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KEYPOINT-LESS, HEURISTIC APPLICATION OF LOCAL
3D DESCRIPTORS
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Abstract. One of the most important topics in the research concerning 3D local
descriptors is computational efficiency. The state-of-the-art approach addressing this
matter consists in using keypoint detectors that effectively limit the number of points
for which the descriptors are computed. However, the choice of keypoints is not trivial
and might have negative implications, such as the omission of relevant areas. Instead,
focusing on the task of single object detection, we propose a keypoint-less approach
to attention focusing in which the full scene is processed in a hierarchical manner:
weaker, less rejective and faster classification methods are used as heuristics for in-
creasingly robust descriptors, which allows to use more demanding algorithms at the
top level of the hierarchy. We have developed a massively-parallel, open source object
recognition framework, which we use to explore the proposed method on demanding,
realistic indoor scenes, applying the full power available in modern computers.
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1. Introduction and related works

Segmentation-based methods of 3D object recognition perform well in tidy, relatively
simple environments and many state-of-the-art object recognition methods are based
on pre-recognition scene segmentation [15, 16, 25, 26, 20, 14]. However, these meth-
ods are limited and prone to generate errors, as initial segmentation imposes a fixed
structure of the scene before any understanding takes place. In complex environments
with adjacent and semi-occluded objects the task of accurate segmentation without
object-specific knowledge (i.e. before classification) becomes impossible. This issue is
mentioned even by the authors of the most recent segmentation-based object recog-
nition systems, such as [15].
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As an alternative, in recent years multiple techniques of neighborhood-based, local
3D surface description have been developed, such as PFH [23], FPFH [21], PFHRGB
[4], CVFH [2]. The applications for such descriptors range from point cloud registra-
tion to object part recognition, fast orientation retrieval and, as descriptors become
more accurate, raise the possibility of segmentation-less object detection. The use of
neighborhood-based descriptors is usually paired with the use of keypoints [3, 7, 9, 8]
as heuristics in order to limit the descriptor calculation and classification only to the
most meaningful regions of the scene. As the cited papers show, the method of choice
of keypoints influences the quality of classification of local descriptors (though not
as much as the choice of descriptors). Different keypoint detectors are sensitive to
different features and have varied repeatability [9].

The authors of the mentioned papers [3, 7] find that PFHRGB are the most robust,
but also one of the most time-consuming descriptors. The same authors also provide
an interesting comparison of category and instance recognition accuracy of descriptor
classification using keypoints with descriptor classification applied for whole, sub-
sampled point clouds views, using the points resulting from voxel grid filtering as
keypoints. It was found that the sub-sampling method resulted in a higher accuracy
at the cost of significantly higher processing time, since more descriptors had to be
calculated — it took 1.6 to 5.7 times longer (depending on the leaf size of the voxel grid)
to calculate PFHRGB (the best performing descriptor) for sub-sampled scenes than
for keypoints. These conclusions have been drawn for experiments involving views of
isolated objects belonging to known categories. Obviously, in realistic scenes, where
occlusions and many unknown objects occur, we could expect lower recognition rates
than the rates of the cited papers.

If we intend to apply local 3D descriptors for object detection in real-life environ-
ments, where known objects constitute only a fraction of the scene, an appropriate
mechanism of attention focus (such as keypoint detection) is even more crucial. Key-
point finding algorithms are intended to detect general saliency before any classifica-
tion occurs, and thus are oblivious of the objects of interest. In real-life applications,
such as mobile robotics, an object recognition system is often concerned only with one
or only a few object categories at the same time (e.g. for finding an object, performing
an action using objects, etc.).

Taking this practical observation into consideration and focusing on the task of
single object detection, in this article we propose a different approach to classification
of local 3D detectors, which doesn’t make use of keypoints. Instead, we apply voxel
grid filtering and classify the resulting points (which we call anchor points, since
they are not keypoints) in a hierarchical manner in three fully parallelized stages:
first we remove the large smooth regions of the scene (which are prevalent in indoor
environments), next we calculate and classify fast local descriptors, rejecting another
part of the scene and finally we apply the most robust descriptors on the remaining
anchor points. The difference between the anchor points used in this article and
keypoints is that keypoints are calculated by a general-purpose algorithm (i.e. selected
as being universally relevant), without any knowledge about the object of interest.
Anchor points, on the other hand, are initially uniformly distributed all over the
scene (resulting in their large quantity) and subsequently reduced in stages using
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information about a specific search object.

The idea of flat areas removal to reduce computation time is applied in complex
systems of 3D semantic category recognition, such as [27]. The most common meth-
ods to achieve this are based on RANSAC plane detection [24, 5, 12, 17]. However,
such methods are not very time-efficient (even in parallel implementations) and the
processing times strongly depend on the complexity of the scene. Although on or-
ganized (2,5D) point clouds the plane segmentation task can be accomplished by
simple image-based region growth using surface normal vectors [6], this technique is
not practical for unorganized (non-image) clouds, such as the scenes used in the ex-
perimental section of this paper (the smallest useful neighborhoods tend to be large
and not memory-aligned on these clouds). In the proposed system we have applied a
massive-parallel region growth algorithm that we presented in a previous work [10].

In the experimental section we demonstrate that the proposed hierarchical, heuris-
tic approach not only greatly reduces scene processing times (compared to dense
descriptor classification), but also significantly increases detection accuracy by com-
plementary action of the smooth area removal (which we refer to as non-flat filtering)
and the descriptor classification. The presented approach could be combined with
keypoint detection methods in order to further speed-up the scene processing as well
as be extended to detect a limited number of objects simultaneously. However, to
explore this possibilities is beyond the scope of this article.

The experiments have been carried using our open-source object recognition sys-
tem Heuros [1], which benefits from the Robot Operating System (ROS) [19] and
Point Cloud Library (PCL) [22] — especially the parallel methods implemented by
Anatoly Baksheev. All of the experimental data has been acquired using a Kinect
sensor and pre-processed on-line applying the PCL implementation of Kinect Fusion
[13]. All of the demanding processing was performed using CUDA implementations
on a GPGPU, including voxel grid filtering, neighborhood search, flat areas detection,
normal vector calculation, feature calculation and matching.

Interestingly, during the experiments we found that some of our descriptors (which
are combinations of simple feature histograms and shape descriptors) significantly
outperform the descriptors found in literature (including PFHRGB) in the task of
segmentation-less object detection for the tested conditions of untidy, realistic indoor
environments. Since these descriptors are based on different basic features than PFH,
we decided to combine the best performing descriptor (ICAHSD) with PFHRGB in
a naive manner, obtaining even higher correct recognition rates. In the following
sections we describe the proposed hierarchical heuristics, the non-flat filtering par-
allel algorithm and the tested 3D local descriptors. The final sections concern the
performed experiments and the general conclusions.

2. Hierarchical heuristics

The proposed method of cluster selection for descriptor calculation is presented in Fig.
1. The algorithm operates on point clouds of the full scene, which are increasingly
reduced on each stage. The first stage consists in removing the large smooth areas of
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the scene, where no relevant features are expected. Next, the cloud is downsampled
using a voxel grid filter in order to obtain a set of anchor points with relatively high
frequency. The radial neighborhoods of these points are then retrieved from the full
dense scene using an octree in order to calculate the first 3D local descriptors (denoted
as “fast descriptors” on the diagram). For this classification stage we seek to apply
low-cost descriptors, which give low false-negative rates, but for which we can tolerate
moderately high false-positive rates.

We expect these two heuristic reduction stages to provide a region of interest of
the scene, where most of the real positive anchor points are concentrated and for
which we can calculate and classify more robust descriptors at a significantly reduced
computational cost compared to calculation for all of the initial anchor points. Since
the objects present on 3D point clouds are spatially consistent, we apply a dilation
step after the first classification in order to prevent omission of important anchor
points. This consists in including all of the radial anchor point neighborhoods of the
positively classified points as input for the robust descriptors.

( Input point cloud } Non-flat filter
I—‘ Downsampling A

Fast descriptors calculation
and classification

[ Dilation ]q—[ Downsampling B

Robust descriptors
claculation and classification

Non-flat cloud

Output points

Figure 1. Scheme of the proposed hierarchical scene reduction and descriptor calcu-
lation method. The three main stages of the procedure are highlighted.
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3. Large smooth areas removal

Efficiently finding large smooth areas in unorganized point-clouds is not a trivial
task, as simple image-based flood-fill methods are not applicable. Using a RANSAC
approach (whether serial or parallel) to find planes results in data-dependent per-
formance (i.e. we repeat the whole procedure for subsequent planes) and doesn’t
necessarily provide connected coplanar areas. In a previous work we have proposed
a parallel region-growth algorithm [10]. As region-growth in its basic version is a
highly sequential concept, our parallelization method is iterative and heuristic. The
algorithm requires finding radial neighborhoods for each point and applying some
criterion to create connections within these neighborhoods (e.g. normal vector sim-
ilarity), which can easily be done in parallel. Each point is treated as a seed and
is assigned a unique segment index. After that, the region growth parallel method
(kernel) is launched multiple times, propagating the higher indices through the neigh-
borhood connections and further-away, already interconnected regions. A simplified
diagram of this algorithm is presented in Fig. 2.

Create connections ’

Kernel invocation

Many connections?

No

Repeat kernel

Repeat in
blocks

N

Compare the current point's index with the
origin point's index and update the smaller

Find and fetch neighbors' greatest IDX

Terminate

Figure 2. Region growth massively-parallel algorithm using for the non-flat filtering
stage.
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4. Local descriptors and negative models

In the experimental section we consider multiple 3D local descriptors (features), which
can be calculated for the neighborhoods of the scene’s anchor points — i.e. clusters of
points found within a given radius. As descriptors corresponding to the “fast descrip-
tors” stage (Fig. 1) we applied 20-bin 1D histograms and 20x20-bin 2D histograms
of simple local features (inclination, convexity, anisotropy of convexity, hue and sat-
uration) as well as shape distributions (D1-D3). For the “robust descriptors” stage
more complex histogram features have been tested (PFH, FPFH, PFHRGB) as well
as their combinations with the simpler descriptors. In this section we briefly introduce
the used features, some of which we have proposed in previous works [11].

Inclination (I) of a local surface relative to the gravity vector measured with the
Kinect’s accelerometer is the first of the simple local features which we histogramize.
This feature is invariant to translation of the object and to rotation around any vertical
axis, but not invariant to rotation in other axes. However, since most household object
have a limited number of possible bases (i.e. stable orientations), this feature proves
highly useful in indoor environments.

Convexity (C) is defined as the local amount of outwards curvature, hence can
be positive or negative. We calculate this feature at each scene point using the normal
vectors within 1em neighborhoods. To formally introduce this feature let us consider
the local coordinate system attached to point p (in which p = [000]" and where
n=J[oo 1]T is the surface normal vector at p. Using this coordinate system we
introduce the auxiliary quantity of convexity at p relative to point p; defined with
equation (1)

_ _ . arccos(e,n;
C(p,pi) = (eyPy) - (i) - “oCO5(Cami)

; (1)

/2
where: ey, = [El)) g (8)} ,€; = [001], and n; is the surface normal vector at point p;.
Using this quantity we can define convexity at p as:
1
Clp) = K Z C(p,pi), (2)

Pi€Np(r1)\Np(r2)

where Np(71) \ Np(r2),m1 > ro is the set-theoretic difference of two neighbourhoods
of point p having radii of magnitude r; and rs.

Anisotropy of convexity (A) is defined as the variation of convexity across
different directions. We also calculate this feature for each point by retrieving the
maximum and minimum convexity components of each neighbor within a given radius
range:

A(p) = max C(p,pi)] — min Cp,pij)] —1 3

) PiGNp(Tl)\Np(Tz)[ (P pi) piGNp(Tl)\Np(Tz)[ (P, pi)] )

Hue and saturation (H,S). We also apply histograms of color hue and saturation

from the HSV color space (omitting V, as this dimension is the most affected by
lighting variations).
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D2, D3, D4 (abbreviated as D) [18] are shape distributions — i.e. normalized
histograms of respectively: distances between any 2 cluster points, areas defined by
any 3 points and volumes defined by any 4 points. These features are estimated using
random point tuples of the descriptor clusters.

PFH, FPFH, PFHRGB [23, 21, 4]. The former are multi-dimensional his-
tograms of parameters describing the relations of point pairs position and normal
vectors, whereas FPFH is an approximate speed-up version of PFH and PFHRGB
is PFH with three added histograms representing the RGB color relations between
these point pairs.

While many other descriptors can be found in literature, we have chosen only the
mentioned for experimental evaluation. We have implemented the first 8 features used
for local description, due to their simplicity, in an optimized, integrated calculation
procedure. The GPU module of PCL provides massively-parallel implementations of
PFH, FPFH, PFHRGB. In the experimental section we explore classifiers which com-
bine the simple features I, C, A, H, S, D by averaging similarity scores for all of their
histogram components (in our case, these scores are Pearson’s correlation coefficients
to model histograms). As shown in the next section, such combined descriptors as
ICAHS and ICAHSD give surprisingly good results and can be further combined in
the same manner with the complex descriptors. This simplistic combination method
could, of course, be further investigated and developed (e.g. using weighted averages
or a higher-dimensional descriptor). However, due to the limited, self-collected test
data available for the experiments presented in this article, we decided to avoid au-
tomated fine-tuning the new combined descriptors in order to avoid overfitting, and
use the naive combination method instead.

In the system used for the experimental section, we classify the calculated de-
scriptors by comparing them to model descriptors (i.e. descriptors calculated for a
higher density of anchor points in training object views). In order to prevent repli-
cation of almost identical model descriptors, each new calculated training descriptor
is compared in terms of Pearson’s correlation to the already acquired descriptors and
discarded if it’s too similar to an existing descriptor (for this we apply a correlation
threshold set to 0.99). Even though the previously described non-flat filtering method
removes vast amounts of smooth areas, we still observed that flat points were left out,
some of them giving false-positive detections. To prevent this, at the training stage
we apply negative models consisting of a few samples of flat areas (which we further
call antimodels). Beside being compared to the positive models, each new training
descriptor is also compared to the antimodels with a lower threshold and discarded if
a similarity is found.
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5. Experiments

5.1. Methodology

In the carried experiments we consider multiple parameters of the proposed method
evaluating its usefulness for candidate object detection. In particular, we discuss the
choice of the applied descriptors, the influence of the non-flat heuristics, the use of
antimodels, and the descriptor calculation radiuses.

These parameters have been evaluated using realistic train and test datasets of
scenes we acquired with the Kinect sensor applying the Kinect Fusion SLAM technique
[13] and processed on a PC equipped with a Nvidia GTX Titan Black GPGPU. Since
there are no available public datasets containing labelled Kinect Fusion-quality 3D
scenes known to the authors, the used datasets are self-collected. The test data is
intended to reflect difficult conditions of untidy indoor environments, which include
multiple occlusions, overturned, adjacent and stacked objects, as well varied visibility
and acquisition distance. The training set contains 6 different household “prop”
objects in different poses (6 views each): book, cup, ironer, ketchup bottle, brake fluid
bottle and mouse. The test set consists of 21 scenes containing the objects present in
the training data, as well as many other objects, unknown to the system. The test data
is limited — however, it presents demanding and fairly varied conditions. The known
objects of the test data have been manually labeled for calculation of detection rates,
providing a grid of points belonging to their respective surfaces. Example detection
results for the test set are presented in figures 3 and 4. On the scenes from Fig. 4
beside true positive detections we can see some false positives: On the book detection
scene, despite applying flat area removal and flat antimodels, the algorithm produces
some missclassifications because of the low uniqueness of the book’s shape features.
On the ironer detection scene we can see how a part of the ironer is detected despite
the heavy cluttering from other objects. Some of it’s features, however, are also
erroneously detected on a duct tape. On the mouse detection scene the algorithm
failed to provide any detections. The mouse presented difficulties often when the
sensor was not close enough, since the mouse is small and black, which resulted in
unstable feature values.

As motivated before, we have focused on the single-class detection task, for which
we apply a nearest neighbor approach: we classify a descriptor as belonging to the
object of interest if the proximity measure to the nearest neighbor form the train-
ing set doesn’t exceed a given threshold. As the proximity metric we have applied
Pearson’s correlation coefficient. This approach is justified in the considered single-
object detection task, as the number of training descriptors is small and the search is
fully parallelized (the nearest neighbor search times are small compared to the feature
calculation times).

In the presented experiments, in order to compare classification quality of different
methods, we consider (1-precission) x recall plots, as well as F'1 scores, which are
widely used for evaluation of binary classifiers:

P19 precision - recall

(4)

precision + reccall
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Figure 3. Example test scene from our Kinect Fusion dataset processed in the
proposed hierarchical manner. The white dots represent the anchoring points for
(from left to right) non-flat filtering, ICAHSD and Combined descriptor classification
for the task of cup detection. An additional view of RGB colors converted to grayscale
is provided.

where precision = TPZ_% and recall = TPZ%' To obtain the true positive (TP),
false positive (FP), true and false negative rates (TN, FN) we applied approximate
estimations based on the neighborhoods of the positive detection (D) and positive

label sets (L) of anchor points:

TP = Ny(D) N N,(L)
FP = N,(D)n Nj(L) 5
TN = NJ(D)n NJ(L)
FN = Ny(D) N Ny(L)

where N, and N, are anchor point neighborhoods retrieved respectively for 0.6 and 0.4
factors of the descriptor calculation radius. These “relaxed” neighborhood definitions
are intended to partially decrease the impact of imperfect correspondence between
the detections and the labels, focusing instead on whether the positive detections hit
or miss a labeled object as a whole.
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Figure 4. Example test scenes imperfectly processed (from higher to lower) for book,
ironer and mouse detection (on the last scene the algorighm failed to provide any
detections). The right column shows the grayscale representation of the scene colors.
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5.2. Radiuses

We have tested multiple fixed radiuses for descriptor calculation, ranging from 3 to
15 cm as well as variable radiuses determined using the model views as follows:

R=s-ry/N/n (6)

where n is the average number of neighbors in a r radius from any surface point, N is
the number of points in a model object and s is a scaling factor. The detailed perfor-
mance comparisons are not presented in the article — however, we have concluded that
the variable radiuses with s = 1 worked best (settling the radius using just the first
model’s number of points N and calculating n for r = 1). Fixed radiuses around 6-7
cm were only slightly worse on average and would be more computationally efficient
if we wanted to compare the descriptors with models from different semantic classes.
The presented experimental results in this section use these variable radiuses. To get
the descriptors’ anchoring points, scene point clouds are downsampled using parallel
voxel grid filtering with a voxel size calculated as:

2R
V= — 7
¥ 7)
meaning that on a flat surface a descriptor’s neighborhood covers about 7 anchoring
points, which we consider to be fairly dense.

5.3. Non-flat filtering and antimodels

In order to validate the first heuristic scene reduction mechanism, we have compared
the detection quality of descriptor classification applied on full scenes with the clas-
sification applied only on non-flat areas and classifiers trained using antimodels (also
applied on non-flat areas). We have found that both of these mechanisms improve
the classification quality in terms of precision and recall (especially non-flat filtering),
which is demonstrated only for a selected case on Fig. 5 — for the PFHRGB descriptor
(which was found to perform best in [8, 3]). Some important performance parameters
of the non-flat filter algorithms are also provided in Tab. 1.

Table 1. Results for non-flat filtering

Avgerage scene anchor points 1975

Avgerage anchor points after non-flat | 1010

Avgerage non-flat filtering time 38.5 ms

5.4. Features comparison

Applying these conclusions (i.e. using non-flat filtering and antimodels), we have
compared multiple descriptors: FPFH, PFH, PFHRGB, and many combinations of
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Figure 5. Comparison of PFHRGB classification for full scenes, non-flat areas and
non-flat areas trained with antimodels.

the earlier described simple features I, C, A, H, S, D2, D3, D4 and their 2D histogram
combinations as well (even though we did not find any benefit from using 2D over 1D
histograms). If Fig. 6 we present the (1-precision) x recall plots for a selected subset
of the tested descriptors. The descriptor combining all of the 1D simple features
(which we refer to as ICAHSD) achieved the best results (significantly better than
PFHRGB). However, when combined with PFHRGB in a naive manner (we simply
took the average correlation of both descriptors), the resulting descriptor (denoted
as Combined) surpasses both of its components. As we can see, the curves don’t
always cover the higher precision part of the graph, which indicates that after some
correlation threshold no positive detections are returned and no higher precision is
achieved.

5.5. Hierarchical heuristics

Based on these measurements, we decided to demonstrate the full hierarchical classi-
fication applying non-flat filtering, antimodels and using ICAHSD descriptors (which
took on average slightly above 100ms, to calculate on non-flat areas, excluding non-
flat filtering itself) as a heuristic for the slower PFHRGB (with an average of 440ms
on nonflat areas), and then calculating the correlation scores of the Combined de-
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Figure 6. Comparison of selected descriptors (non-flat heuristics and antimodels
were applied for all the presented descriptors).

scriptor to obtain a final output classification. In Fig. 7 we present the measured
impact of the proposed heuristic mechanism on the scene processing times consider-
ing different classification thresholds for the lower-level stage classifier (using ICAHSD
descriptors). Tab. 2 summarizes the performed experiments in terms of times and
max F1 scores, providing also the applied heuristic level (0 — full scene processing, 1
— processing only non-flat areas, 2 — processing only the anchor points resulting from
non-flat filtering and the first descriptor classification stage).

As we can see, the initial processing time was cut to less than half just by applying
non-flat filtering (improving also the F1 scores). The processing time was further
reduced twice again by applying the next heuristic stage (ICAHSD). The maximum
F1 score was negligibly affected until we have increased the heuristic threshold to 0.87
— thus, the value 0.85 seems optimal (this was also visible on the (1-precision) x recall
plots, which are not presented here). However, if we desired a high precision level, the
threshold could be further increased to speed up the scene processing without affecting
performance. As we can see in Tab. 2, the simpler descriptors’ classification time
doesn’t benefit from the application of non-flat filtering, but still increases accuracy
by reducing false-positive detections.
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Figure 7. Processing times and maximum F1 scores for the heuristic Combined
descriptor without heuristics, with non-flat heuristics and full descriptor heuristics
for different ICAHSD classification thresholds.

6. Conclusions

In this paper we have presented a hierarchical, heuristic approach to descriptor-based
object detection, useful for applications with limited numbers of interest objects.
We implemented and validated this method using parallel computing on a high-end
GPGPU. The two stages of anchor point reduction have been shown to decrease
the processing time over 4.5 times, while also significantly increasing classification
accuracy. Furthermore, we have explored multiple 3D local descriptors and found
that straightforward combinations of simple feature histograms give better results
that state-of-the-art complex descriptors for the considered task — we also combined
these histograms with PFHRGB, obtaining an even better descriptor. The presented
descriptor combination method is simplistic, as it was not in the primarily intended
scope of the article. However, it opens interesting exploration possibilities for weighted
or boosting local descriptor mixtures.

In the experimental setup we have applied exhaustive nearest neighbor classifica-
tion, which is justified for the established single-object detection goal. However, for
the simultaneous recognition of multiple objects, fast-learning techniques like SVM
could be applied. Also, it is not given that there is a single descriptor that suits all
semantic classes and object-specific descriptor usage could be considered.

Although it has not been tested, it is possible that we could achieve further time
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Table 2. Comparison of heuristic levels, max F1 scores and average processing times
for the selected descriptors in several configurations: no heuristics (full), non-flat
filtering (N), antimodels (A), All heuristic stages (H)

Descriptor Hlvl Max F1 Avg T [ms]
FPFH full 0 0,229 254,3
FPFH N + A 1 0,367 166,2
PFH full 0 0,261 671,3
PFHN + A 1 0,369 290,8
PFHRGB full 0 0,283 1053,1
PFHRGB N 1 0,403 439.1
PFHRGB N + A 1 0,460 440,2
ICA full 0 0,279 94,5
ICAN+ A 1 0,327 103,5
ICAHS full 0 0,422 105,3
ICAHS N + A 1 0,542 109,1
ICAHSD full 0 0,382 192,6
ICAHSD N + A 1 0,567 147,2
Combined full 0 0,466 1220,3
Combined N + A 1 0,677 521,5
Combined H 0.7 2 0,685 445,2
Combined H 0.8 2 0,675 337,7
Combined H 0.83 2 0,677 294,9
Combined H 0.85 2 0,674 267,6
Combined H 0.87 2 0,663 246,6

reduction by adding more descriptor-based heuristic processing stages (e.g. using the
somewhat faster ICAHS descriptors before ICAHSD). Also, since our method is based
on a different heuristic mechanism, it could probably benefit from the application of
keypoints, which can be tested in future works. Object detection methods based
on local descriptors are also suitable to be combined with more discriminative (but
more time-consuming) techniques such as point cloud of feature cloud registration. In
order to gain a better understanding of these possibilities it would be appropriate to
carry larger experiments, as well as tests involving scenes captured with newer depth
sensors, such as the Kinect 2.
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