DepthOfInheritanceTree In the inheritance hierarchy, distance from
Java class object

LackOfCohesionOfMethods Cohesiveness of a Java class calculated with
the Henderson-Sellers method

NumberOfStaticMethods Total number of static methods in Java
class

SpecializationIndex Relation between number of methods and
depth of inheritance tree

WeightedMethodsPerClass Sum of the cyclomatic complexity measured
for all methods in Java class

NumberOfStaticAttributes Total number of Java class’ static attributes

functional and non-functional requirements. Errors in test scripts were not taken into
account – they were not registered in JIRA as Texas software defects, there were no
traces of script error fixing in Texas’ source code (similarly with errors in application
resources). Similarly to Eclipse Metrics, JIRA also allows the export of defect data
into an XML file, and that file can then be parsed by a DePress node called Jira
Offline.

When transferred to DePress, size and defect data can be aggregated with a few
simple steps using the KNIME framework capabilities. Results for each historical
Texas version are presented in Table 2.

After analyzing the data presented in Table 2, we decided to use the dataset
based on version 4.0.0, both for training and evaluation: the highest number of
detected defects were compared to number of code modules available for analysis which
made version 4.0.0 the most suitable for the above purposes. For further research,
versions 5.0.0 and 6.0.0 can also be used. Other versions – with a significantly lower
number of registered defects to a similar amount of modules available for analysis
(defect per module ratio < 0.1) – made us assume that strong class imbalance would
be observed.

Datasets for both purposes – training and validation, were constructed by split-

14 J. Hryszko, L. Madeyski

Table 2: Defects and number of modules per version

Version number Defects Modules Defect per module ratio

4.0.0 837 744 1.125

4.0.1 19 685 0.03

4.0.2 23 673 0.03

4.1.0 45 597 0.08

4.1.1 17 546 0.03

4.2.0 54 608 0.09

4.3.0 10 660 0.02

4.3.1 8 608 0.01

4.4.0 29 616 0.05

4.5.0 11 747 0.01

5.0.0 270 744 0.36

5.1.0 15 593 0.03

5.2.0 23 606 0.04

5.4.0 35 582 0.06

5.5.0 42 582 0.07

5.6.2 10 612 0.02

5.6.3 1 612 0.002

6.0.0 462 688 0.67

ting 4.0.0 data, using a built-in DePress’ function called Stratified Sampling, so that
after the division, the ratio between code parts classified differently would be preserved
in both created datasets.

3.2. Objective Variable And Class Imbalance Counteraction

For the purpose of this research, we chose two-value (“0” and “1”) objective variable
to distinguish the fault-prone module, where at least one defect occurred (“1”), from
the fault-free modules, where no defects were observed (“0”).

To counteract against any possible class imbalance, we decided to randomly remove
some of the majority class instances. To follow our initial approach, we used the
basic mechanisms built into DePress/KNIME by constructing a workflow as shown in

15Cost Effectiveness of Software Defect ...

Figure 2. First, the dataset is split into two parts, by classifying rows of two different
sets, depending on the objective variable value (“1” or “0”), using the Row Splitter
KNIME node. Then, the majority class instances were reduced to reach exactly
the same number of instances of minority class, achieved by random sampling done
with the Row Sampling node. Finally, two equal size record sets were merged by
Concatenate node to make one dataset with an equal ratio between the classes as a
result.

Figure 2: Class imbalance counteraction

3.3. Predictor Variables Selection

The total available dataset which can be used for machine learning, can be modified to
minimize the prediction error. Various techniques can be used for this purpose, such
as removing any unnecessary information, but the most commonly used technique is
Feature Selection. It is used to select the most valuable code metrics from the whole
set of metrics collected by the Eclipse Metrics 2 tool (Table 1). When the number of
metrics is relatively small, the Feature Selection process can be based on an exhaustive
search algorithm, covering all possible combinations of the available metric kinds. For
each combination indicated by the algorithm, the process of prediction model creation
and its validation is conducted, and then the prediction error is determined. The
metrics sub-set that results in the smallest prediction error, is then selected.

When there is a large number of available metrics (features), usage of an exhaustive
search algorithm is very expensive. Pendharkar [32] estimates that when an algorithm
of such a type would be applied to a dataset consisting of 21 different metrics, it
would take approximately 120 years of calculation by a 900 MHz RISC processor based
computer to complete the Feature Selection process.

Feature Selection functionality based on the backward elimination algorithm is an
integral part of the KNIME framework [18]. It consists of a data flow constructed by
nodes Backward Feature Elimination Start and Backward Feature Elimination End
(see Figure 3). In the loop created by these nodes, the appropriate machine learning
mechanism should be placed, along with any additional supporting nodes, if needed.
In Figure 3, two machine learning nodes are shown: Random Forest Learner and
Random Forest Predictor. Connection between these nodes is provided to transfer the

16 J. Hryszko, L. Madeyski

Partitioning

Random

Forest

Learner

Random

Forest

Predictor

Backward

Feature

Elimination

Filter

Backward

Feature

Elimination

Start

Backward

Feature

Elimination

End

Feature elimination loop

Validation data

Feature subset resulting

with lowest error

Dataset

Dataset

Figure 3: Depress’s feature selection workflow

created model from the Learner to the Predictor node. To divide the input data for
training and validation sets, the node Partitioning is used.

The backward elimination approach used in the DePress framework is carried out

in
[
n×(n+1)

2

]
− 1 iterations, where n is the total number of features (columns) in the

input dataset (input table). As in this case, the total number of types of metrics
collected n = 5, the entire process takes 14 iterations:

1. In the first iteration, the loop is executed with all features (columns): The
dataset is divided into two sets; a model is created by the Learner node using
the first set, then validated by the Predictor node using the second set.

2. In the next four n − 1 iterations, each input column is omitted once. Model
creation and its validation are performed for each iteration and prediction results
are collected.

3. The Backward Feature Elimination End node discards the column that influenced
the result the least.

4. The process repeats until one feature (column) is left.

Then the Backward Feature Elimination Filter node is used to filter the actual
dataset, using the best feature combination found as a result of the above process.

17Cost Effectiveness of Software Defect ...

More sophisticated feature selection methods are possible, but the above-mentioned
process was used in this research.

3.4. Prediction Models

Due to the fact that DePress is based on the data mining framework KNIME, various
types of fault-prone module predictors can be used for the purpose of research. Since
prediction results are categorical (faulty or not-faulty), we decided to test classifiers
often used in software defect prediction [7, 14, 25, 38], which are available in the basic
package of KNIME:

• Naive Bayes,

• Probabilistic Neural Network,

• Decision Tree.

More information about the build-in KNIME classifiers can be found in the docu-
mentation of KNIME [18].

Prediction results – modules marked as defect-prone or non-defect prone, can be
compared against actual data describing defect-prone module distribution and were
used to build the confusion matrix (Table 3) – a commonly used tool for performance
comparison across categorical studies [7].

Table 3: Confusion Matrix

Code units Predicted faulty Predicted not faulty

Actually faulty True positives (TPs) False negatives (FNs)

Actually not faulty False positives (FPs) True negatives (TNs)

4. Cost Effectiveness Assessment Method

To investigate the cost effectiveness of defect prediction applied to an industrial software
development project using the DePress framework, we developed the following plan to
follow:

1. Development of a QA effort allocation strategy, based on defect prediction
provided by DePress;

2. Analysis of actual, real-life costs of quality assurance for the selected version of
the Texas project (4.0.0);

3. Building software prediction models for the chosen version;

18 J. Hryszko, L. Madeyski

4. Selection of the highest prediction F-measure and the corresponding recall
measure;

5. Usage of an effort allocation strategy, based on the prediction effectiveness
characterized by recall, to simulate a prediction-based quality assurance scenario;

6. Results analysis.

4.1. Quality Assurance Effort Allocation Strategy

In the case investigated (the version 4.0.0 of the Texas software), developers agreed
that all the modules that caused two and more registered defects are considered to
be “high risk” modules. These modules accounted for 22.4% of all modules and were
responsible for 80.36% of all registered defects and the aim was to eliminate the
maximum number of software defects using the available resources within a limited
time period. A similar distribution of defects in the software modules was observed by
different authors [6, 33, 36] and can be interpreted as the Pareto principle existence in
software quality. Additionally, in 1976 Boehm argued that defect fixing costs are the
more expensive the later defects are removed [4]. That observation, which is widely
called Boehm’s Law [6], results in another important consequence of smart quality
assurance efforts allocation: the earlier the QA actions will take place, the better it is
from the perspective of the software development project’s budget.

Considering the above facts, we proposed a strategy which would use the prediction
model to indicate as much as possible of the mentioned “high risk” software modules
(22.4% in our case) responsible for most of the defects (80.36% in our case), therefore
helping to integrate as much as possible the QA efforts into the implementation phase
of the software development, while defect fixing cost is still relatively low. Such an
approach should ideally decrease the total cost of defect fixing in the project and
generate savings for the total project’s budget [39].

If we denote Mtotal as the total number of testable software modules and Htotal as
the total number of discoverable defects, we can say that, in the project we analyzed,
approximately 0.8Htotal comes from approximately 0.22Mtotal.

The impact of the prediction effectiveness on the overall effort allocation strategy
can be reflected by using the recall measure (Rec) – the proportion of code units
predicted as defective that were actually defective [49]:

Rec =
TPs

TPs + FNs
(1)

We can expect that:
0 < Rec < 1 (2)

Where Rec is the measured recall value corresponding to highest possible F-measure
of defect prediction performed using the DePress framework with default settings [21].
Then, the expected number of predicted modules Mi, responsible for 80% of discover-
able defects, should be:

Mi = 0.22 ×Rec×Mtotal (3)

19Cost Effectiveness of Software Defect ...

Accordingly, we should expect that if the machine learning mechanism will be able
to point out the “high risk” 22% of software modules with the measured recall (Rec),
the number of defects which can be avoided by allocation of the best quality assurance
efforts on the implementation phase, shall be:

H ′1 = 0.8 ×Rec×Htotal (4)

Number of defects expected to be detected in the implementation and maintenance
phase of the project:

H ′2+3 = Htotal −H ′1 (5)

4.1.1. Return on Investment

To investigate if the DePress usage will pay off, we will use Return on Investment
(ROI) [26]:

ROI =
Benefit− Investment

Investment
(6)

If the investment will not pay off, ROI is negative, otherwise positive. In our
evaluation of defect prediction cost-effectiveness we will focus on potential benefits
that method will generate:

Benefit = Ctotal − C ′total (7)

Where C ′total is the simulated total quality assurance cost in the project with defect
prediction applied, and Ctotal is the actual QA cost in the project, without defect
prediction.

Investment is defined as the total cost of introduction of defect prediction. More-
over, NetReturn is calculated as Benefit reduced by Investment:

NetReturn = Ctotal − (C ′total + Investment) = Benefit− Investment (8)

4.1.2. Benefit Cost Ratio

To analyze potential benefits from the usage of defect prediction, we will use the
Benefit Cost Ratio (BCR) [26]:

BCR =
Benefit

Investment
(9)

Values larger than 1 for the BCR mean a monetary gain from the DePress based
defect prediction usage, while values smaller than 1 mean denote a loss.

4.2. Actual Project’s Quality Assurance Costs

The Volvo Group policy did not allow us to publish the real costs of work invested in
the project. For the purpose of research, we agreed that the man-hour cost of work by

20 J. Hryszko, L. Madeyski

a software developer Cd will be marked as:

Cd = x (10)

In that case, the average man-hour cost of work by a software tester Ct shall be,
calculated according to current labor market data rates [40]:

Ct = 0.85x (11)

That means, that when a tester and a developer are working together on defect
fixing during the implementation and maintenance phases of the project (not in the
implementation phase), the average cost per man-hour should be:

Cd+t =
Cd + Ct

2
= 0.925x (12)

Other costs, such as infrastructure and hardware, will remain constant for the
real-life and alternative (prediction-based) scenario.

Time spent on project work was traced by every team member using the JIRA
tool. As a result of analysis of that data, we could obtain an average of the total
time spent on fixing a single defect for each considered phase of the project (Table 4).
The amount of time spent on quality assurance, together with the number of hours
spent and number of defects fixed, divided by considered project phases, are shown in
Table 5.

Table 4: Average defect fixing costs

Phase 1.Implementation 2.Testing 3.Maintenance

Team members involved Developer Developer
Tester

Developer
Tester

Average fixing time
per one defect
[hours], T

1 3 3

Assumed cost
of man-hour
Chour

Cd Cd+t Cd+t

Cost per one defect
Cdefect = T × Chour

x 2.775x 2.775x

According to the data in Table 5, the total number of defects discovered in version
4.0.0 is:

Htotal =
∑

Hphase = 190 + 383 + 264 = 837 (13)

Accordingly, the total quality assurance cost is:

Ctotal =
∑

Cphase = 190x + 1063x + 733x = 1985x (14)

The ratio between defects fixed in testing and those fixed during the testing and
maintenance phases is:

H2

H3
=

383

264
≈ 3

2
(15)

21Cost Effectiveness of Software Defect ...

Table 5: Actual resources consumed on defect fixing

Phase 1.Implementation 2.Testing 3.Maintenance

Number of defects discovered
Hphase

190 383 264

QA cost per one defect
Cdefect

x 2.775x 2.775x

QA cost per phase
Cphase = Hphase × Cdefect

190x 1063x 733x

4.3. Model Construction and Prediction

To create a prediction model that will be able to classify new source code, a machine
learning process must be performed using training data already categorized respectively,
and taken from an earlier version of the program, in which the area of “high risk”
can be easily identified by investigating which code areas were changed most because
of defect fixes. In the case of the Texas Project we used the previously described
method, that all of the source code changes caused by fixing defects, were labeled with
unique defect identifiers, which were recorded in the software responsible for managing
defects in the project. Both, version control system, and defect tracker application
used in the project make it possible to obtain the desired data by exporting it to a
file. The DePress framework consists of appropriate modules allowing for conversion
of the data from both those programs to a universal internal format. Log entries
from the repository, take into account all changes in the source code. All recorded
changes resulting from defect fixes, are recognized by the module Marker Parser.
These entries are then compared with data from the defect management system by the
module Issues per Artefact (Figure 4). The effect of this module’s usage are statistics
describing the frequency of code changes resulting from defect fixes for each of the
code modules. Due to this comparison it is easy to recognize the most defective areas
which are known to be “high risk”. In the case investigated (version 4.0.0), as an area
of “high risk”, we pointed out all the modules that have to be modified to be able to
fix two or more registered defects. These modules accounted for 22.4% of all modules
and were responsible for 80.36% of all registered defects.

Code metrics collected for each code module were classified in accordance with the
applied approach – “high risk” modules were marked as “1” and those not belonging
to this group as “0”. Ratio of modules labeled as “1” to those labeled as “0” was
1 : 15.52, which indicates a class imbalance problem.

Categorized data was divided into two equal sets by stratified sampling. One of
the sets was stored for validation of created prediction models, the second was used
for preparation of samples based on three selected classifiers – Naive Bayes, Decision
Tree and Probabilistic Neural Network.

For each classifier, four different experimental setup preparations were possible,
thanks to the module-based architecture of the DePress tool:

22 J. Hryszko, L. Madeyski

Figure 4: Workflow for combining defect and code change information

• Without feature selection, with class imbalanced dataset,

• Without feature selection, with class balanced dataset,

• With feature selection, with class imbalanced dataset,

• With feature selection, with class balanced dataset.

When needed, feature selection was carried out by KNIME’s functionality presented
in Section 3.3 and class balance was achieved by using mechanism presented in
Section 3.2.

4.4. The Highest F-measure Value and the Corresponding Recall

Using the approach described in the previous section, defect prediction was performed
and its F-measure collected (see Table 6) for all experimental setups, classifiers and
samples. The best prediction results (the highest F-measure values) were obtained for
the balanced class sample, slightly better with the feature selection step. Hence, we
are able to answer RQ1: The highest F-measure (based on the Naive Bayes algorithm)
was 0.766. The corresponding recall was:

Rec = 0.783 (16)

23Cost Effectiveness of Software Defect ...

Table 6: Prediction results: Recall and F-measure (in brackets) values for all experi-
mental setups

Classifier
Without Feature Selection With Feature Selection

Class
Imbalance

Class
Balance

Class
Imbalance

Class
Balance

Naive
Bayes

0.409 (0.237) 0.783 (0.621) 0.318 (0.412) 0.783 (0.766)

Decision
Tree

0.273 (0.279) 0.682 (0.667) 0.227 (0.357) 0.652 (0.682)

Probabilistic
Neural
Network

0.091 (0.167) 0.783 (0.72) 0.136 (0.24) 0.783 (0.74)

4.5. Prediction-based costs simulation

For the purpose of cost simulation in this scenario, where defect prediction is introduced
to the project using the DePress framework, we assumed that:

• The total number of discoverable defects in version 4.0.0 (see Equation (13)) is
a constant value;

• The defects distribution among the code is preserved;

• Average fixing cost per one defect (see Table 4) is also true for the considered
scenario;

• Information on location of “high risk” software modules, with recall Rec, will be
available in the implementation phase of the project;

• The ratio between defects fixed in testing and those fixed during the maintenance
phase (see Equation (15)) is preserved.

Considering the recall value for best prediction achieved (characterized by the
highest F-measure value) for version 4.0.0 as a result of the prediction models devel-
opment (Equation (16)) and the total number of discovered defects in that version
(Equation (13)), based on the proposed strategy (Equation (4)) we should expect, that
the number of software defects which can be solved by allocation of the best quality
assurance practices in the implementation phase of the project is:

H ′1 = 0.8 × 0.783 × 837 = 524 (17)

Regarding the number of defects which are expected to be found in testing and
maintenance phases of the project (Equation (5)):

H ′2+3 = 837 − 524 = 313 (18)

24 J. Hryszko, L. Madeyski

Table 7: Simulated QA costs, with defect prediction used

Phase 1.Implementation 2.Testing 3.maintenance

Number of defects fixed
H ′phase

524 188 125

QA cost per one defect
Cdefect

x 2.775x 2.775x

QA cost per phase
C ′phase = H ′phase × Cdefect

524x 522x 347x

As we assumed that ratio in Equation (15) is preserved, the number of defects
which are expected to be found in the project’s testing phase is:

H ′2 = 313 × 0.6 = 188 (19)

Accordingly, the number of defects expected to be found in the maintenance phase is:

H ′3 = 313 × 0.4 = 125 (20)

Considering values H2 and H3, we simulated quality assurance costs assuming
that the machine learning mechanism will be able to point out the “high risk” 22%
of software modules with the measured recall (Equation (16)), and the best quality
assurance efforts will be allocated to the implementation phase to avoid the calculated
number of defects (Equation (17)). Results of that simulation are presented in Table 7.

Total quality assurance cost in this scenario will be:

C ′total =
∑

C ′phase = 524x + 522x + 347x = 1393x (21)

4.6. Cost of investment

Costs of defect prediction introduction were calculated as the sum of such elementary
costs:

• Tool acquisition and installation costs,

• Training time costs,

• Data collection cost,

• Defect prediction preparation cost.

Tool acquisition and installation costs of the case investigated shall be considered
as zero costs. In Volvo’s organization, DePress is freely available via an internal
application installation system called FAROS3. DePress can be ordered and installed
on user’s computers without any additional costs for the project.

3It is also available as an open source project (http://depress.io).

25Cost Effectiveness of Software Defect ...

http://depress.io

Training time costs – support of DePress and defect prediction is handled by their
internal Development & Runtime Support organization, which is already pre-paid by
project, whether such a tool and technology will be used or not. Due to that fact, any
training cost is reduced to the cost per man-hour for a person appointed to perform
defect prediction process. After measuring time spent on training of a single person,
we can state that: if a person responsible for defect prediction already has minimum
background in software development, she or he needs to spend a maximum of 4 hours
on training, 1-2 hours of general introduction plus another 1-2 hours of training in
prediction preparation.

Data collection cost is mostly the man-hour cost of exporting the proper data from
data sources and code metrics generation for two selected versions. Data export will
not take more that one man-hour and in most cases that activity should take no more
than a few minutes. Alternatively, direct-connection nodes available in DePress can be
used to get the required data in real-time. For code metrics collection purposes using
Eclipse Metrics plugin, software need to be build locally, which include – downloading
software version from the remote repository, local build and XML metric files collection.
After measuring time spent on that activity, we found that it took no more than 2
man-hours.

Defect prediction preparation cost is the man-hour cost of defect prediction workflow
preparation using the DePress tool. As generic workflows (for most technologies used
in the organization) are pre-installed with the DePress tool, only correction actions
are expected, if any. Results of time measurement say that preparation of a proper
DePress workflow should not take more than one man-hour.

Summary of investment costs is presented in Table 8.

Table 8: Defect Prediction Investment Costs

Activity Time required
[hours]

Cost
[man-hours]

DePress tool acquiring
and installation costs

0 0

Training time costs 4 4x

Data collection cost 3 3x

Defect prediction preparation cost 1 x

TOTAL (Investment) 8 8x

4.7. Results Analysis

Here, with respect to research questions RQ2 and RQ3, we summarize the results of
our simulation (research question RQ1 was answered in Section 4.4).

RQ2: How cost effective is defect prediction using the DePress framework, in

26 J. Hryszko, L. Madeyski

the default configuration, for defect prediction in an industrial software development
project?

As shown in Table 8, the expected total investment cost of the DePress tool-based
defect prediction application in software development project is:

Investment = 8x (22)

Benefit Cost Ratio (9) calculated using (7) and (22) values:

BCR =
592x

8x
= 74 (23)

Such BCR value shows that we should expect a high monetary gain from the
DePress tool usage for supporting quality assurance with defect prediction. Moreover,
NetReturn (Equation (8)) from the simulated defect prediction application is:

NetReturn = 592x− 8x = 584x (24)

Answering research question RQ2, when the defect prediction application strategy
proposed in Section 4.1 is applied and recall of the prediction model will be 0.783,
such an approach can result in reduction of final QA costs by almost 30%:

1 − C ′total
Ctotal

= 1 − 1393x

1985x
= 0.298 (25)

Such result can be achieved only after fixing 524 defects (Equation (17)), what
makes 62.6% of all the detectable defects, by effective use of quality assurance practices
in the first, implementation phase of the project, on predicted “high risk” software
modules. Graphical comparison of quality assurance costs – actual and simulated,
with defect prediction introduced, is shown in Figure 5.

RQ3: Will usage of the DePress framework pay off for an industrial project?
Simulation shows, that we should expect Benefit (Equation (7)) from the DePress

usage in the project:
Benefit = 1985x− 1393x = 592x (26)

Accordingly, expected Return on Investment (6):

ROI =
592x− 8x

8x
= 73 (27)

As ROI is positive, we can state that investment will pay off.

5. Threats to Validity

In this paper, defects are not distinguished according to their severity (minor, major,
etc.) and we used a fixed, average fixing time value for each defect. Omitting the
severity measure in defect prediction studies is a frequent practice [23], however, it
can be important when simulated QA cost calculation will be compared to real-life

27Cost Effectiveness of Software Defect ...

Figure 5: Costs of quality assurance in considered project: actual compared to
simulated, when DePress-based defect prediction is used

values. In our simulation we assumed equal severity for each defect, which is reflected
in an equal, average cost (see Table 4). However, when we apply the proposed effort
allocation strategy into a real-life environment, we can deal with the situation, of when
defects left undetected until the later phases of testing and maintenance that will be
characterized by higher severities than defects resolved while within the implementation
phase. Such a situation would negatively impact overall quality assurance costs, when
DePress tool would be used for defect prediction purposes, in comparison to simulated
values. Some of our assumptions, including those made in Section 4.5, may also
constitute threads to validity. High CMM level (≥ 3) of the software development
process within an organization would allow to fulfill them easier.

In our simulation, quality assurance cost is calculated based on the number of
defects expected to be fixed by QA efforts at each considered phase, multiplied by
the average cost to fix a single defect, based on actual project data. Then, simulated
costs are compared to actual costs. Rahman et.al. [34] argue, that a more efficient
way of comparing quality assurance efforts, when the defect prediction models are
involved, is by a comparison of AUCEC (Area Under Cost Efficiency Curve) values [1].
The approach followed in our paper was motivated by the fact that the comparison of
cost values (actual and simulated) is considered to be more readable by our business

28 J. Hryszko, L. Madeyski

stakeholders.
In this paper, we do not consider any costs not traced by the JIRA system. There

was no technical possibility to obtain cost information on quality assurance actions
taken outside the project’s team during the maintenance phase, an example being the
service desk team responsible for contact with an end user, who found a new defect in
the maintenance phase.

For the purpose of simulation, we used the same initial conditions as in an actual
project. There were alike number of detectable defects as well as a similar ratio
between defects fixed in testing phase and those fixed in the maintenance phase (5).
In the actual defect prediction using the proposed effort allocation strategy, we should
expect that the aforementioned conditions would be different, for example if the actual
application will consider different software version and/or development project.

It is worth emphasizing that one chosen project in one company (Volvo Group)
does not confirm the advantages of the presented approach from the statistical point
of view.

6. Discussion and Conclusions

Cost effectiveness within the simulated scenario is strictly related to the quality of
prediction when measured with recall (Rec). Based on the simulation presented, it
is possible to calculate the NetReturn of using a proposed quality assurance effort
allocation strategy for a series of defect prediction recall values (solid line on Figure 6).
In such a way, we can observe how NetReturn depends on Rec in terms of the proposed
QA effort allocation strategy. However, any NetReturn coefficient values for Rec
lower than 0.5 should not be considered, as below that point, the efficiency of defect
prediction is similar to that of random guessing.

One can argue, that it is improper for one to assume, that it is possible for program-
mers to predict and fix 78% of all detectable defects while still in the implementation
phase, only due to the fact that code parts actually responsible for these defects are
known the developers, thanks to defect prediction. Please notice, that in our simulation
we considered only defects actually fixed by programmers. The only difference is
that in the actual project (not in simulation), more defects were found by testers and
end-users during the testing and maintenance project phases, which caused higher
average defect fixing costs in these phases. Nevertheless, the defects were finally
fixed by the developers. Moreover, we could go a step further and modify our effort
allocation strategy to use DePress for prediction model creation, aimed at finding code
responsible for 100% of all detectable defects. In such a case, the relation between the
expected number of defects fixed in the implementation phase, and prediction recall
would be:

H ′1 = Rec×Htotal (28)

Theoretically, in such a case we can expect that the NetReturn value should be
even higher than calculated based on the proposed strategy (dotted line on Figure 6).
However, as the proposed effort allocation strategy is based on the Pareto principle

29Cost Effectiveness of Software Defect ...

x

x

x

x

x

x

x

x

x

x

Figure 6: NetReturn coefficient depending on recall value

(only 20% of code is responsible for 80% of defects), we should consequently expect
that to find and remove the remaining 20% of defects, an additional 80% of code would
need to be inspected, respectively. In such a scenario, by covering even 100% of code by
all necessary precautions to remove every detectable defect may cost significantly more
than the actual, real quality assurance in the considered project version (4.0.0). We
expect that the remaining approximately 20% of detectable defects can be effectively
found and removed during further phases of the project, such as in testing phase, with
better cost effectiveness, than with comprehensive quality assurance works during
implementation phase, focused on finding and eliminating 100% of detectable defects.

In industrial software development projects, defect fixing consumes a significant
amount of time and resources. By using the defect prediction technique, project
members can obtain information on possible defect-prone elements of the software,
before defects will occur, to optimally plan their quality assurance process. What is
proposed in this paper, is a simple effort allocation strategy which is based on the
DePress framework-driven defect prediction, the Pareto principle and the Boehm’s
Law, and which eliminates most of the quality assurance work during maintenance
project’s phase. Such an approach significantly increases quality assurance costs
in implementation phase, however overall, QA costs will decrease (see Figure 5) in
comparison to actual, real-life costs observed in the investigated project, as significantly
less discoverable defects are left to be fixed in later phases, where, according to Boehm’s
Law, defect-fixing costs are considerably higher. At the same time, we need to mention

30 J. Hryszko, L. Madeyski

the low investment costs, when a Knime-based DePress framework will be used for
defect prediction purposes. Low investment costs and high recall of even simple defect
prediction performed by DePress can result with high NetReturn of DePress-aided
quality assurance planned on a basis of the proposed effort allocation strategy. More
sophisticated prediction models, especially ones using software process metrics [11, 20],
may help to achieve even more impressive results. It is also worth mentioning that
cross-project software defect prediction [10, 12] is sometimes used to reduce costs.

References

[1] Arisholm, E., Briand, L.C., Johannessen, E.B.: A Systematic and Comprehensive
Investigation of Methods to Build and Evaluate Fault Prediction Models. The
Journal of Systems and Software 83(1), 2–17 (2010)

[2] Atlassian: JIRA Homepage (2016), https://www.atlassian.com/software/

jira/, accessed: 2016.01.06

[3] Bell, T.E., Thayer, T.A.: Software requirements: Are they really a problem?
In: Proceedings of the 2nd international conference on Software engineering. pp.
61–68. IEEE Computer Society Press (1976)

[4] Boehm, B.W.: Software Engineering. IEEE Transactions on Computers 25(12),
1226–1241 (1976)

[5] Boissier, G., Cassell, K.: Eclipse Metrics 2 Homepage (2016), http://metrics2.
sourceforge.net/, accessed: 2016.01.06

[6] Endres, A., Rombach, D.: A Handbook of Software and Systems Engineering.
Addison-Wesley (2003)

[7] Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A Systematic Liter-
ature Review on Fault Prediction Performance in Software Engineering. IEEE
Transactions on Software Engineering 38(6), 1276–1304 (2012)

[8] Hryszko, J., Madeyski, L.: Bottlenecks in Software Defect Prediction Imple-
mentation in Industrial Projects. Foundations and Computing and Decision
Sciences 40(1), 17–33 (2015), http://dx.doi.org/10.1515/fcds-2015-0002,
DOI: 10.1515/fcds-2015-0002

[9] Hryszko, J., Madeyski, L.: Assessment of the Software Defect Prediction Cost
Effectiveness in an Industrial Project. In: Software Engineering: Challenges and
Solutions, Advances in Intelligent Systems and Computing, vol. 504, pp. 77–90.
Springer (2017), DOI: 10.1007/978-3-319-43606-7_6

[10] Jureczko, M., Madeyski, L.: Towards Identifying Software Project Clusters with
Regard to Defect Prediction. In: Proceedings of the 6th International Conference
on Predictive Models in Software Engineering. pp. 9:1–9:10. PROMISE ’10, ACM,

31Cost Effectiveness of Software Defect ...

https://www.atlassian.com/software/jira/
https://www.atlassian.com/software/jira/
http://metrics2.sourceforge.net/
http://metrics2.sourceforge.net/
http://dx.doi.org/10.1515/fcds-2015-0002
http://dx.doi.org/10.1515/fcds-2015-0002
http://dx.doi.org/10.1007/978-3-319-43606-7_6

New York, USA (2010), http://dx.doi.org/10.1145/1868328.1868342, DOI:
10.1145/1868328.1868342

[11] Jureczko, M., Madeyski, L.: A Review of Process Metrics in Defect Predic-
tion Studies. Metody Informatyki Stosowanej 30(5), 133–145 (2011), http:

//madeyski.e-informatyka.pl/download/Madeyski11.pdf

[12] Jureczko, M., Madeyski, L.: Cross–project defect prediction with respect to
code ownership model: An empirical study. e-Informatica Software Engineering
Journal 9(1), 21–35 (2015), http://dx,doi.org/10.5277/e-Inf150102, DOI:
10.5277/e-Inf150102

[13] Khoshgoftaar, T.M., Allen, E.B., Hudepohl, J.P., Aud, S.J.: Application of Neural
Networks To Software Quality Modelling Of a Very Large Telecommunications
System. IEEE Transactions on Neural Networks 8(4), 902–909 (1997)

[14] Khoshgoftaar, T.M., Pandya, A.S., Lanning, D.L.: Application of Neural Networks
for Predicting Faults. Annals of Software Engineering 1(1), 141–154 (1995)

[15] Khoshgoftaar, T.M., Seliya, N.: Comparative Assessment of Software Quality Clas-
sification Techniques: An Empirical Case Study. Empirical Software Engineering
9(3), 229–257 (2004)

[16] Khoshgoftaar, T.M., Seliya, N.: Assessment of a New Three-Group Software
Quality Classification Technique: An Empirical Case Study. Empirical Software
Engineering 10(2), 183–218 (2005)

[17] Kläs, M., Nakao, H., Elberzhager, F., Münch, J.: Predicting Defect Content
and Quality Assurance Effectiveness by Combining Expert Judgment and Defect
Data-A Case Study. In: Proceedings of the 19th International Symposium on
Software Reliability Engineering. pp. 17–26 (2008)

[18] KNIME.COM AG: KNIME Framework Documentation (2016), https://tech.
knime.org/documentation/, accessed: 2016.11.06

[19] Li, P.L., Herbsleb, J., Shaw, M., Robinson, B.: Experiences and Results from
Initiating Field Defect Prediction and Product Test Prioritization Efforts at ABB
Inc. In: Proceedings of the 28th International Conference on Software Engineering.
pp. 413–422 (2006)

[20] Madeyski, L., Jureczko, M.: Which Process Metrics Can Significantly Improve
Defect Prediction Models? An Empirical Study. Software Quality Journal 23(3),
393–422 (2015), http://dx.doi.org/10.1007/s11219-014-9241-7, DOI: 10.

1007/s11219-014-9241-7

[21] Madeyski, L., Majchrzak, M.: Software Measurement and Defect Prediction
with DePress Extensible Framework. Foundations and Computing and Decision
Sciences 39(4), 249–270 (2014), http://dx.doi.org/10.2478/fcds-2014-0014,
DOI: 10.2478/fcds-2014-0014

32 J. Hryszko, L. Madeyski

http://dx.doi.org/10.1145/1868328.1868342
http://dx.doi.org/10.1145/1868328.1868342
http://madeyski.e-informatyka.pl/download/Madeyski11.pdf
http://madeyski.e-informatyka.pl/download/Madeyski11.pdf
http://dx,doi.org/10.5277/e-Inf150102
http://dx.doi.org/10.5277/e-Inf150102
https://tech.knime.org/documentation/
https://tech.knime.org/documentation/
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.2478/fcds-2014-0014
http://dx.doi.org/10.2478/fcds-2014-0014

[22] Madeyski, L., Majchrzak, M.: ImpressiveCode DePress (Defect Prediction
for software systems) Extensible Framework (2016), https://github.com/

ImpressiveCode/ic-depress

[23] Menzies, T., Jalali, O., Hihn, J., Baker, D., Lum, K.: Stable Rankings for Different
Effort Models. Automated Software Engineering 17(4), 409–437 (2010)

[24] Monden, A., Shinoda, S., Shirai, K., Yoshida, J., Barker, M., Matsumoto, K.:
Assessing the Cost Effectiveness of Fault Prediction in Acceptance Testing. IEEE
Transactions on Software Engineering 39(10), 1345–1357 (2013)

[25] Moser, R., Pedrycz, W., Succi, G.: A Comparative Analysis of The Efficiency of
Change Metrics and Static Code Attributes for Defect Prediction. In: Software
Engineering, 2008. ICSE ’08. ACM/IEEE 30th International Conference on. pp.
181–190 (2008)

[26] Müller, M.M., Padberg, F.: About the Return on Investment of Test-Driven Devel-
opment. In: International Workshop on Economics-Driven Software Engineering
Research EDSER-5. pp. 26–31 (2003)

[27] Munson, J.C., Khoshgoftaar, T.M.: The Detection of Fault-Prone Programs.
IEEE Transactions on Software Engineering 18(5), 423–433 (1992)

[28] Oracle Corporation: Java EE Homepage (2016), http://www.oracle.com/

technetwork/java/javaee/overview/index.html, accessed: 2016.01.06

[29] Ostrand, T.J., Weyuker, E.J.: The Distribution of Faults in a Large Industrial
Software System. SIGSOFT Software Engineering Notes 27, 55–64 (2002)

[30] Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Predicting the Location and Number
of Faults in Large Software Systems. IEEE Transactions on Software Engineering
31(4), 340–355 (2005)

[31] Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Programmer-Based Fault Prediction.
In: Proceedings of the Sixth International Conference on Predictive Models in
Software Engineering. pp. 1–10 (2010)

[32] Pendharkar, P.C.: Exhaustive and Heuristic Search Approaches For Learning a
Software Defect Prediction Model. Engineering Applications of Artificial Intelli-
gence 23, 34–40 (2010)

[33] Pressman, R.: Software Engineering: A Practitioner’s Approach. McGraw-Hill
(2010)

[34] Rahman, F., Sammer, K., Barr, E.T., Devanbu, P.: Comparing Static Bug Finders
and Statistical Prediction. In: Software Engineering, 2014. ICSE ’14. ACM/IEEE
International Conference on. ACM (2014)

[35] Rijsbergen, C.J.V.: Information Retrieval. Butterworth-Heinemann Newton
(1979)

33Cost Effectiveness of Software Defect ...

https://github.com/ImpressiveCode/ic-depress
https://github.com/ImpressiveCode/ic-depress
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html

[36] Rizwan, M., Iqbal, M.: Application of 80/20 Rule in Software Engineering
Waterfall Model. In: Proceedings of the International Conference on Information
and Communication Technologies ‘09 (2009)

[37] Sauer, F.: Eclipse Metrics Homepage (2016), http://metrics.sourceforge.

net/, accessed: 2016.01.06

[38] Selby, R.W., Porter, A.: Learning from Examples: Generation and Evaluation of
Decision Trees for Software Resource Analysis. IEEE Transactions on Software
Engineering 14(12), 1743–1756 (1988)

[39] Slaughter, S.A., Harter, D.E., Krishnan, M.S.: Evaluating The Cost of Software
Quality. Communications of the ACM 41(8), 67–73 (1998)

[40] Source of Information on Salaries in Poland (2015), http://wynagrodzenia.pl/,
accessed: 2015.02.28

[41] Succi, G., Pedrycz, W., Stefanovic, M., Miller, J.: Practical Assessment of the
Models for Identification of Defect-Prone Classes in Object-Oriented Commercial
Systems Using Design Metrics. Journal of Systems and Software 65(1), 1–12
(2003)

[42] The Apache Foundation: Apache Maven Homepage (2016), https://maven.

apache.org/, accessed: 2016.01.06

[43] The Apache Foundation: Apache Subversion Homepage (2016), https://

subversion.apache.org/, accessed: 2016.01.06

[44] The Eclipse Foundation: Eclipse IDE Homepage (2016), https://eclipse.org/,
accessed: 2016.01.06

[45] Tosun, A., Bener, A., Turhan, B., Menzies, T.: Practical Considerations in
Deploying Statistical Methods for Defect Prediction: A Case Study within the
Turkish Telecommunications Industry. Information and Software Technology
52(11), 1242–1257 (2010)

[46] Tosun, A., Turhan, B., Bener, A.: Practical Considerations in Deploying AI for
Defect Prediction: A Case Study within the Turkish Telecommunication Industry.
In: Proceedings of the Fifth International Conference on Predictor Models in
Software Engineering. p. 11 (2009)

[47] Turhan, B., Kocak, G., Bener, A.: Data Mining Source Code for Locating
Software Bugs: A Case Study in Telecommunication Industry. Expert Systems
with Applications 36(6), 9986–9990 (2009)

[48] Turhan, B., Menzies, T., Bener, A., Stefano, J.D.: On the Relative Value of Cross-
Company and within-Company Data for Defect Prediction. Empirical Software
Engineering 14(5), 540–578 (2009)

34 J. Hryszko, L. Madeyski

http://metrics.sourceforge.net/
http://metrics.sourceforge.net/
http://wynagrodzenia.pl/
https://maven.apache.org/
https://maven.apache.org/
https://subversion.apache.org/
https://subversion.apache.org/
https://eclipse.org/

[49] Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann (2005)

[50] Wong, W.E., Horgan, J., Syring, M., Zage, W., Zage, D.: Applying Design Metrics
to Predict Fault-Proneness: A Case Study on a Large-Scale Software System.
Software: Practice and Experience 30(14), 1587–1608 (2000)

This paper is a revised and extended version of work originally presented at the 18th
KKIO Software Engineering Conference, 15-17 September 2016, Wroclaw, Poland
Received 12.06.2017, Accepted 09.01.2018

35Cost Effectiveness of Software Defect ...

	Introduction
	Project Context
	Target Software Project and Process
	Related Work

	Construction of Defect Prediction Model
	Training and Dataset Evaluation
	Objective Variable And Class Imbalance Counteraction
	Predictor Variables Selection
	Prediction Models

	Cost Effectiveness Assessment Method
	Quality Assurance Effort Allocation Strategy
	Return on Investment
	Benefit Cost Ratio

	Actual Project's Quality Assurance Costs
	Model Construction and Prediction
	The Highest F-measure Value and the Corresponding Recall
	Prediction-based costs simulation
	Cost of investment
	Results Analysis

	Threats to Validity
	Discussion and Conclusions

