FOUNDATIONS OF COMPUTING AND DECISION SCIENCES

Vol. 42 (2017) No. 3
ISSN 0867-6356
il D5 SRVYTER DOI: 10.1515/fcds-2017-0010 e-ISSN 2300-3405

G

PARALLEL RANSAC FOR POINT CLOUD
REGISTRATION

Daniel KOGUCIUK *

Abstract. In this paper, a project and implementation of the parallel RANSAC
algorithm in CUDA architecture for point cloud registration are presented. At the be-
ginning, a serial state of the art method with several heuristic improvements from
the literature compared to basic RANSAC is introduced. Subsequently, its algo-
rithmic parallelization and CUDA implementation details are discussed. The com-
parative test has proven a significant program execution acceleration. The result is
finding of the local coordinate system of the object in the scene in the near real-
time conditions. The source code is shared on the Internet as a part of the Heuros
system.

Keywords: RGBD, point clouds, registration, CUDA

1. Introduction

One of the basic tasks in the perception of mobile robots is point cloud registration,
which can be applied to target two principal tasks, wherein the first one corresponding
the point clouds obtained from different views, resulting with one bigger and more
accurate representation [10]. The second task related to registration is matching
of a model into its instance on the scene is also called registration and it defines the
metrical coordinate system of the instance giving the opportunity to this object ma-
nipulation. In the figure (1) is shown a result of model registration into the observed
scene [11].

One of the most popular registration methods is a heuristic algorithm RANSAC.
It is a widely used method which in more than thirty years after its publication
revealed many derived methods used in different fields of science. The method is
well-fit in the point cloud registration reality because it can find a valid solution even

*Faculty of Mechatronics, @~ Warsaw University of Technology, @ Warsaw, Poland,
d.koguciuk@mchtr.pw.edu.pl

204 D. Koguciuk

Figure 1. Result of registering of a printer model into the observed scene [11].

with a large number of outliers — points not fitting the model, because of sensor noise,
scene occlusions etc. However, using this method of registering objects with tens
of thousands of points is occupied by large processing time, even counted in seconds.

There was much effort put in scientific literature to make RANSAC more real-time
fitting. For example, authors in [14] introduce a constant time budget policy. The
algorithm is forced to propose the best solution after a specified amount of time. How-
ever, a big disadvantage is that it is possible that a better solution would be found
after longer time of operation. Other works present parallel versions of RANSAC
algorithm [14, 1], but the implementation strongly depends on the given mathemat-
ical model of the application and presented solutions were not directly applicable
in the point cloud registering.

In this paper, the methodology and implementation details of RANSAC paral-
lelization using the CUDA framework for point cloud registration are presented. Start-
ing with a short description of basic serial implementation and discussion about newest
improvements of the method in section 2, going through the design of the parallel ap-
proach in section 3 and details of its implementation in section 4 and ending up
with comparative tests in section 5. The paper is summarized in the last section
with the plans for the future work. The source code of the parallel RANSAC imple-
mentation is available under an open-source license as a part of the Heuros project
[9].

2. RANSAC algorithm

2.1 Basic version

RANSAC (Random Sample Consensus) algorithm is, in general, an iterative method
to estimate parameters of the mathematical model from data that can contain outliers

Parallel RANSAC for point cloud registration 205

[6]. It is a non-deterministic algorithm producing a reasonable result only with a given
probability, dependent on how many iterations were done. It is widely used in different
fields of computer science, especially in artificial intelligence and computer vision.
This work, however, is focused on point cloud registering.

Randomly select-
ing three source
cloud points
7
Finding the near-
est neighbor in
feature space
¥
Estimating transfor-
mation matrix based
on 3 pairs of points
Y
Source cloud trans-
formation using
estimated matrix

i

Counting the
inliers ratio

Y

Figure 2. Flow chart of basic RANSAC algorithm for point cloud registration.

The first step of each iteration k¥ < N (N is the maximum iterations number)
is randomly selecting three points from source cloud S. The next one has to find
three corresponding points in the target cloud 7' and it is done by calculating point
descriptors for all points in the target cloud and finding the most similar ones to those
selected from source cloud. According to [7] the best relation of descriptor uniqueness
to required computation time has FPFH (Fast Point Feature Histograms) [15] and it
will be used in this work.

The third step is the estimation of the transformation matrix with given three
point pairs. It is a known and well-described linear algebra problem [8] and will
not be discussed in this paper. Next, one should transform source cloud with es-
timated matrix and check how many of the target points have a point from source
cloud in the surrounding region (usually it is defined as one and a half of point

206 D. Koguciuk

density in the clouds). To find the closest point in the metrical space an octree
structure is used within PCL (Point Cloud Library) library [16]. The algorithm stops
with the iteration in which inliers ratio is greater than a certain threshold.

The RANSAC algorithm has both advantages and disadvantages strictly connected
with its heuristic and non-deterministic nature. It can produce an acceptable solution
even with a large number of outliers, which means it can overcome sensor noise,
occlusions, segmentation errors etc.

A big asset of the algorithm is no initial pose knowledge needed for registered
clouds. Constraining the conditions in which algorithm can be used makes the appli-
cation area of this method really wide, along with the simplicity of implementation,
explains why this is one of the most frequently used algorithms for point cloud regis-
tration.

On the other hand, there is no guarantee of achieving a reasonable solution
and the time of finding it is far from real-time, which we desire in mobile robotics.
The critical point here is checking the estimated transformation quality. It can be
achieved by transforming the whole source cloud into the scene in each iteration.

2.2 Selected extended versions

RANSAC itself has become an algorithmic legend and there are several modifications
in the literature aiming at making it faster and better. In [14], there are two types
of featured improvements: non-uniform sample selecting in the very first step of each
iteration and hypothesis validation optimization. The following part would contain
the brief description of one representative of the first group and three of the second.

2.2.1 Lo-RANSAC

One of the assumptions of terminating the iterations in the basic version is an equal
probability of all source cloud points having a corresponding point in the target cloud.
This is obviously not true, because of the simple scene occlusions, some of the source
cloud points would never have a corresponding point in the target cloud. That is why
authors in [5] suggest an optimization where the constant hypotheses count (~ 20) is
generated using the inliers in the previous step. Authors have shown such modification
results in faster finding of terminal criteria of the algorithm.

2.2.2 Polygon test

It is one of the methods that allow rejecting of the hypothesis even before the trans-
formation matrix estimation, introduced in [3]. It compares the polygons created
with the source and the target cloud individually. If the ratio of the correspond-
ing sides of the triangles is not in the acceptable interval, the hypothesis is rejected
and the algorithm should proceed to the next iteration. This approach is based
on the assumption that both source and target objects are rigid body type.

Parallel RANSAC for point cloud registration 207

2.2.3 Td,d test

Before the transformation of the whole source cloud, authors of [4] suggest performing
a check of a randomly picked subset of d points of a model cloud(where d < |S]). The
inlier ratio of remaining points could be checked right after T 4 test - the probability
of rejecting valid hypothesis is small, but gained time profit can be noticeable.

2.2.4 Visibility test

In the previous efforts [11], author of this paper was working on an early hypoth-
esis rejecting the using of knowledge about the visible and hidden areas of the ob-
served scene. If the target cloud is captured by RGBD sensors such as a Microsoft
Kinect device, it is directly given which parts of the scene are empty, where are
the object boundaries and where is the hidden area. Modification introduces differ-
ent ratio of score counting: only points in the empty space between the observed
object and the camera are treated as outliers because it is not known if the points
in the hidden area are in- or outliers.

3. The project of parallel RANSAC

Considering the best design of the parallel algorithm, there is a need of making some
assumptions about its application area. This work is directed towards matching
the model into the real world scene and the problem of object segmentation is not
considered here. Presented algorithm is not a complementary object recognition tool,
it should rather be used as the last step of the recognition process, where other
methods give information about objects expected in the scene and their estimated
position. Consequently, the target is to find a metrical description of the object pose,
for example for grasping purposes. This section describes both the idea and the im-
plementation of the parallel RANSAC algorithm.

In the traditional RANSAC algorithm, the nearest neighbor of every randomly
selected point is being determined on an ongoing basis, because there is a possibility
of finding the right transformation between source and target clouds in every single it-
eration. In the parallel version, there is no way of terminating the computations before
all transformations are checked because all hypotheses are being processed at once
(from the theoretical point of view). This is a two-edged side-effect of the paralleliza-
tion: on the one hand there is the possibility of choosing the best solution from all
generated hypotheses, but on the other hand, it is not possible to stop computations
earlier.

It is worth pointing out that in the parallel version the number of generated hy-
potheses would be counted in thousands, maybe even in tens of thousands. This
is why the same point from the model cloud can be selected in more than one hy-
pothesis and thus finding the nearest neighbor in the feature space in every thread
independently would be inefficient. The author suggests finding the nearest neighbors

208 D. Koguciuk

Finding the near-

est neighbors in

the feature space
¥

Generating and
filtering hypotheses

)

Preparation of the
data in a compact form

1

Estimating the
transformations
L J

12

([Advance Ta,q test and)
further rejection of the
L incorrect hypotheses J
¥

-
Final determining of

the best transformation
L J

Figure 3. The flow chart of the parallel RANSAC algorithm for point cloud regis-
tration.

for all points from the model cloud once before the proper RANSAC algorithm is
done. Like it is shown in the figure 3, finding the nearest neighbors in the feature
space is the first step of the parallel version of the RANSAC algorithm.

With the available vector of indices of the nearest neighbors for every point
in the source cloud, it is possible to move along with the proper RANSAC routine.
The beginning looks just like the basic, serial version of the algorithm and consists
of randomly selecting the 3 points of the source cloud and with the 3 according
points from the target cloud, it is possible to perform early hypothesis rejection with
the polygon (triangle to be exact) by similarity mechanism described in 2.2.2.

After the hypotheses filtering based on triangle similarity described in the previous
section, the actual number of generated transformations is much smaller than N.
In fact, about 99% of the hypotheses are filtered out here and further data processing
without compacting the resulting vector would be an unjustified waste of CUDA
computational power. This step compacts the vector of sparse data into a smaller,
dense form.

It is worth to consider, that there is no need of estimating the transformation
based on those 2 triples of points earlier because the vast majority of them would be
filtered out. This is the time to do it.

At this point, there are many fewer hypotheses remaining. However, simply check-

Parallel RANSAC for point cloud registration 209

ing all of them would be time-consuming, especially when it comes to the applying
of the extended tests described in the last section. As described in 2.2, T 4 test seems
to be simple and fast heuristics to the transformation evaluation based on only a few
from thousands of source cloud points. After the Ty 4 test the remaining hypotheses
should compact again.

In the last step, all remaining transformations are considered as valid solutions,
but it is possible to choose the best one. This can be done using the same mechanism
as in the basic serial RANSAC algorithm version.

4. Implementation

In this section, the implementation and the performance modeling and profiling would
be discussed. Described mechanisms should work with most of modern CUDA-enabled
GPUs, but probably would not achieve the best performance, because often not only
the parameters but also the approach are strongly dependent on the particular GPU
model or architecture. In the following section, the design of every part of the parallel
RANSAC algorithm for GPU Kepler architecture is presented. The performance tests
were carried out on a GTX660 model.

4.1 Finding the nearest neighbors in the feature space

Considering the CUDA programming model [13] and the evaluated amount of tens
of thousand points in the clouds of household devices which we want to register,
it seems a good idea to assign the task of finding nearest neighbors of one point
of the source cloud to one block of CUDA threads. It is dictated by the necessity
of communicating threads among themselves to find minimum distance value.

Target points being analyzed by the same thread

~" ~ ~"
1024 1024 1024

Figure 4. Finding the nearest neighbor scheme of one source cloud point in the tar-
get cloud containing more than 1024 points.

This must carry the CUDA kernel threads number as a minimum of both: magni-
tude of the target cloud and a maximum number of threads per block (1024 for the Pas-
cal CUDA microarchitecture): min(|T],1024). If the scene contains more than
1024 points, each thread should compute the distance from the common source point

210 D. Koguciuk

to several target points to cover every possibility. It is shown in figure 4. If the tar-
get is smaller than 1024 points, every thread computes the distance to only one target
point.

After above-described kernel, there are min(|T|,1024) distances of target points
to one source point. The operation of finding the minimum value from a set of values
is a parallel operation primitive called reduce. It is a well-known element of CUDA
programming [2] and will not be discussed here.

This is, without doubt, the weakest part of the algorithm. This is a computation-
intensive, since the distance between every pair of a source-target points has to be
calculated. The kernel uses 42 registers for each thread (up to 43008 registers for each
block) resulting in only one active block per SM [13] leading to only 50% of occupancy.
The author also tried to lower the registers count for each thread, but it leads to much
grater computing load resulting in much longer execution time of the kernel.

4.2 Generating and filtering hypotheses

The first attempt to randomly choose source cloud points was made with the cuRAND
library [13], but to generate 3 random source cloud indices it uses 38 registers for each
thread, which leads to poor occupancy and performance. It randomly turns out, that
choosing those indices using CPU and downloading them to the GPU is much faster.

Having the source cloud indices and corresponding target points, one can perform
a polygon test where the output information is irrespective of hypothesis passed it
or not. There are no a priori imposed kernel launch parameters so - minding overall
good parallel programming practices, suggested values are maximum threads per block
(1024) arranged in 16 blocks of threads. This is the assumptive value of N = 16 -
1024 = 16384 initial generated hypotheses. One thread uses 28 registers on GTX660,
which allows achieving 100% theoretical and 82.9% actual warp occupancy.

4.3 Preparation of the data in the compact form

input TO T1 T2 - T4 - - T7 ¢ v . TN
output 0 1 2 3 3 4 4 4 s+« | M

Figure 5. Exclusive scan operation: first valid transformation T has been assigned
address 0 in the output vector, second valid transformation 77 has address 1 and so
on up to M valid transformations.

Parallel RANSAC for point cloud registration 211

This part of the algorithm is about reducing sparse vector into the compact form
and it can be performed using two CUDA primitives. In the first step assigning
of the addresses in the compact vector for every valid transformation (figure 5)
can be done and it is called (exclusive scan) for vectors smaller than a maximum
number of threads in the block and (segmented exclusive scan) for the greater ones.
Second step is moving the proper data (source cloud indices) in the calculated position
in the output, dense vector and it is called compact (figure 6). Both are well-known
CUDA primitives, that can be found in the literature [17].

input TO T1 T2 - T4 - - T7 ¢ . TN

+ o+ o+ + - +

input 0 1 2 3 3 4 4 41+« | M
output TO Tl T2 T4 T7 LA TN

Figure 6. Compact operation scheme.

4.4 Estimating the transformations

The polygon similarity threshold value is selected to reject as much as possible
of false positives, leaving the transformations number less than 1024. This is dic-
tated by a maximum number of threads in one block to make this operation CUDA-
optimal. Estimating is done using standard linear algebra approach [8].

4.5 Advance T, 4 test and further rejection of the incorrect hy-
potheses

The Ty q test should be applied to all remaining hypotheses at once and, having
in mind the CUDA programming model, it can be concluded that the number
of points taken into the test should be a multiple of the warp threads number:
d = k-32. Here every thread is transforming source point cloud with estimated trans-
formation matrix and every 32 threads are checking the same hypothesis (k = 1).
Kernel launch parameters are the following: 1024 as the maximum number of threads
in the block, each block checks 32 hypotheses so there should be [21] = [21] blocks.

After the Ty 4 test, the result should be compacted again, as after the triangle test,
however the input conditions are different. Earlier the vector was large (thousands
of elements) and sparse, here we have only a few hundred of them, and only a few
would pass the test. That is the reason why author decides to use simple atomic add
rather than scan and compact operations [13].

212 D. Koguciuk

4.6 Final determination of the best transformation and algorithm
parameters discussion

Presented parallel RANSAC algorithm has many parameters which influence the qual-
ity and time of finding the final transformation. First of all the number of itera-
tions has a different meaning for both versions: for serial, it is only the upper time
limit of the algorithm and usually does not affect the quality of the result, however
in the parallel version it directly impacts this quality. In the serial one, the first
eligible transformation is found and the algorithm stops whereas in the parallel one
the best hypothesis is being selected.

The Second important parameter is the polygon similarity threshold. The value
of 0.2 (so only 20% of triangle dissimilarity is being accepted) results in about 99%
of hypotheses being rejected, which is discussed more in the next section. Subse-
quently, the radius of the sphere, where points are considered as inliers, also affects
the final result. Taking too big value could result in inaccuracy of the estimated
transformation, too small value could lead to not finding a result at all. In the cur-
rent implementation, the value of 7.5 mm as a sphere radius is set, which is one
and a half leaf size of the voxel grid filter applied to the source and target clouds
in the beginning (see the section 5 for more details).

Lastly, another significant parameter is the inlier ratio threshold. It is hard to es-
timate a universal value which would be appropriate in every scenario, so it should be
purposefully chosen in every application. If 80% of target points are inliers, the es-
timated transformation is considered as a correct one.

It is worth pointing out that all of the discussed parameters used in the parallel
implementation are also needed in the serial version of the RANSAC algorithm.

5. Comparative tests

Tests consist of a comparison between parallel and basic serial version of the RANSAC
algorithm, using the public 3D Model-based Object Recognition and Segmentation
in Cluttered Scenes database presented in [12]. From the registration perspective,
the most valuable feature of this database is containing both precise clouds of different
test models and the real scenes with objects occluding each other viewed from only one
perspective. One of the disadvantages of the database is that the data was acquired
using a Minolta Vivid 910. This camera is registering only the shape of the objects
without RBG information.

The original test scenes contain several objects affecting each other, but they were
segmented out for registering purposes and used as an independent target cloud.
The target here is registering the model cloud into the observed object on the scene
and, from the RANSAC algorithm point of view, segmentation of the target cloud is
not significant.

Tests were performed for two different objects. Originally model and target point
clouds contain about one hundred of thousands of points and since in mobile robotics

Parallel RANSAC for point cloud registration 213

Figure 7. a) Example source and b) target cloud of one of the object used for testing
the algorithms.

most common are Kinect-like sensors, which have much fewer points, both clouds need
to be down-sampled with voxel grid filter with a leaf value of 5 mm. This reduces
the number of points to values of about five thousand and two and a half thousand
respectively. For both clouds, the FPFH features would be calculated for the 25 mm
radius (about 70 points). Ty 4 and final transformation tests require finding the near-
est neighbors in 3D space and to make this possibly fast, an octree would be built
for the target cloud. All of the above auxiliary methods were implemented with PCL
[16] functionality (data input, clouds filtering and RANSAC algorithm in serial ver-
sion with the additional poly test). All tests were performed using i5-4570 processor
and GTX 660 GPU. The comparison was made against the serial program running
on a single CPU (there is no open implementation of multi-core CPU RANSAC
algorithm neither in PCL nor anywhere else according to the author’s knowledge).

Table 1. The comparison between serial (SR) and parallel (PR) implementation
for chef model registering in three different test scenarios for 10 iterations.

chef_1 chef_ 2 chef_3
Inlier percentage number (SR) 726+0.1 | 70.9+0.1 | 93.8+£0.1
Inlier percentage number (PR) 88.1+84 | 90068 | 95+23
Processing time (SR) [ms] 3242 £45 | 3691 +£32 | 3504+ 31
Processing time (PR) [ms] 129+41 | 124+3.2 | 9.2+£41
Time of finding nearest neighbors (PR) [ms] | 77.1+2.3 | 77.0+2.1 | 76.3+1.7
Maximum number of hypotheses (SR/PR) 16384 16384 16384
Number of hypotheses after poly test (IR) 566 + 32 539 + 13 449 + 22
Number of hypotheses after Ty 4 test 43+1.9 44+14 3.14+2.1

D. Koguciuk

Figure 8. Registered chef model cloud (green) into the target cloud (red) for three

different test scenarios using serial (top) and parallel (bottom) RANSAC 1mp1emen—
tation,

In figure 8, three different test scenarios with the chef figure are presented for both
serial (top) and parallel (bottom) version of RANSAC algorithm. For every scenario
a test of 10 iterations was made, the results were averaged and collected in table
1. In all test scenes, the result found with the parallel implementation is a few
percent better than in the serial one. This could be caused by the different natures
of maximum iteration number for both versions - the parallel one is choosing the best
result from all passing the final test.

The time of processing is very important — about 90 ms for the parallel implemen-
tation and about 3500 ms for the serial one. This is a real performance boost, allowing
to register clouds in almost unnoticeable time — at least for human. The same tests
were performed for the chicken model (figure 9) with three different target scenes
for both serial (top) and parallel (bottom) implementation.

In this case, both implementations find the result with almost the same score
(about 75%). Time difference between serial and parallel version are compared
to the previous scenario.

Parallel RANSAC for point cloud registration

Figure 9. Registered chicken model cloud (green) into the target cloud (red) for three

different test scenarios using serial (top) and parallel (bottom) RANSAC 1mplemen—
tation.

It is worth pointing out that the number of hypotheses after each step in the par-
allel implementation is drastically falling. After the poly test, about 97% of the hy-
potheses are rejected, leaving about few hundred to be checked with 7§ 4 test, where
only a few are considered as a valid solution.

6. Conclusions

In this paper the parallel implementation of the RANSAC algorithm for point cloud
registration using CUDA was presented. It is a very important task for everyday
object manipulation purposes by social robots — it allows to set a reference between
the object and the global coordinate system.

The design is trying to fit CUDA architecture best practices to exploit the best
possible performance using CUDA warps, operation primitives, memory hierarchy,
etc. The implementation was confronted with the serial version of the algorithm
available in PCL using public ”3D Model-based Object Recognition and Segmentation
in Cluttered Scenes” database.

The parallel approach to the RANSAC algorithm not only decreases the processing
time of about 30 times, but also presents a qualitative improvement by proposing
multiple good hypotheses. Using parallel computing on high-end GPGPU brings new

216 D. Koguciuk

Table 2. The comparison between serial (SR) and parallel (PR) implementation

for chicken model registering in three different test scenarios for 10 iterations.

chicken_1 chicken_2 chicken_3
Inlier percentage number (SR) 74.9+0.1 | 77.7+0.1 | 77.0+£0.1
Inlier percentage number (PR) 90.1+29 | 87.7+95 | 845+74
Processing time (SR) [ms] 2139 £15 | 1030 +£11 | 1462+ 16
Processing time (PR) [ms] 82+48 | 64+£06 | 7T0+t1.0
Time of finding nearest neighbors (PR) [ms] | 27.0+0.1 | 27.1+£0.3 | 27.0+0.1
Maximum number of hypotheses (SR/PR) 16384 16384 16384
Number of hypotheses after poly test (IR) 192 £+ 21 241+ 10 227+ 15
Number of hypotheses after T 4 test 5.04+2.2 544+1.1 6.3 +2.0

possibilities of point clouds registering in almost real-time conditions.

GPGPUs are also the disadvantage of the presented method. It means a necessity
of mounting high power processing units on the mobile robot platforms, which dras-
tically decreases the operational time of agents. However, progressing technological
development will finally meet those expectations with embedded mobile platforms.

References

[1]

Alehdaghi M., Esfahani M. A., and Harati A. Parallel ransac: Speeding up plane
extraction in rgbd image sequences using gpu. In Computer and Knowledge
Engineering (ICCKE), 2015 5th International Conference on, pages 295-300,
Oct 2015.

Blelloch G. E. Vector Models for Data-parallel Computing. MIT Press, Cam-
bridge, MA, USA, 1990.

Buch A., Kraft D., Kamarainen J.-K., Petersen H., and Kruger N. Pose estima-
tion using local structure-specific shape and appearance context. In Robotics and
Automation (ICRA), 2018 IEEE International Conference on, pages 2080-2087,
May 2013.

Chum O. and Matas J. Randomized ransac with t d,d test. In IMAGE AND
VISION COMPUTING, pages 448-457, 2002.

Chum O., Matas J., and Kittler J. Locally optimized ransac. In Michaelis B. and
Krell G., editors, Pattern Recognition, volume 2781 of Lecture Notes in Computer
Science, pages 236—243. Springer Berlin Heidelberg, 2003.

Fischler M. A. and Bolles R. C. Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography.
Commun. ACM, 24(6):381-395, June 1981.

Parallel RANSAC for point cloud registration 217

[7]

[15]

[16]

[17]

Hénsch R., Weber T., and Hellwich O. Comparison of 3D interest point detectors
and descriptors for point cloud fusion. ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences, pages 57-64, Aug. 2014.

Hartley R. and Zisserman A. Multiple view geometry in computer vision. Cam-
bridge University Press, Cambridge, 2003. Choix de documents en appendice.

Heuros 3D object recognition system. https://bitbucket.org/rrgwut/heuros. Ac-
cessed: 04-05-2015.

Izadi S., Kim D., Hilliges O., Molyneaux D., Newcombe R., Kohli P., Shotton J.,
Hodges S., Freeman D., Davison A., and Fitzgibbon A. Kinectfusion: real-time
3D reconstruction and interaction using a moving depth camera. In Proceedings
of the 24th annual ACM symposium on User interface software and technology,
UIST 11, pages 559568, New York, NY, USA, 2011. ACM.

Koguciuk D. and Harasymowicz-Boggio B. Wykorzystanie obszaréw nieznanych
w dopasowywaniu chmur punktéw. Prace Naukowe Politechniki Warszawskiej.
Elektronika, pages 267 — 276, 2014.

Mian A., Bennamoun M., and Owens R. Three-dimensional model-based object
recognition and segmentation in cluttered scenes. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 28(10):1584-1601, Oct 2006.

NVIDIA Corporation. NVIDIA CUDA C programming guide, 2015. Version 7.0.

Raguram R., Frahm J.-M., and Pollefeys M. A comparative analysis of ransac
techniques leading to adaptive real-time random sample consensus. In Forsyth D.,
Torr P., and Zisserman A., editors, Computer Vision - ECCV 2008, volume 5303
of Lecture Notes in Computer Science, pages 500-513. Springer Berlin Heidelberg,
2008.

Rusu R., Blodow N.; and Beetz M. Fast point feature histograms (fpth) for 3d
registration. In Robotics and Automation, 2009. ICRA °09. IEEE International
Conference on, pages 3212-3217, May 2009.

Rusu R. B. and Cousins S. 3d is here: Point cloud library (pcl). In International
Conference on Robotics and Automation, Shanghai, China, 2011 2011.

Sengupta S., Harris M., Zhang Y., and Owens J. D. Scan primitives for gpu
computing. In Graphics Hardware 2007, pages 97-106. ACM, Aug. 2007.

This is an extended version of the paper presented at the 14th National Conference
on Robotics (KKR 2016), Polanica Zdrdj, Poland, September 14-18, 2016

