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Abstract. The paper presents a novel place labeling method. It is assumed that
an indoor mobile robot equipped with a camera or RGB-D sensor ambulates an indoor
environment. The places visited by the robot are classified based on objects which
have been recognized. Each object (or set of objects) votes for a set of room classes.
Data aggregation is performed using Dempster-Shafer theory (DST), which can be
regarded as a generalization of the Bayesian theory. The possibility of taking into
account the uncertainty of data is the main advantage of the described method. The
classic Dempster’s rule of data aggregation has been criticized because it can lead to
non-intuitive results. Many alternative methods have been proposed and several were
tested during our experiments. Most place classification methods assume a closed
world model, i.e. a test sample is assigned to the most probable class even if its
corresponding probability is very small. An advantage of our system is the intrinsic
capability of giving unknown class as an answer in such situations, which can be used
by the robot to take appropriate actions.
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1. Introduction

Mobile robots leave scientific laboratories and start to enter real life applications,
so much attention is paid to social interactive robotics. However, communication
between a robot and a human is not possible without semantic information about the
environment. The ability to recognize and classify objects, places and events seems
to be fundamental. Knowing its location, the robot can adapt to different situations.
It can also perform tasks given in natural language, such as: take this to the kitchen.
This is one of the main reasons why in this paper we address the problem of semantic
localization.

∗Warsaw University of Technology, Faculty of Mechatronics, Warsaw, Poland
{siema@mchtr.pw.edu.pl, mysticdrow@gmail.com}

F O U N D A T I O N S  O F  C O M P U T I N G  A N D  D E C I S I O N  S C I E N C E S
Vol. 42 (2017) No. 3

ISSN 0867-6356
e-ISSN 2300-3405DOI: 10.1515/fcds-2017-0013



A human indoor environment is divided into areas with different functionalities:
living rooms, corridors, kitchens. Many authors considered the problem of adding
semantic information to places on the basis of data obtained by the robot’s sensors.

1.1. Related works

In [5, 7] methods of place labeling based on laser or ultrasonic scanners are presented
but most of the algorithms require richer information given by cameras or RGB-D
sensors. Usually the scene is described by a set of features, the authors compute
various descriptors on laser range scans [11, 19] or images [21]. We can distinguish
between methods which use global features [21, 18, 5, 7] or local descriptors [13] and
algorithms which use deep features [31, 30]. Koenig and Simmons [14] apply a pre-
programmed routine to detect doorways from range data. In [2] the line features
are used in order to detect corridors and doorways. Malik et al. [21] propose that
a simple texture analysis of the image can provide a useful cue towards rapid scene
identification. Their model learns texture features across scene categories and then
uses this knowledge to identify new scenes. In [25] an appearance-based algorithm is
presented, it combines local features with support vector machines through an ad-hoc
kernel. Shuai Yang et al. [27] present a place recognition scheme using the vocabulary
tree [17] of multiple feature types. In the article [8] the Voronoi graph is extracted
from an occupancy grid map generated with a laser range-finder, and then represent
each point on the Voronoi graph as a node of a conditional random field. The labels
are attached to each node. The labels provide a segmentation of an environment, with
different segments corresponding to rooms, hallways, or doorways. Shrihari Vasude-
van and Roland Siegwart [26] present a hierarchical probabilistic concept-oriented
representation of space based on objects. This approach is based on learning from
examples, clustering and the use of Bayesian network classifiers. In the paper [15]
the authors present a novel top-down, multi- step visual place recognition system.
The overall matching process is inspired by the increasingly selective and tolerant
processing stream in the human brain.

Different learning techniques are used in order to identify different places: neural
networks [32, 6], EM algorithm [3], AdaBoost [16]. In [24] an algorithm which uses
Hidden Markov Models for learning places from image data is presented. In [28] a
naive Bayes classification method is described.

We believe that most indoor places can be classified based on objects located within
them. Object recognition is much easier than a few years ago, since many highly
effective techniques have been introduced [32, 1]. The place classification method
proposed in this paper, as opposed to purely geometrical models, holds promise of
higher flexibility.

In order to aggregate the information we apply Dempster-Shafer theory (DST).
Although our approach is supervised (the resulting labels correspond to user-defined
classes), in the case of insufficient data (for example the robot sees a wall and a part
of the floor) the answer unknown is given by the system. The proposed method has
been tested using MIT dataset of real environments [32].
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The paper is organized as follows: Section 2 reviews the state-of-the-art in Demp-
ster Shafer theory. In section 3 we describe the idea behind the proposed method of
place classification. In section 4 the teaching technique is described. Finally, section
5 presents the experimental results.

2. Dempster-Shafer theory

The information about the environment of a mobile robot is obtained by its on board
sensors and is usually uncertain – some data can be missing, imprecise or inconsistent
[23]. In [12] the following types of uncertainty have been distinguished: fuzziness (lack
of strict definition, ambiguity), discord (disagreement in choosing among alternatives)
and non specificity. In order to reduce uncertainty, probability theory is usually ap-
plied. But probabilities must be assigned even if no information is available, therefore
that method is not capable of capturing epistemic uncertainty and it does not pro-
vide any means to distinguish ignorance and evidence conflicts. A proper measure
of ignorance is very important in robotics because it allows us to verify whether the
available knowledge is sufficient to make a decision. In practical applications we also
need a quantitative measure of evidence conflict. A high degree of conflict usually
shows that part of the evidence is unreliable or something unexpected occurs in the
environment. Dempster-Shafer theory of evidence (DST) [4, 22] was designed in order
to deal with uncertainty and ignorance. It also allows us to get information about
the conflict level.

In DST knowledge is encoded by assigning masses m to subsets of the set T (power
set) of all possible hypotheses.

m : 2T → [0, 1]. (1)

If T = {A,B} then 2T = {∅, A,B, T}.
The mass function fulfills the following requirements:∑

Ai∈2T
m(Ai) = 1, m(∅) = 0, (2)

where ∅ denotes the empty set. A belief measure is given by the function bel : 2T →
[0, 1],

bel(A) =
∑

B⊆A,B 6=φ

m(B). (3)

A plausibility measure is given by the function pl:

pl : 2T → [0, 1] pl(A) =
∑

B∩A6=φ

m(B). (4)

If T is a set of all hypotheses then m(T ) represents the level of uncertainty. Belief
and disbelief in a hypothesis need not to sum to 1 and both values can even be equal
to 0, which would mean that there is no evidence for or against the hypothesis. The
process of data aggregation according to DST consists of the following steps:
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• Degrees of belief for particular hypotheses are obtained on the basis of facts,
which are treated as information sources, for example a chair supports the set
of hypotheses: {classroom or living room}. In comparison to Bayesian theory
we are not forced to distribute the masses between all classes.

• Dempster’s rule is applied in order to combine degrees of belief obtained based
on different facts.

Dempster’s rule of combination for sources (1, 2...N) is described as follows:

m1,...,N (A) =

∑
Bi∩...∩Bk=A

m1(Bi) · .... ·mN (Bk)

1−K
, (5)

where A,B1,...,BN ⊆ T , and

K =
∑

Bi∩...∩Bk=∅

m1(Bi) ·m2(Bj)..... ·mN (Bk) (6)

K represents the conflict between evidences, 1−K is the normalization factor.
Shafer [4] introduced the discounting operation to handle the case when the source

of some piece of evidence is lacking credibility. If α ≤ 1 is the credibility level of the
source then it also becomes the credibility level of the piece of evidence, resulting in
a new mass mα defined by:

mα(A) = αm(A) for any A ⊂ T,
mα(T ) = 1− α+ αm(T ).

(7)

The D-S method of aggregation gives counterintuitive results in the case of strong
conflict between evidences. If K ≈ 1 the conflicting beliefs management problem
occurs. In order to solve the problem, different methods of aggregation are introduced
[22]. Smets’, Yager and the weighted average operator are examples of such methods
– these methods were tested during our experiments. The Smets’ rule of combination
is the non-normalized version of Dempster rule.

For two sources of information it is given by:

m(∅) = K =
∑

A1,A2∈2T ,A1∩A2=∅

m1(A1)m2(A2), (8)

and ∀A 6= ∅, A ∈ 2T

m(A) =
∑

A1,A2∈2T ,A1∩A2=A

m1(A1)m2(A2) (9)

In Yager’s rule of aggregation [22] the measure of conflict (K) is added to uncer-
tainty.

m(T ) = m1(T ) ·m2(T ) +K. (10)

∀A 6= T,A ∈ 2T m(A) is computed according to the formula 9.
Smets and Yager rules are cases of general weighted operator (WO). The combi-

nation rule using WO [22] consists of two steps:
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• computation of total conflicting mass K (eq. 6),

• reallocation of the conflicting mass K according to:

m(∅) = w(∅) ·K, (11)

and ∀A 6= ∅

m(A) =
∑

A1, A2 ∈ 2T

A1 ∩A2 = A

m1(A1)m2(A2) + w(A) ·K. (12)

In the weighted average operator (WAO) the w(A) is computed as follows:

w(∅) = 0,

w(A) = 1
N

∑N
i=1mi(A),

(13)

where N - is the number of independent sources to combine.
Different methods of aggregation have strong influence to classification result.

3. The system architecture

We believe that most indoor places can be recognized based on objects, so our place
recognition algorithm is strictly connected with object identification. We have pro-
posed a number of methods which allow object recognition [9, 10] on the basis on
RGB-D sensors. Figure 1 presents sample scenes and objects which have been recog-
nized by our algorithm.

The goal of our approach is to assign a place label(one of labels: A1, ..., AM ) from
a set of M classes to an observation ({oi, ..., ol} a list of objects).

The algorithm consists of two stages:

• supervised learning - a model is built based on data set,

• classification - one of the rules of aggregation is used and winner take all method
is applied.

3.1. Supervised learning

Training data set consists of N records:

({oi, ..., ol}, A1),
..,
({ok, ..., oj}, AM ),

(14)
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a

b

Figure 1: Sample objects a – kitchen, b – office

where: {ok, ..., oj} - the list of names of objects which have been found in place Ai.
The training record for the room presented in fig. 1 can be described as follows:

( {mixer, cup, cup, sugar, roller}, kitchen).
Usually M (number of classes) << N (number of records).
When the training set is given ∀i = 1, ...,K and ∀j = 1, ...,M the values of

the masses mi(Aj) are computed. Value mi(Aj) describes how much the object oi
supports the hypothesis (class) Aj .

In classic Dempster-Shafer method the masses are defined for all subsets of 2T . In
our approach the set of hypotheses has been reduced and consists of {A1, A2, .., AM , T}
where A1, ..., AM – classes of places, M – number of different classes, T = {A1∪A2...∪
AM} represents uncertainty. In this paper T is described as AM+1.

The masses are computed as follows:

• conditional probability p(Ak | oi) is defined,

• the masses are computed on the basis of p(Ak | oi),

• the masses are updated.
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Figure 2: The place classification algorithm

Conditional probability p(Ak | oi) is defined by:

p(Ak | oi) =
nk
ni
, (15)

where: nk - the number which describes how many times the object oi has been seen
in class Ak, ni - the number which describes how many times the object oi has been
seen.

There are not any general rules on how to compute uncertainty in DS theory.
Usually the mass of uncertainty is given by an expert. In computer science entropy
is the common measure of uncertainty. If the probability of an event equals 1 that
means that the event is certain, and the entropy equals 0.

The value of entropy computed for oj is defined by:

ej = −
M∑
i=1

p(Ai | oj)log2(p(Ai | oj)), (16)

where M is the number of different places.
If the object oj has been seen in one place then ej = 0, if it exists in many classes

then ej >> 0.
The credibility level αj (eq. 7) has to be near 1, if entropy equals 0 and α ≈ 0 if

ek
M ≈ 1. In our approach αj is computed as follows:

αj = u · (1.0− ek
M

), (17)

where u is a scaling factor. In our method u = 0.9, the parameter u is computed
during learning process. This value minimizes the percentage of misclassified samples
in training set.

The masses attached to the hypotheses are computed according the formulae:

∀i = 1, ...,K ∀Ak 6= T mi(Ak) = αi · p(Ak | oi), (18)
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mi(T ) = 1.0−
M∑
j=1

mi(Aj), (19)

where i – the index of the object.

3.2. The method of updating the masses

If the masses have been computed the process of classification is performed on the
learning set. One of the methods described in section 2 can be used for data aggre-
gation. The winner-take-all assignment is performed, the winning class Ak is defined
as follows:

m(Ak) = maxAj
m(Aj), j = 1, ...M + 1, (20)

where AM+1 = T . If the results of classification are correct then nothing is done.
In case of failure, the masses are modified. If Ak is the winning class and At is the
correct class, the list of objects which are used during classification is analysed (eq.
14). We look for an object oi such that:

mi(Ak) = maxojmj(Ak), j = 1, ...L, (21)

where L is the number of objects in the list.
The masses mi(Ak), and mi(At) are modified according to the formulae:

mi(Ak) = mi(Ak)− w · (m(Ak)−m(At)),
mi(At) = mi(At) + w · (m(Ak)−m(At)),

(22)

where w is a learning factor. The described procedure is continued until the number
of false classifications does not decrease.

4. Experiments

The proposed method has been tested using an MIT real environment dataset. The
MIT dataset [20] consists of 67 indoor place categories, and a total of 15620 images
– there are at least 100 images per category. The images were segmented and anno-
tated with the objects that they contain. In our system the annotations are used.
The dataset used in our experiments contained following classes: 1 – bathroom, 2 –
bedroom, 3 – children room, 4 – closet, 5 – corridor, 6 – dining room, 7 – garage, 8
– greenhouse, 9 – living room. 10th class represents uncertainty. About 260 different
objects were detected in the images.

The dataset was equally divided into two subset - learning set and testing set.
Figure 3 presents the masses computed for two different objects (before mass

updating): a wall (fig. 3a) and shower (fig. 3b).
In the case of the wall the mass of uncertainty (class no. 10) is much bigger than

the masses of other classes. In the case of the shower the uncertainty is small, while
the bathroom mass is high.
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a b

Figure 3: Masses computed for: a – a wall, b – a shower

Tab. 7–4 are confusion matrices. The results are given in percentage terms.
Tab. 1 presents the results of classification when Smets’ method of aggregation is

applied, in 2 and 3 the results of applying Yager and WOA rules are presented. The
experiments have been done without mass updating.

Table 1: Confusion matrix for Smets’ rule of aggregation
no. 1 2 3 4 5 6 7 8 9 10

1 96 2 0 0 0 0 0 0 2 0
2 2 82 2 4 2 0 0 0 8 0
3 0 0 94 0 0 0 0 0 0 6
4 0 0 0 90 6 0 0 0 0 4
5 4 2 0 2 48 2 2 0 10 30
6 0 0 0 4 0 68 0 0 26 2
7 0 0 0 0 0 0 98 0 0 2
8 0 0 0 0 0 0 0 97 0 3
9 0 0 0 0 0 4 0 0 94 2

Table 2: Confusion matrix for Yager rule of aggregation
no. 1 2 3 4 5 6 7 8 9 10

1 50 2 0 2 0 0 0 0 0 46
2 0 6 0 0 0 0 0 0 0 94
3 0 0 2 0 0 0 0 0 0 98
4 0 0 0 42 0 0 0 0 0 58
5 2 0 0 0 18 0 4 0 2 74
6 0 0 0 4 0 20 0 0 8 68
7 0 0 0 0 0 0 21 0 0 79
8 0 0 0 0 0 0 2 65 0 33
9 0 2 0 0 0 0 0 0 6 92

Smets’ and WOA rules give similar results, but aggregation using WOA is more
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Table 3: Confusion matrix for WAO rule of aggregation
no. 1 2 3 4 5 6 7 8 9 10

1 96 2 0 0 0 0 0 0 2 0
2 2 82 2 4 2 0 0 0 8 0
3 0 0 96 0 0 0 0 0 0 4
4 0 0 0 98 0 0 0 0 0 2
5 4 2 0 2 42 2 12 0 10 26
6 0 0 0 4 0 68 0 0 26 2
7 0 0 0 0 0 0 98 0 0 2
8 0 0 0 0 0 0 0 98 0 2
9 0 0 0 0 0 4 0 0 94 2

time consuming than Smets’ method. If the Yager method is applied the number of
places that are misclassified is small but the answer unknown is given too often. We
decided to use Smets’ rule of aggregation in our algorithm.

Tab. 4-5 present the results of classification when Smets’ method of aggregation is
applied, and masses are updated. We consider two approaches. In the first one we do
not distinguish between uncertainty (AM+1) and labels of places (Ai, i = 1, ...,M)
during process of mass updating (tab. 4). In the experiment presented in Tab. 5 in the
case of uncertainty the masses have not been updated. Fig. 4a and 4b represent the
masses computed for the object floor before and after the process of mass updating.

Table 4: Place classification - updated masses
1 2 3 4 5 6 7 8 9 10

1 99 0 0 0 0 0 0 0 0 1
2 0 93 2 0 0 0 0 0 4 1
3 0 0 99 0 0 0 0 0 0 1
4 0 0 0 98 0 0 0 0 0 2
5 0 1 0 0 78 5 2 0 2 12
6 0 0 1 0 0 93 0 0 2 4
7 0 0 0 0 0 0 99 0 0 1
8 0 0 0 0 0 0 0 98 0 2
9 0 1 0 0 1 2 0 0 94 2

We can noticed that the number of misclassification in the first case is smaller
than the in the second one.

In [31] the comparison of different methods of place classification is presented.
Tab. 6 presents classification accuracy for MIT database (67 classes).

Our method of places classification was compared with two different method: naive
Bayes and nearest neighbors. In all experiments the same data sets (training and
testing) were used. Tab. 7 presents the result of places classification using a naive
Bayes method and MIT database. We can notice that the naive Bayes classifier did
not recognize living room correctly.
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Table 5: Confusion matrix for updated masses, uncertainty has not been reduced
1 2 3 4 5 6 7 8 9 10

1 99 0 0 0 0 0 0 0 0 1
2 0 93 2 0 0 0 0 0 4 1
3 0 0 99 0 0 0 0 0 0 1
4 0 0 0 98 0 0 0 0 0 2
5 0 1 0 0 67 4 2 0 2 24
6 0 0 1 0 0 93 0 0 2 4
7 0 0 0 0 0 0 99 0 0 1
8 0 0 0 0 0 0 0 99 0 1
9 0 1 0 0 0 2 0 0 95 2

a b

Figure 4: The masses: a – uncertainty is not reduced during learning process, b –
uncertainty is reduced during learning process

Table 6: Classification accuracy
place classification method accuracy
Place-CNN feature+SVM 67%
Image Net-CNN features+SVM 56%
Hybrid feature+SVM 76%
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Table 7: Confusion matrix for naive Bayes
no. 1 2 3 4 5 6 7 8 9

1 94 4 0 0 0 2 0 0 0
2 0 90 0 2 0 8 0 0 0
3 3 0 97 0 0 0 0 0 0
4 2 0 0 98 0 0 0 0 0
5 12 0 0 2 52 12 14 0 8
6 10 0 4 0 0 86 0 0 0
7 0 0 0 0 0 0 100 0 0
8 0 0 0 0 7 0 0 93 0
9 0 30 0 0 2 68 0 0 0

Table 8: Confusion matrix for NN
no. 1 2 3 4 5 6 7 8 9

1 82 2 0 0 12 4 0 0 0
2 4 68 0 0 24 4 0 0 0
3 0 50 10 0 30 0 10 0 0
4 0 0 0 44 56 0 0 0 0
5 0 0 0 0 100 0 0 0 0
6 0 0 0 0 40 58 2 0 0
7 0 0 0 0 90 0 10 0 0
8 0 0 0 0 22 0 0 78 0
9 2 12 0 0 26 16 6 0 38
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Tab. 8 presents the result of places classification using a nearest neighbor method
(NN) and MIT database (9 classes). We can notice that for the class corridor false
negative error equals 0% but false positive error is very large.

Table 9: Experimental results - classification accuracy
place classification method accuracy
Naive Bayes 79%
NN 54%
Smets method 85%
Smets method, updated masses 94%

Table 9 sumarizes the experimental results. It shows that our method gives much
better results than Naive Bayes and NN classifiers. In order to compare our approach
to SVM or neural networks, we would need a much larger dataset.

DST-based classifier also has the following advantages:

• the results are easy to interpret,

• fast training speed,

• performs well with small number of observation,

• we can combine different sources of information (sec. 5).

5. Future works - combining fuzzy rules and DST

In many situations the number of objects is a very useful source of information.
Using the number of occurrences of various objects rather than just their individual
occurrences is a more informative method of distinguishing between classes of places.
For example if the robot is in a corridor it sees a small number of different objects.
This sentence can be rewritten as follows: If a small number of different objects is
seen then I might be in a corridor. A small number of different objects is the source
of information and might be in the corridor is the consequence. A small number is
a fuzzy set, its membership function depends on the exact number of objects (Fig.
5b). Fuzzy rules have the form if A then B, where A is called the premise and B is
the consequence of the rule. In [29] is shown that fuzzy rules present tolerance to
imprecision and uncertainty.

Based on an information source we can assign masses m to subsets of the set
T (power set) of all possible hypotheses. Fig. 5a presents the masses attached to
different places if a small number of objects has been detected.

The value of the membership function is the credibility level of the information
source. Applying eq. 7 a new mass assignment is obtained. Fig. 6 presents the masses
computed for different numbers of objects.

If during the learning process the described fuzzy rule is applied, the percentage
of correctly recognized corridors increases to 82%.
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a b

Figure 5: Masses and the membership function

Figure 6: Masses computed for different numbers of objects
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6. Conclusion

In this work we have proposed a new approach to place labeling by applying Dempster-
Shafer theory. DST can be regarded as a generalization of the Bayesian theory and
is able to deal with subjective uncertainty and ignorance. The experiment performed
using the MIT public dataset proved the effectiveness of our approach - the learning
process is very fast, the uncertainty is taken into account. We can combined data
taken from many sources of information. Similarly to [16] the initial degrees of belief
of hypotheses can be computed on the basis of history of past states of the robot and
transitions between states. In future works we intend to use a wider range of features
and objects and focus on real-time performance by exploiting GPU processing power.
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