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Abstract. This paper describes the results of experiments on detection and recognition 
of 3D objects in RGB-D images provided by the Microsoft Kinect sensor. While the studies 
focus on single image use, sequences of frames are also considered and evaluated. Observed 
objects are categorized based on both geometrical and visual cues, but the emphasis is laid 
on the performance of the point cloud matching method. To this end, a rarely used approach 
consisting of independent VFH and CRH descriptors matching, followed by ICP and HV 
algorithms from the Point Cloud Library is applied. Successfully recognized objects are 
then subjected to a classical 2D analysis based on color histogram comparison exclusively 
with objects in the same geometrical category. The proposed two-stage approach allows to 
distinguish objects of similar geometry and different visual appearance, like soda cans of 
various brands. By separating geometry and color identification phases, the applied system 
is still able to categorize objects based on their geometry, even if there is no color match. 
The recognized objects are then localized in the three-dimensional space and autonomously 
grasped by a manipulator. To evaluate this approach, a special validation set was created, 
and additionally a selected scene from the Washington RGB-D Object Dataset was used. 

Keywords: 3D object detection and recognition, Kinect, point cloud analysis, RGB-D 
images, VFH, CRH, ICP 

1. Introduction 

The understanding of the observed environment based on computer registered images and, 
in particular, finding the number, the type, the properties and finally the pose of objects 
within this environment is one of the most profound problems and goals that face the 
machine vision community. Whereas the analysis and interpretation of images and 
extraction of key information contained therein are most often intuitive, effortless and 
instantaneous for humans, it is one of the crucial competencies that computer systems still 
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lack today. Despite numerous attempts to mimic human vision capabilities, computer 
algorithms in this field are in their early infancy due to the enormous complexity of the 
process and superficial knowledge of its progress in the human brain.  

One of the key issues associated with the manipulation of objects is their detection, 
recognition and localization in the visual scene. The latter task seems to be particularly 
difficult, however, it became solvable in nearly real time with the application of depth 
images provided by sensors like the Microsoft Kinect. The Kinect-generated RGB-D image 
does not only contain the usual three color components of the observed scene for each pixel, 
but it also holds the distances of the observed points from the sensor. This opens up a whole 
new range of possibilities for analysis and processing of information, but at the same time, it 
creates new challenges that require new solutions. 

In this paper, experiments and implementation results of a vision system for the 
detection and recognition of three-dimensional objects in RGB-D images provided by the 
Microsoft Kinect sensor are described. The focus is on using a single image for this 
purpose, however, the analysis of several consecutive frames is considered as well. 
Moreover, the recognized objects are localized in the 3D space and autonomously grasped 
by a manipulator. The experiments are conducted in a domestic-like environment and the 
objects to be recognized and manipulated are everyday items like soda cans, coffee mugs, 
etc. The applied algorithm classifies the observed items at two stages; at first, using only 
geometrical information and subsequently, analyzing visual cues. If an observed object is 
successfully recognized at the first stage, its final match is determined by color histogram 
comparison. This enables distinction of objects of similar geometry but different visual 
appearance, like soda cans of various brands. It also ensures correct geometrical 
categorization of objects of known geometry but of different appearance (a soda can of a 
brand not included in the object dataset will still be recognized as “some soda can”). 

Eventually, the object is localized and grasped by the manipulator. In order for the 
above scenario to work, a database of objects’ point clouds and their RGB images is 
necessary. Objects outside of the database still might be recognized in the first phase, as 
long as their geometry is similar to an object in the database, but they will be most likely 
rejected in the color matching phase. A special objects’ database was created for the study, 
and the performance of the point cloud analysis part of the algorithm was additionally 
verified on a selected scene from the Washington RGB-D Object Dataset [26]. 

2. Related work 

3D objects recognition methods have been extensively investigated in the last decade, but 
there are still many unresolved issues, opportunities and challenges. The development of 
affordable 3D acquisition systems (e.g Microsoft Kinect in 2010), sparked great interest in 
the field of 3D object identification, and the use of range images for object recognition has 
grown significantly. Numerous advantages, like easier segmentation, more accurate 3D pose 
estimation and new geometrical features shifted the focus of researchers from the classical 
2D approach to the analysis of color-and-range data. 

In 2010, Hinterstoisser et al. proposed a template based recognition method, which used 
a large RGB-D template database containing objects registered from different angles [21] 
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and Papazov and Burschka developed a method for object recognition in cluttered scenes 
using point clouds [35]. Less than a year later, the Point Cloud Library – an open source 
library of algorithms for 3D point cloud processing – was introduced [38]. Since then, 
several approaches to object recognition using 3D data have been proposed. Rusu et al. 
developed a global descriptor named VFH [39], following its local predecessor FPFH [40]. 
This idea was soon extended in [2] to form a Clustered Viewpoint Feature Histogram, 
which is more robust to occlusions. The problem of 6DOF object pose estimation was 
solved by the Camera Roll Histogram Descriptor in [8]. Further research on the features of 
the 3D objects resulted in the appearance of OUR-CVFH descriptor based on Global 
Unique Reference Frames [5] computed for each cluster. The work described in [44] shows 
the application results of the Signature of Histograms of OrienTations (SHOT) – a local 
descriptor inspired by SIRF, which represents an intersection between Histograms and 
Signatures with high computational efficiency. In [3], a correspondence grouping algorithm 
and a fast descriptor matching accomplished by the FLANN Library [32] was proposed. In 
addition, an Iteractive Closest Point (ICP) algorithm for pose refinement introduced in [12] 
and extended in [48] was applied to point clouds. Finally, to reduce the number of false 
positives, a Hypotheses Verification (HV) step introduced in [3] was extended in [4] by 
additional hypotheses generation pipelines with the use of SIRF and OUR-CVFH 
descriptors. Aldoma et al. adapted the solution from [4] to a multi-view recognition system 
[7]. In [43] Tang et al. demonstrated advantages of simultaneous segmentation, object 
detection and 3D pose recovery in extracted global and local feature models acquired from 
multi-view color images and point clouds. His approach was improved in [47] by including 
additional cues: SIRF features, color and shape characteristic in hypotheses evaluation 
stage. Recently, Prankl at al., in [37], developed a method for creating full 3D models by 
fusing partial models obtained by different reconstruction sessions, and Narayanan and 
Likhachev, in [34], proposed a Perception via SeaRCH algorithm for detection and 
localization of multiple mutually occluded objects.  

A recent interest in application of deep convolutional neural networks to 3D object 
recognition emerges as a natural consequence of their enormous successes in the field of 2D 
image analysis. Initially, the depth channel was treated on par with the RGB ones [9], but 
this approach could not grasp the entire complexity of the available 3D information. 
Therefore, it was soon enhanced to learn from volumetric data represented by occupancy 
grids [31], [46]. Another issue tackled by the CNN community was developing solutions for 
obtaining invariance to different kinds of transformations [28] and scale changes [18]. In 
[16], an adaptive, multi-scale CNN architecture was proposed to jointly perform depth 
prediction, surface normal estimation and semantic labeling. In contrast to these methods, a 
very recent approach described in [36], uses depth information to drive the scale selection 
of the convolutional filters. The deep learning methods have already outperformed most, if 
not all, classical approaches to model alignment [17], feature learning [45] and object 
recognition in cluttered 3D scenes [42]. 

The success of CNNs would not have been possible without large-scale annotated 3D 
datasets and deep learning frameworks. The most popular 3D datasets include the 
Washington Dataset [26], the Princeton ModelNet [46] and ShapeNets [14]. Deep learning 
frameworks such as Caffe [22], Theano [11], Torch [15] or TensorFlow [1] enable easy 
creation and training of various CNN architectures. They make extensive use of CUDA or 
OpenCL technology on GPUs to boost the processing speed. 
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Although deep learning methods are starting to outperform and replace classical ones, 
they require substantially bigger training sets and far more powerful and expensive 
computer resources, especially during the training phase. For example, the winning team of 
the Amazon Picking Challenge 2015, that did not use deep learning, needed just 161 
training images to build a successful classifier of 25 objects [23], while the next year’s 
winners, that applied CNNs, used 20 thousand images and a powerful and expensive 
NVIDIA TITAN X GPU [19]. Unfortunately, very few authors report training times of their 
CNNs, which can reach several days even on powerful GPUs. The system applied in the 
described study, on the other hand, requires a relatively small training set and is able to 
learn it within seconds or minutes. It runs in near real time on a single CPU core, so it could 
be also used in embedded solutions, not only for recognition, but for training as well, which 
is unthinkable in the case of CNNs. Therefore, in light of the above, evaluation of different 
approaches should not be based exclusively on their pure performance in the recognition 
stage (in terms of accuracy and speed), but also on the effort put during the training phase 
(to create a custom training set containing tens of thousands of samples) and its cost 
(primarily in terms of training time and/or direct equipment cost). If the recognition 
accuracy is the only goal, CNNs will definitely be the answer, but for cost-effective 
solutions, classical approach should still be considered. 

3. Overview of the experimental setup 

The objective of the described system is to identify certain objects placed on a flat surface, 
find their pose and grasp them with a manipulator (see Figure 1 for a general diagram of the 
system). The entire point cloud processing is performed with the Point Cloud Library (PCL) 
[38] and for the classical 2D image analysis (histogram comparison) the OpenCV library is 
used. The processing time, on a single core of a medium class CPU, is about 1-2 seconds 
per object in the scene (in verbose mode), with a dataset of 1000 model objects. 

  
Figure 1. A general functional flow block diagram of the robotic vision system 

An RGB-D image captured by the Kinect is first converted into a point cloud that is then 
filtered and segmented into separate clusters. The objects resting on a planar surface are 
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described with a global Viewpoint Feature Histogram (VFH) [2], [30] that is matched with 
VFH histograms in the database. For promising candidates a Camera Roll Histogram (CRH) 
[5], [8] is then calculated in order to establish the right pose, which is further refined with 
the Iterative Closest Point (ICP) algorithm [48] to get the best match. The final stage of the 
analysis is the global Hypotheses Verification (HV) [3] during which object hypotheses are 
verified so as to reject false detections. Once an object is successfully recognized based 
purely on its geometry, a classical 2D image analysis is applied in order to classify objects 
of similar geometry and different visual appearance/colors. An RGB view of the observed 
object is compared by color histogram matching to all the objects in the database belonging 
exclusively to its geometrical category. Finally, the object is grabbed by the manipulator. 

The approach presented above is based on improving and combining several prior 
works, mainly the ones presented in [39], [2], [8], [3], [32], [12], [33]. In contrast to many 
other methods (especially those based on deep learning), in this approach, a very large 
database of objects to learn a good classifier is not needed. Similarly to [33] global VFH 
descriptors are applied to identify objects, but a very rarely used CRH descriptor is added 
(less than 10 references in IEEEXplore database) to obtain their right poses. A slightly 
similar approach was applied in [20] where both descriptors were merged into one. Both 
solutions, however, require a large number of training objects acquired at nearly all possible 
poses in order to identify an object in an arbitrary pose. In the approach applied in the 
described study, both descriptors are dealt with independently and sequentially, and thus, a 
lot fewer object models are needed. Color and geometry in the recognition pipeline are also 
separated, unlike in [33], where both are combined. Such an approach allows recognition of 
objects of known geometry, but of unknown or altered colors, e.g. since the system has a 
model of a Cola can, it will classify any soda can as a soda can, but it will just not be able to 
tell its brand without additional color models.  

All the VHF descriptors are organized in a form of a kd-tree so adding a new model to 
the database requires no time- and resource consuming processing, unlike in the case of 
deep neural networks, and their comparison at the beginning of the pipeline is fast. 
Moreover, multiple angles resulting from the CRH alignment phase are being considered in 
the applied approach, so the probability of skipping a valid candidate is significantly 
reduced. Additionally, ICP matching is applied for each of these candidates, which 
altogether, ensures very precise verification of each potential solution initially found in the 
VFH comparison phase.  

The shortcomings of the proposed approach, which are inherent to the applied methods, 
include problems with proper object segmentations in heavily cluttered scenes, low 
capability of detecting partially occluded objects and a requirement of setting problem-
specific thresholds. 

4. Image acquisition and point cloud extraction 

A point cloud of the entire scene, generated by the Kinect sensor, has to be preprocessed in 
such a way that only relevant points belonging to unique objects of interest are grouped 
together, and stored for later processing. It is relatively easy to detect and remove certain 
known structures like tables or the floor or any other planar surface of a major size. In this 
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way, all the remaining points can be clustered into separate objects. The pipeline of this 
process is shown in Figure 2 and processing results at each stage are depicted in Figure 3. 

  
Figure 2. Processing pipeline of object detection and point cloud extraction 

A 640 by 480 pixels RGB-D image acquired by the Kinect sensor is processed with the 
PCL library and converted into a point cloud containing exactly 307 200 points (see Figure 
3a). It requires initial filtration before it can undergo the segmentation process. At first, 
points that are of no use for 3D processing as having no information about depth (NaN) due 
to occlusions, transparent or specular surface etc. are removed. Subsequently, a passthrough 
filter is used to remove all the points lying outside of the user-defined range (see Figure 3b). 
Experiments have shown that reliable recognition of small objects is not possible beyond 
1.5 m from the sensor and, thus, the passtrough filter cut-off distance along the Z axis was 
set to this value. For the remaining points in the cloud, normal vectors are computed. 
Despite the removal of some of the points, the point count in the cloud is still high, which 
may slow down further processing. Optionally, the point cloud may be downsampled using 
a voxelized grid method in order to increase performance. Nevertheless, downsampling may 
have a negative impact on recognition quality, especially in the case of small or distant 
objects. Therefore, in the system used in the described study, both versions of the point 
cloud are used; the full point cloud for descriptor computation and the reduced one for 
segmentation, centroid calculation and precise pose estimation with the ICP algorithm. 

 

  
Figure 3. Object segmentation stages (point count in brackets): a) initial point cloud (307 

200), b) after removal of NaN points, outliers and passthrough filtering (149 262), c) 
dominant plane with touching objects (81 764), d) finally segmented objects (13995) 
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After filtration is completed, the segmentation process may be applied. Since a large, 
dominant plane in the scene can be easily detected with a RANSAC algorithm, it is used as 
a supporting plane to segment object standing on top of it. All the points not connected to 
that plane are removed (see Figure 3c). By subtracting the points belonging to the plane 
itself from the remaining cloud, all the objects of interest are extracted (see Figure 3d). 
Finally, the cloud is segmented into clusters corresponding to separate objects.  

5. Dataset construction 

The dataset created for the described study contains visual and depth images of 5 different 
objects taken from different elevations in a way similar to the one described in [26]. The 
dataset was acquired with a Kinect sensor and a computer controlled turntable. It made the 
registration process fairly quick and easy – only the Kinect elevation angle was controlled 
manually [24]. 

Each object in the dataset was scanned by the Kinect sensor from a distance of 
approximately 0.8 m at 5 different angles of inclination on a turntable at 25 angular 
positions (approx. every 15 degrees). Moreover, three objects (i.e. processed cheese, box 
and soda can) were acquired twice: in horizontal and vertical orientation respectively. 
Eventually, 1000 models, each consisting of an object’s point cloud and a 2D RGB image 
were registered (see Figure 4 for samples). For each of them, global VFH and CRH 
descriptors as well as a hue-saturation color histogram were calculated. In order to advance 
later descriptor search, all the VHF descriptors were organized in the form of a 
k-dimensional tree (KDT). The dataset is not as rich as the one mentioned in [26], both in 
terms of number of objects and, what is important, samples per object. Nevertheless, 
experiments have shown that it is sufficient in the case of regular items like soda cans or 
coffee mugs, however more complex objects like insulation stripper would require many 
more samples to reach a comparable recognition rate. 

  
Figure 4. Examples of point clouds from the dataset created for the described study: 

processed cheese, soda can, coffee mug, insulation stripper, box 
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6. Object description and recognition 

6.1. Selection of descriptors 

The existing, classical methods for 3D object recognition can be divided into two general 
categories: global feature-based methods and local feature-based methods. Each of them 
represents a different approach to the description of the observed objects’ geometry. 

Local descriptors are calculated based on geometrical features extracted from the 
individual keypoints found on the object. Although this approach does not require prior 
segmentation and generally deals well with clutter and occlusions [10], it usually involves 
time-consuming keypoint detection, description and comparison.  

Global descriptors, on the other hand, are based on the geometry of the entire object [2]. 
They require a prior segmentation of the object from the scene and may ignore minor shape 
details, but they have the ability to generalize an entire object with a single feature vector. 
As a result, the recognition process is faster and more robust to noise, which is important in 
applications designed to operate in near real-time [33]. Hence, in the application described 
in this paper, a global recognition method based on VHF and CRH descriptors was used. 

6.1.1. Viewpoint Feature Histogram (VFH) Descriptor 

The Viewpoint Feature Histogram (VFH) [2], [39] is based on the local Fast Point Feature 
Histograms (FPFH) [40]. It consists of two parts: the viewing direction component and the 
extended FPFH component. For the calculation of the first part of the descriptor, it is 
necessary to find the centroid of the object and a normalized vector between the centroid 
and the viewpoint. Next, the angular difference between this vector and normal vector for 
each point in the point cloud is determined. Each of its three angles is binned into a 45-bin 
histogram. The remaining part is calculated in the same way as in the case of the FPFH 
descriptor. As a result, a global descriptor of a total length of 308 bins is created. Since the 
bins are normalized using the total number of points in the cloud, the VFH descriptor 
becomes scale invariant. According to [39], this descriptor proved to be very effective and 
therefore was used in the described system. 

6.1.2. Camera Roll Histogram (CRH) Descriptor 

As global descriptors are roll-invariant and one of the goals of the applied system is to 
retrieve the full 6DOF pose of the recognized objects, the sixth degree of freedom must be 
determined with another descriptor: Camera Roll Histogram. It is calculated as follows: for 
every point, its normal is projected onto a plane orthogonal to the vector defined by the 
camera center and the centroid of the point cloud. Then, the angle between the projected 
normal and the up vector of the camera is computed and added to the histogram. For a 
resolution of 4 degrees, the CRH descriptor will have 90 bins [2]. 
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6.2. Object recognition pipeline 

Object recognition pipeline (see Figure 5) starts with comparing the unknown object’s VFH 
descriptor that was just calculated with all the VHF descriptors of models from the dataset. 
Matching is performed using a k-Nearest Neighbor search from the FLANN library with a 
Chi-Square metric. It produces approximate results, but is much faster than a full search, 
especially with large datasets. In the case of the described study, k is equal to 5, but when 
four nearest candidates in the entire dataset belong to a single geometrical category, as the 
fifth one the next nearest from any other category is selected. This is to avoid situations 
where the object being recognized might accidentally and incorrectly resemble an object of 
a different geometrical category. In such a case, it will be rejected later during the 
processing. By taking the fifth candidate from another geometrical category, the chance of 
finding the right model is increased. 

The value of the calculated distance d between the object and a model determines 
further workflow. The thresholds for d used in the described algorithm were established 
experimentally. A distance of less than 40 means that the object being recognized and the 
model are almost identical and the object was correctly categorized. There is no need for 
CRH calculation and ICP fitting as both point clouds are already well aligned. This may 
happen if an object is observed from nearly the same viewpoint as during the dataset 
creation (a common occurrence in very rich datasets). In the case of the rather small dataset 
applied in the study, there was no situation where models from different categories would 
report a distance smaller than 40. It did happen, however, for a few symmetrical models 
belonging to a single category (soda can). 

If the above mentioned distance d is greater than 200, it is assumed that no model in the 
dataset is close enough to the object being examined and the recognition result is false. No 
further processing of this object is attempted. 

The third case, when 40 ≤ d ≤ 200 is the most common one for objects that actually have 
a model in the described, rather small, dataset and should be recognized. Such a value of d 
denotes uncertainty about the VFH-based object matching to a model. It could be due to 
small misalignment of the two point clouds belonging, in fact, to the same object or due to 
some similarity of two, in fact different, geometries. It is quite a common occurrence that 
among 5 nearest neighbors there are models from different categories and therefore further 
steps are necessary to select the right model or reject all of them. To this end, CRH 
descriptors are used. A CRH descriptor of the current object is aligned with the CRH 
descriptor of a model, which produces a list of probable common roll angles [2]. Then the 
object’s original point cloud is rotated by all the roll angles respectively and its pose is 
refined with the use of the Iterative Closest Point (ICP) algorithm. It will attempt to realign 
the clouds in order to improve the transformation until the termination condition is satisfied 
(maximum iterations or error threshold). These clouds that cannot be aligned are 
disregarded and the remaining ones are subjected to two more verification steps. The first 
one is based on geometrical dimensions of the objects and is applied due to the fact that the 
VFH descriptor is scale invariant. Simple constraints set on objects width and height and 
their ratio will eliminate situations where, for example, any cylindrical object is mistakenly 
identified as a soda can. Those models that pass the dimensions test are very strong 
candidates for final geometrical recognition result. All these hypotheses about the right 
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match undergo the last verification procedure (HV) described in [3]. The first model that 
passes this stage is considered as the recognition result. If a given model fails at any stage, it 
is disregarded and a next candidate is examined. 

Successful shape recognition is followed by the very last stage in the entire processing 
pipeline: color matching, where visual appearance of objects is compared by color 
histogram matching. 

  
Figure 5. Simplified object recognition pipeline 
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6.3. Color matching 

In contrast to the approach proposed in [29], the color matching algorithm applied in the 
described study, is based on histogram comparison. A 2D hue and saturation histogram is 
computed for the color view of the recognized object. Next, it is compared with all the 
histograms stored in the database only for that particular geometrical category of objects. 
Histogram correlation and Bhattacharyya distance are used as similarity metrics and the 
model holding the highest value thereof, if above a certain threshold, is assumed as the final 
recognition result (e.g. geometrical category: soda can, color subcategory: Coca-Cola). 

The undisputable advantage of the approach described above is its speed. Unfortunately, 
it is influenced by relatively low precision and resolution of the Kinect sensor and, most 
importantly, lighting conditions. A minor difference in light color, during the training and 
recognition stages may lead to false color classification. The experiments have shown that 
histogram comparison works nearly perfectly in the case of objects of clearly different 
colors, but it fails when the colors are similar. Due to the above, the color classification 
stage is separated from the geometry identification stage so as not to affect the latter. 

7. Experiments and results 

In order to verify the effectiveness of the 3D object recognition approach described above, 
four sets of experiments were conducted. The focus was set on the recognition of point 
clouds, but the color identification was tested as well. 

In the first experiment, objects from the dataset created for the study were captured in 
various arrangements and the quality of recognition was evaluated. Next, an attempt to 
identify several soda cans of different brands was made. In the third experiment, a robotic 
manipulator was added to the system and it executed a grasping task upon successful 
recognition of objects. In the final experiment, the performance of the point cloud based 
object recognition system was verified on a selected scene from the Washington RGB-D 
Object Dataset [26]. Although the system performed relatively well in all the experiments, it 
would require adaptation of its parameters for more populated and cluttered scenes than the 
ones being tested. The meta-parameters of the applied algorithm were determined 
heuristically based on a number of similar scenes with the same objects, until satisfactory 
results were obtained. 

7.1. Validation dataset 

The performance of the recognition system was first verified on the validation dataset 
containing objects described in section 5. Five objects were captured in 12 different 
arrangements, each at 3 different distances (see the first 2 rows of Figure 6 for a few 
examples). This yields 36 different scenes and each of them was captured 5 times, which 
results in 180 test frames and 900 object classification attempts.  

Average classification quality measures are given in Table 1. The overall results for all 5 
objects are quickly deteriorating with distance, however recall is dropping substantially in 

2293D object detection and recognition for robotic ...



contrast to precision that shows only a slight decline. This is caused by many false negatives 
for the insulation stripper, especially at larger distances. Apparently, this tool does not have 
enough models in the dataset and/or is too small and/or too complex to be recognized 
successfully by the described system. Other, bigger and more regular objects do not suffer 
from so many negative detections and, if the stripping tool is excluded from the statistics, 
the recognition measures reach satisfactory levels, especially under the distance of 1 m. 

Table 1. Average classification quality for 5 (or for 4, without the insulation stripper, in 
brackets) objects for different object-Kinect distances 

Distance [m] Precision Recall F1 
0.50 – 0.80 0.97 (0.99) 0.88 (0.94) 0.92 (0.96) 
0.81 – 1.10 0.97 (0.97) 0.78 (0.85) 0.86 (0.91) 
1.11 – 1.50 0.87 (0.96) 0.58 (0.71) 0.66 (0.79) 

 

  
Figure 6. Examples of test scenes 

In the second experiment, the recognition system was evaluated on 18 scenes containing 
additional objects outside of the dataset (see the bottom row of Figure 6 for a few 
examples). A total of 595 recognition attempts were executed. The soda can, as the 
best-recognized object, was not used at the shortest range, and the insulation stripper and 
the box were not used at the longest range. This time, due to more numerous false positives, 
precision of the system dropped significantly, especially at long ranges. Nevertheless, for 
distances up to 1 m, the recognition measures are still satisfactory (see Table 2). 
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Table 2. Average classification quality for scenes containing additional objects outside 
of the dataset for different object-Kinect distances 

Distance [m] Precision Recall F1 
0.50 – 0.80 0.81 1.00 0.88 
0.81 – 1.10 0.87 0.96 0.88 
1.11 – 1.50 0.70 0.67 0.69 

7.2. Color identification 

Histogram-based color comparison tests were conducted on detected coffee mugs of 
uniform colors and soda cans with dominant colors in more or less constant lighting 
conditions. For 3 coffee mugs, 6 different scenes were captured 5 times each, which results 
in 90 color classification attempts. Only in 3 cases, a light green mug was mistakenly 
classified as a light blue one. The remaining classification results were correct. 

In the next test, 3 soda cans (Cola, Sprite, Fanta) were identified. They are not uniform 
in color, but the distribution of dominant colors makes them look quite different. Again, 90 
classification attempts were evaluated. The results were perfectly good in all but one scene, 
where a can was in a horizontal position facing the Kinect with its silver lid. In this sole 
case, a Cola can was identified as a Fanta. 

The last experiment involved two cans of similar appearance (Dr Pepper and 
Coca-Cola). They are both red, with a slightly different hue and different, although white, 
logos. As expected, in this case, the histogram matching classifier failed and the recognition 
results seemed to be completely random. Thus, this technique of comparing images is an 
effective and fast tool only if examined objects have significantly different color 
distributions and its performance will deteriorate with growing number of relevant objects 
in the dataset. 

7.3. Robotic vision system 

The 3D recognition system was also tested in a robotic environment. The objective of the 
test was to detect and identify certain objects placed on a flat surface, find their pose and 
grasp them with a manipulator. The test objects (a soda can and a box) were placed at a 
short distance from the Kinect so that the recognition rate was high. After identification and 
localization of objects, they were grasped and handed over to the operator. Due to poor 
hand-eye calibration and/or minor errors in pose estimation, sometimes the gripper would 
miss the object by a small distance. This was particularly apparent in the case of a soda can, 
where incorrect gripper position would cause gripper fingers to slip over the surface of the 
can. Naturally, this problem did not occur for the box due to its flat shape. The experiment 
can be watched at: https://youtu.be/lPQZIrdIo0g 

2313D object detection and recognition for robotic ...



7.4. The Washington Dataset 

The final verification of the described approach was performed on one of the scenes from 
the Washington RGB-D Object Dataset [26]. One hundred frames numbered from 21 
through 120 from the table_small_1 sequence were used. Each scene contains 4 objects 
standing on top of a table and some objects in the background. The objects to be recognized 
include a bowl, a coffee mug, a soda can and a cereal box. The dataset contains a huge 
number of their models (given in brackets), among which there are 6 slightly different bowls 
(3884 models), 8 coffee mugs (4866), 6 soda cans (3553) and 5 cereal boxes (2929). The 
total number of captured partial models per object category is enormous in comparison to 
the dataset having a mere 125 or 250 models per object. 

In the first experiment, all of these models were used for object recognition (the color 
identification was skipped in all tests with this dataset) in 100 frames from the sequence. 
Initially, no geometrical restrictions on objects’ dimensions described in Section 6.2 were 
applied. The results are given in Table 3 (before slash). 

Table 3. Classification quality for all models without / with geometrical constraints 
 Bowl Coffee mug Soda can Cereal box Average 

Precision 1.00 / 1.00 0.82 / 0.83 0.82 / 0.99 0.54 / 0.77 0.79 / 0.90 
Recall 0.95 / 0.87 1.00 / 1.00 0.76 / 0.72 0.89 / 0.70 0.90 / 0.82 

F1 0.97 / 0.93 0.90 / 0.91 0.79 / 0.83 0.67 / 0.73 0.83 / 0.85 
 
The recognition quality of the system is rather disappointing. This is mainly due to the 

fact that the algorithm registered a lot of false positives by identifying a vertical power rail 
as a cereal box (74 times) or a soda can (16 times). The power rail was not removed by the 
passthrough filter as it is very close to the table and appeared to the segmentation algorithm 
as an object connected to the table. Since the power rail is much bigger (longer) than a 
cereal box (not to mention a soda can) and the VFH is scale invariant, geometrical 
constraints described in Section 6.2 were introduced into the algorithm. Any initially 
recognized object not complying with these constraints was rejected. The results are 
presented in Table 3 (after slash). The overall performance of the system slightly improved 
as the total number of false positives dropped. The power rail was identified only once as a 
soda can and 22 times as a cereal box. It is better but still not as good as expected.  

In the next attempt at achieving better results, the models that caused so many false 
positives were browsed. It turned out that some of them were incomplete or acquired at 
awkward angles or had many missing points or, on the contrary, had some extra points (see 
Figure 7 for a couple of samples). For example, a cereal box model containing just its 
narrowest side could be a good fit to many flat objects seen in the scene and not exclusively 
to a cereal box. Therefore, many such models were arbitrarily removed from the dataset 
leaving only models that ensured a good geometrical representation of original objects. 
Simultaneously, many similar instances of objects were removed as they did not provide 
useful additional information above what already was included with previous models. This 
was a particularly frequent occurrence for round objects with a vertical axis of symmetry 
(see Figure 7). Since the original dataset was huge, this manual, heuristic-based selection of 
“good models” is by no means optimal and requires further investigation. Nevertheless, 

232 W. Czajewski, K. Kołomyjec



results obtained with the reorganized dataset turned out to be clearly better than previously 
(see Table 4). The training dataset contains 5,785 elements (including 3,553 models of soda 
can, which were not altered) out of available 15,232 and can be downloaded from 
https://www.dropbox.com/s/ioahfe1wrst73kf/Czajewski_Kolomyjec_dataset.zip?dl=0 

 

  
Figure 7. Examples of objects that were removed from the training set due to 

incompleteness and ambiguity (top row) and nearly identical appearance providing no 
valuable additional information (middle and bottom rows) 

Table 4. Classification quality for reorganized dataset with geometrical constraints 

 Bowl Coffee mug Soda can Cereal box Average 
Precision 1.00 0.88 0.99 0.83 0.93 

Recall 0.91 1.00 0.83 0.86 0.90 
F1 0.95 0.93 0.90 0.85 0.91 

 
All of the quality measures were higher in this test, which proves that too many models 

are not necessarily helpful in achieving good recognition results, especially if some of the 
models might be a little defective. This time the vertical power rail was identified only once 
as a soda can and 17 times as a cereal box.  

The result described above, has been so far the best result for a single snapshot of a 
scene. However, one does not have to rely on a single view only. A mobile robotic system 
that is capable of changing its position or just position of the Kinect sensor may easily 
acquire a series of point clouds of the same scene from slightly different points of view. 
There is always a chance that incorrect results will not occur systematically in consecutive 
frames. Therefore two more experiments were conducted, during which a classification 
decision was made based on a simple voting mechanism for 5 and 9 consecutive frames 
respectively. As expected, the recognition results (presented in Table 5) were further 
improved, but there were still cases of false positives. 

In the case of 5-frames long sequence, the power rail was still detected as a cereal box 
16 times and for the 9-frame long sequence this false positive count dropped to 9. 
Classification quality of all the objects significantly increased and the overall performance 
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of the system was nearly perfect. It must be noted, however, that the test scene was not 
cluttered and contained just one foreign object that caused many false positives. Therefore, 
one should not expect this kind of recognition quality for more populated and cluttered 
scenes. In such cases, the recognition parameters (especially during the final hypotheses 
verification stage) must be more restrictive so as not to accept false positives, which will, 
unfortunately, lead to a higher number of false negatives. 

Table 5. Classification quality for sequences of 5 / 9 consecutive frames of point clouds 
with reorganized dataset and geometrical constraints 

 Bowl Coffee mug Soda can Cereal box Average 
Precision 1.00 / 1.00 0.92 / 1.00 1.00 / 1.00 0.84 / 0.90 0.94 / 0.98 

Recall 0.92 / 0.96 1.00 / 1.00 0.92 / 1.00 0.91 / 0.91 0.93 / 0.97 
F1 0.96 / 0.98 0.96 / 1.00 0.96 / 1.00 0.87 / 0.91 0.94 / 0.97 

 
Although the proposed method was tested only on a video sequence and not on the 

evaluation set of turntable images and thus it cannot be directly compared to other 
algorithms shown in Table 6, it’s recognition performance of 90% for such a demanding 
sequence seems to be a promising indicator for the simpler evaluation set. 

Table 6. Category recognition performance of various classifiers on the Washington 
RGB-D Object Dataset 

Method Recognition performance [%] 
Linear SVM [26] 53 

Nonlinear SVM [26] 65 
Random Forest [26] 67 

Sparse Distance Learning [27] 70 
CNN-RNN [41] 79 

RGB-D Kernel Descriptors [13] 80 
Hierarchical Matching Pursuit [13] 81 

8. Conclusions and Future Work 

In this paper, the results of experiments on detection and recognition of three-dimensional 
objects in RGB-D images provided by the Microsoft Kinect sensor were described. 
Although the focus was put on using a single image for that purpose, utilizing a series of 
frames was also considered and evaluated. Experiments performed on hundreds of test 
scenes show that the proposed and rarely used approach based on the global VFH and CRH 
descriptors combined with the ICP method and final hypotheses verification can be 
successfully applied to recognition and localization of objects. However, in order to achieve 
high recognition rates, the model dataset must be optimized and the distance between the 
Kinect and the objects being recognized should be relatively small (preferably less 
than 1 m). The histogram based color identification method proved to be successful for 
objects of distinctly different colors and failed, as expected, for similar objects. 
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In light of the above, it seems necessary to use 2D images with higher resolution, which 
is possible with the Kinect sensor (maximum image resolution is 1280x1024 RGB) or an 
optional high-resolution cameras. This would allow to apply more sophisticated 2D image 
comparison techniques like keypoint detectors and descriptors for image matching. 

Another important issue is the optimization of the dataset. Different objects require 
different numbers and kinds of models in order to provide the same level of recognition. 
Having more models does not always result in an increase in the overall system quality. 
Therefore, as part of further work, it is planned to develop a system consisting of a turntable 
and a manipulator on a linear slidebase, which will allow automatic model capture and 
verification of the recognition and pose estimation quality from almost any viewpoint, both 
for single captures as well as for series of acquisitions. Not less important is verification of 
other available point cloud descriptors and comparison with a deep learning approach. It 
seems interesting to find out how much bigger the training set and training time must be in 
the case of CNNs, in order to achieve comparable results to a classical approach. 
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