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Abstract. RGB-D sensors became a standard in robotic applications requiring
object recognition, such as object grasping and manipulation. A typical object recog-
nition system relies on matching of features extracted from RGB-D images retrieved
from the robot sensors with the features of the object models. In this paper we
present ModReg: a system for registration of 3D models of objects. The system con-
sists of a modular software associated with a multi-camera setup supplemented with
an additional pattern projector, used for the registration of high-resolution RGB-D
images. The objects are placed on a fiducial board with two dot patterns enabling
extraction of masks of the placed objects and estimation of their initial poses. The
acquired dense point clouds constituting subsequent object views undergo pairwise
registration and at the end are optimized with a graph-based technique derived from
SLAM. The combination of all those elements resulted in a system able to generate
consistent 3D models of objects.
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1. Motivation of the work

Emergence of new types of sensors stimulates robotics. Up to the late nineties the
most popular sensors used for obstacle avoidance were sonars, whereas the commer-
cialization of laser rangefinders (such as the Hokuyo UTM and SICK LMS series)
enabled rapid development of methods for 2D robot pose estimation [21] or tech-
niques for simultaneous localization and map building (SLAM) [38]. Similarly, the
appearance of inexpensive RGB-D sensors [33, 15], such as Microsoft Kinect released
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in 2010, triggered a massive wave of interest in 3D visual perception [28]. Access to
the color images supplemented with depth maps provided by such sensors changed
the the entire field of robotics, starting with their application to map building [26]
and SLAM [36, 3], through recognition of human posture [7] or hand gestures [27],
ending on object grasping [6].

A typical perception subsystem for object recognition (e.g. [14]) relies on matching
between features of the object model and features extracted from the image of the
scene (e.g. Hough voting [39]), followed by correspondence grouping and hypothesis
verification (e.g. [1]). This requires the system to possess the three-dimensional mod-
els of objects, whereas the most convenient form of such models are dense point clouds
supplemented with sparse clouds of features (e.g. [2]). Those features can be extracted
from color images and then projected into Cartesian space on the basis of the asso-
ciated depth maps (e.g. [37]), from point clouds (e.g. [29, 40]) or extracted straight
from RGB-D images (multi-modal features [2]). Generation of grasps [31], robust
estimation of object poses in the bin picking task [10] or robotic cutting of fruits and
vegetables [19] are only selected exemplary robotic systems relying on such models.
Despite the existence of databases full of 3D CAD models (such as 3D Warehouse1),
the models frequently lack important cues (e.g. texture), are rendered without a real-
istic lighting etc., thus are called non-photorealistic models [25]. Besides, due to their
multiplicity, it is often impossible to find exact models of the currently surrounding us
objects, such as cups, bowls, bottles, vegetables, fruits, i.e. we lack the models of the
objects of everyday use that the service robots are supposed to grasp and manipulate.
Thus a problem of acquisition of 3D models on the basis of images of physical objects
having diverse shapes, colors and textures appears. The introduced ModReg system
facilitates this process.

1.1. Contributions of the paper

The following paper is an extension of a paper [16]. Besides, some of the preliminary
results of our work in this subject were presented in [17], which introduced the novel,
multi-camera setup with a texture projector used in this research. Finally, we have
also used ModReg to capture a significant part of the WUT Visual Perception Dataset
described in [35].

This paper summarizes our efforts in registration of models of objects and its
main contributions are twofold. First, we provide a comprehensive description of
the ModReg system that was partially presented in the papers mentioned above.
Second, we present the results of its quantitative verification, consisting of analysis
of results achieved by individual components (e.g. pairwise point cloud registration,
loop closure) as well as overall performance of the system using the multi-camera
setup when compared with MS Kinect.

1http://3dwarehouse.sketchup.com
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1.2. Structure of the paper

The paper is structured as follows. In the next section we discuss the problems ap-
pearing during the registration of models of objects. Next we present the structure of
the ModReg system, followed by the description of the multi-camera system supple-
mented with an additional pattern projector and main software modules of the system.
For completeness, as we treated the results obtained with the use of the Kinect sensor
as reference, we also present the Kinect acquisition module. We conclude the paper
with the analysis of the achieved results.

2. Registration of the models of objects

The problem of combination of multiple views of the scene into a single, consistent
3-D model is known as registration [12, 26]. When dealing with models generated
with the use of RGB-D sensors the problem of registration can be reformulated as
finding the relative positions and orientations of the separately acquired point clouds
followed by the transformation of coordinates of all points into a common coordinate
frame. The principle of operation of such a typical registration system is as follows.
After the acquisition of a pair of point clouds an initial transformation between them
is estimated. For this purpose two sets of features must be extracted from both
clouds. Those features are matched together in order to find correspondences, used
subsequently for finding the initial estimation of the transformation. This estimate
can then be refined, typically on the basis of correspondences between points of the
original, dense clouds. Because those operations are made on pairs of point clouds,
this approach is known under the name pairwise registration. Finally, in order to
reduce the model inconsistencies, a global optimization may be applied. Systems
working according to this scheme can be also utilized for generation of models of
particular objects of everyday use.

There are several existing software solutions (both commercial such as Microsoft’s
3D Scan or Agisoft’s PhotoScan, and open source, e.g. KinectFusion [24] in PCL [30])
able to build consistent models of objects from a set of their images. Sadly, they typi-
cally return mesh-based models, whereas during the recognition we require the models
based on point clouds along with the associated features extracted from color/depth.
This motivated us to develop our own model system. However, after we have inte-
grated our software it appeared that the generated models were far from ideal, there
were many discrepancies, the number of model features was quite low etc. The most
important of the identified problems are as follows.

First, the commercial RGB-D sensors relying on structured light technique (such
as Microsoft Kinect or Orbbec Astra Pro) can properly estimate depth starting from
around 0.4m, thus a typical point cloud of an object of everyday use acquired from
such a distance will contain few thousand points at the most. This affects both the
proper estimation of the initial transition between subsequent views and the overall
low resolution and quality of the model. The initial transformation can be estimated
by introduction of appropriate visual markers (e.g. by placing the object on a board

185MODREG: a modular framework for RGB-D ...



with known, easy to recognize patterns [2]). Such an estimation is usually a good
starting point for further refinement. Unfortunately, this requires to observe the
object from even further distance (as the patterns must also be visible), thus the
problem of the low quality of the final model remains.

Another problem concerns distinction between the points belonging to the object
and the points constituting the background. Some data sets (e.g. Washington RGB-D
Object Dataset [18]) provide such an information in the form of an additional binary
image containing the mask of the object. It is required that a registration system
should provide tools solving this problem as well.

Finally, it is crucial that the generated model should be extremely consistent.
An error of even few centimeters is negligible in the case of registration of outdoor
scenes or buildings, whereas in the case of everyday objects it will result in not
only slightly inconsistent models, but foremost will affect the accuracy of the pose
estimation during object recognition phase and may trigger serious problems during
object grasping. Thus, the use of global optimization methods based on loop closure
seems necessary, and once again indicates the necessity for high quality input images.

After the analysis of the aforementioned problems we have revised all the ele-
ments of the registration procedure, from data acquisition hardware to the global
optimization, which resulted in the system presented in the next section.
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Figure 1: General system structure

3. The ModReg system

The general structure of the ModReg (Modular Registration) system is presented in
fig. 1. The system is modular and follows the blackboard architecture, with Cloud
storage being the central module, governing the actions and collecting results from
the associated modules. Those modules were implemented as components of Dis-
CODe [34] framework, encapsulating, besides others, classes and functions from two
computer vision libraries: OpenCV [5] and PCL [30]. All those modules are presented
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in the following subsections. Both the DisCODe framework2 and ModReg system3

are distributed under the MIT License and their source codes are publicly available
on-line.

3.1. Data acquisition

Data acquisition module is responsible for gathering of images containing different
sides of the object of interest. Because we wanted the system to be able to work with
different hardware configurations, this module is also responsible for standardization
of the format of the acquired view (sensor readings). We decided that such a view
will consist of an organized point cloud in the form of RGB image supplemented with
XYZ image (image containing Cartesian coordinates of each pixel), along with the
image containing a fiducial board (please refer to fig. 3).

Wide-angle
camera

Narrow-angle
stereo camera

Pattern 
projector

(a) (b)

 30cm

60cm

x y

z

360°

(c)

Figure 2: Key components of the acquisition system: (a) The multi-camera setup
with an additional texture projector, (b) close-up of the projected pattern, (c)
turntable with two dot patterns

3.1.1. Turntable

We use a fiducial board with circular patterns (fig. 2c), similarly as it was done by
Willow Garage in Object Recognition Kitchen (ORK). Two dot patterns are used
for determination of the board pose with respect to the sensor frame regardless of
occlusions (however, it is required that at least one pattern is fully visible in every
view). The axis of rotation of the board is aligned with z axis of the coordinate
frame. During the view acquisition the object is placed at the center of the board.
This enables relatively accurate initial pose estimation and fosters the transformation

2https://github.com/DisCODe/DisCODe
3https://github.com/DisCODe/Registration
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of all acquired point clouds into a common, board-centered coordinate frame, as well
as will facilitate further object segmentation.

3.1.2. Textured stereovision

The main hardware setup (fig. 2a) of ModReg consists of three cameras supplemented
with an additional texture projector. The first two cameras, namely PointGrey BFLY-
PGE-13S2C-CS color cameras with long-focal lenses (narrow, 33◦ horizontal field of
view), formed a stereo pair, with a 10 cm baseline. This enabled to register an object
of size 15 cm from the distance of 70 cm, and the object area occupies almost the
whole image, having typically few hundred thousand pixels per object view.

For the generation of disparity maps we have used the classical Semi-Global Block
Matching (SGBM) stereovision algorithm [11]. As we wanted the acquired depth
maps to be as dense as possible we have used an EFFI-Lase LED projector with a
pseudo-random dots pattern (fig. 2b). Such a hardware configuration can be classified
as textured stereo [13, 33, 15].

The projected white pattern influences the perceived color image of the object.
For this reason we collect two pairs of images for each view – first pair with projector
turned on and the second while illuminating the object only with a diffused light
(fig. 3). The former is used for generation of a dense point cloud of the object,
whereas the latter is used to color the cloud and to extract keypoints with descriptors
used in subsequent processing steps.

Because our goal was to acquire as many object points as possible, we wanted the
field of view of the stereo pair to be the narrow. That contradicted capturing the
markers of the fiducial board, needed for initial estimation of the pose of the object.
For this reason we incorporated the third camera, Prosilica GC1290C with 56◦ lens,
mounted above and slightly tilted to the stereo pair. Such a configuration enabled us
to capture the whole board and subsequently determine its pose. Please notice that
despite the actual number of used cameras for the simplicity throughout the rest of
this paper we will refer to this setup as to stereo – as during computation of depth
maps/point clouds we in fact rely only on the information from the stereo pair.

The data flow between the components responsible for the generation of a single

Figure 3: (From left) Color images registered with projected pattern and diffused
light, depth registered with projected pattern and diffused light, view of the same
scene from the wide-angle camera
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Figure 4: Activity diagram for acquisition from textured multi-camera setup

object view is presented in fig. 4. Two triggers are responsible for acquisition of
board view and color image from left camera (trigger A) and acquisition of depth
map from stereo cameras (trigger B). Those external signals synchronize cameras, as
well as switch two illumination sources back and forth between pattern projector and
diffused light.

3.1.3. Structured light

Second hardware setup consists of a single Microsoft Kinect sensor. The size of the
board along with rather wide horizontal angle of sensor view (62◦) and lower limit of
depth acquisition of the sensor enabled us for using the same RGB image for both
detection of the board and generation of point cloud, as presented in fig. 5.

Utilization of a structured light projector enables acquisition of a dense depth
map disregarding the lack of edges, object texture etc. However, the low resolution of
the acquired depth image results in a quite small number of points (typically several
thousands) constituting the object (fig. 6).

3.2. Object segmentation

The Object segmentation module is responsible for two tasks: transformation of the
coordinates from sensor to board reference frame and for the generation of the mask
distinguishing the pixels constituting the object from the background. The activity

Structured

Microsoft Kinect

RGB-XYZ

Depth registration Depth converter
Depth
RGB

Depth registered

Board

Figure 5: Activity diagram for structured light image acquisition
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Figure 6: Image registered with Microsoft Kinect (left – color image, right – depth
map, black means no data)

diagram of this module is presented in fig. 7.
The board pose is estimated by recognizing two patterns (white dots on black back-

ground and black dots on white) and passing the dots centers to the PnP (Perspective-
n-Point) problem solver. This transformation is then used for transformation of the
cloud from the camera to board frame, which makes the axes of coordinate system
aligned to the object. At this point the object mask can be generated by applying the
axis-aligned bounding box (3D cuboid) to processed data (e.g. x, y ∈ [−10cm, 10cm]
and z ∈ [1cm, 10cm]). As it was mentioned earlier, views obtained from the Kinect
sensor contain much lower number of points when compared to multi-camera setup.
Exemplary results for both hardware setups are presented in fig. fig. 8. In this case
the Kinect mask contained around 15k points, where for stereo it was around 218k.
We obtained similar ratios for all the objects and views.

3.3. View processing

The View processing module is responsible for two major tasks: filtration of the input
cloud in order to remove points not belonging to the mask and extraction of object
features. In the current implementation we have decided to use SIFT (Scale Invariant
Feature Transform) features [20] extracted from RGB image, as they still appear
to be one of the most robust photogrammetric features [8]. The features are next
transformed with the use of Cartesian coordinates from XYZ image into sparse cloud
of features. The features, represented as intensive red dots, can be observed e.g. in

Mask generation

Pose estimation

RGB-XYZ Board

Cloud transformer

Cloud in camera frame

Board pose in camera frame

Pose estimation

Transform
Cloud in board frame

TransformMask
Object mask

Figure 7: Activity diagram of the object segmentation module
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Figure 8: Depth transformed to centre of the board frame and generated object
masks: (left) from Kinect sensor (right) from multi-camera setup

fig. 11 and fig. 12.
Additionally, the point clouds constituting the object undergo filtering in order to

reject invalid pixels resulting from the noise introduced by the used sensors, depth
estimation algorithms etc. This is currently realized with the use statistical outlier
filter, which removes all points being inconsistent with local statistics (a Gaussian
distribution is assumed).

3.4. Cloud storage

Cloud storage is the central module of the system, responsible for storing the point
clouds and enabling the user to decide (with the use of GUI) what and when should
be passed to the associated modules.

Based only on data generated by the previous modules the first approximation
of the object model can be created. Relying on the initial transformation estima-
tions (from the dot patterns) for alignment of the clouds results in small, yet visible
inconsistencies of the model, as presented in fig. 9.

3.5. Pairwise registration

The Pairwise registration module is responsible for aligning of the pairs of point
clouds with the use of the Iterative Closest Point (ICP) [4]. Fig. 10 presents a general

Figure 9: Object model aligned relying on the initial estimations. Notice splits of
the box sides visible in the bottom view (left)
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activity diagram realizing the ICP-based pairwise registration of point clouds. The
module inputs consist of the source (i.e. reference) cloud and the target cloud (the
one which transformation will be optimized), along with the initial transformation
(i.e. calculated on the basis of the estimation of the pose of the fiducial board)
from the Cloud storage. The module outputs the refined transformation (or a set of
transformations when inputs contain a set of clouds with set of initial transformations
between them).

Currently the user can switch between several ICP flavours, whereas the best re-
sults were obtained with ICP using two-step data association relying on normal vectors
and color [22]. Representative results, obtained for the box object, are presented in
table 1.

Table 1: Convergences of different types of ICP for the sequence containing a box
object

ICP Not Bad Success Mean number

flavour Converged [%] Convergence [%] rate [%] of iterations [-]

Standard 0 51.15 48.85 27.12
Normals 6.39 4.99 88.62 10.84
color 0 11.25 88.75 21.92

color + normals 1.92 6.01 92.07 11.16

3.6. Correspondence estimation

This module is responsible for finding the correspondences between sparse clouds of
features associated with the two analyzed dense point clouds. The reciprocal corre-
spondences are estimated with FLANN (Fast Library for Approximate Nearest Neigh-
bors) [23], using kd-trees for fast computation of the similarity of feature descriptors.

ICP

Data association

Source

Outlier filtering

Target Transform

Transform

Error metric
minimization

Terminal
condition check

Cloud transform

Correspondences Filtered 
correspondences

Transformed source
cloud

Optimized transform
Error

Optimized transform

Initial transform

Final transform

Figure 10: General structure of the ICP algorithm for pairwise cloud registration
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Additionally, the module enables rejection of some of the correspondences. We tested
two rejection methods: a simple method relying on distance between Cartesian posi-
tions of the corresponding keypoints and a RANSAC-based method for rejecting the
outliers that do no match the hypothesis regarding the transformation between two
clouds. As the correspondences are found between two quite well aligned point clouds,
the simpler method gave comparable results, with additionally having a quite impor-
tant advantage: stability – which is the drawback of RANSAC-based correspondence
filtering in the case of small number of input set of correspondences (fig. 11).

3.7. Loop closure

The Loop closure module is responsible for performing the graph based optimization,
where the graph vertices represent point clouds constituting the consecutive views,
whereas edges represent the found correspondences. In the current version of the
system we utilize the LUM algorithm [21], which estimates the costs of a given edge
as the sum of Euclidean distance between Cartesian coordinates of the corresponding
keypoints. A comparison of models generated with and without the loop closure
is presented in fig. 12. Another considered solution was the Explicit Loop Closing

Figure 11: Correspondences between two consecutive views: estimated with FLANN
(left) and remaining after simple Cartesian distance rejection (right). The clouds were
manually shifted only for the visualization purposes

Table 2: Comparison of results obtained for two selected loop closure algorithms

Translation noise Rotation noise

Input LUM error ELCH error Input LUM error ELCH error

[mm] [mm] [◦] [mm] [◦] [◦] [mm] [◦] [mm] [◦]

0 0.03 0.25 0.11 0.02 5 0.00 0.09 7.32 6.96

5 0.02 0.07 4.15 0.12 10 0.00 0.19 10.40 11.95

10 0.02 0.11 2.08 2.67 30 0.03 0.09 4.54 29.31

50 0.02 0.17 30.00 5.54 60 0.00 0.10 66.04 71.82

100 0.05 0.29 66.67 9.34 90 46.80 255.43 95.34 113.52
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Figure 12: Object model after pairwise registration (left) and optimized with the
LUM-based global loop closure (right). The improvement can be seen e.g. in the
Lipton brand logo

Heuristic algorithm (ELCH) [32], but the errors obtained during building models of
small objects in the case of controlled (input) transformations between point clouds
constituting the object were much worse (please refer to table 2).

4. Analysis of results

We have performed several sets of experiments on different objects in order to validate
the ModReg system. The goal of the first set of experiments was to quantitatively
compare the numbers of object points acquired with both hardware configurations.
For this reason we have acquired views of three objects possessing highly different
shapes: a cuboidal Lipton tea, a cylindrical Inka coffee can and a Sugar bag having

Object Kinect Sensor Textured Stereo Ratio
Exemplary Avg. number Exemplary Avg. number [-]

view of points [-] view of points [-]

Sugar
bag 7250.1 129342.4 17.8

Lipton
tea 9320.3 135702.8 14.6

Inka
coffee 5597.7 162623.3 29.1

Table 3: Comparison of average number of points constituting selected objects for all
object views
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Figure 13: Statistics (means, medians and standard deviations) of number of points
constituting given object in views acquired with both Kinect sensor and Textured
Stereo

an irregular shape. As presented in table 3, the low resolution of Kinect depth images
resulted in a quite small object point clouds, containing typically several thousand of
points, whereas the view of the same scene acquired with our multi-camera system
resulted in the object mask containing significantly more points. The last column,
containing the ratios between the numbers of points constituting object views acquired
from stereo and acquired from the Kinect sensor, shows that the former views were
larger typically by at least an order of magnitude (a factor of 20 in average). Table 3
provided only mean numbers of points of views of the selected objects. A more
detailed statistics regarding the number of acquired object points, including ranges
(i.e. maximum and minimum number of points) along with means and standard
deviations, are presented in fig. 13. The former presents the statistics of object points
acquired with the use of Kinect sensor, whereas the latter shows the results for both
hardware setups.

The goal of the next set of experiments was to verify and compare results of
the whole object registration procedure when applied to data acquired from both
hardware configurations. The obvious method would require utilization of an external
device providing some kind of a ground-truth. This is a typical case when it comes
to datasets for object recognition, pose estimation or semantic scene analysis [9].
However, as we did not have such a device and there are no models (e.g. CAD models)
of the registered objects available (thus our motivation to register such models), we
had to propose a new verification method.

The idea of the method relies on the comparison of the registered model of an
object with a manually generated solid model of that object using the known object
shape and dimensions. This enables projection of both models into the same reference
frame and, finally, calculation of the registration errors by calculation of distances
between points constituting the registered model with the surface of the manually
generated model. We have selected two objects with simple shapes: a cuboid (Lipton
tea box) and a cylinder (Inka coffee can) of known dimensions. The results, comprising
of RMSE and maximum distance of registered model points from the generated solid
model surface, are presented in table 4. In the case of cuboidal Lipton, dimensions
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include width, depth and height, whereas for cylindrical Inka those include diameter
of the cylinder and its height. The results achieved on the basis of views acquired by
our textured stereo system are clearly better, with both RMSE and maximum errors
reduced by half.

Object Dimensions Kinect Sensor Textured Stereo

RMSE Max error RMSE Max error

[mm] [mm] [mm] [mm] [mm]
Lipton tea 150x125x60 0.91 1.9 0.5 0.98
Inka coffee 98x150 1.09 5.6 0.61 2.5

Table 4: Comparison of errors of selected models of objects registered relying on data
acquired from both hardware configurations

The examples of the models of objects registered with the use of our ModReg
system are presented in fig. 14. We have achieved a quite consistent models of both
regular (such as tea boxes) and irregular objects (e.g. bag of sugar). It can be
observed that the combination of ICP with LUM managed to successfully remove in-
consistencies of the resulting model (like the blurred texts and logos visible in columns
2 and 3). Besides, in the case of highly irregular objects, such as partially filled bag
of sugar, all improvements applied to clouds acquired from Kinect appeared to fail
(row 4). This resulted from the low resolution and high deformations of surfaces,
thus both optimizations failed to find good correspondences, both in terms of color
points (ICP) and features (LUM). In contrast, the multi-camera system successfully
generated a highly consistent models of the object.

5. Summary

In this paper we have presented a modular system for registration of 3D models of
objects called ModReg. The modularity of the software enabled to use and compare
two sources of RGB-D images, i.e. Kinect sensor and a novel multi-camera setup
supplemented by an additional pattern projector The latter setup was used for the
registration of high-resolution RGB-D images, which in turn resulted in better (i.e.
having higher resolution and being more consistent) models of objects. The presented
experiments confirm the usefulness of the developed solution.

A major drawback of the system is that due to the photometric nature of the
used features its application is limited to textured objects. This problem might be
overcome by aggregation of point clouds into more abstract structures (such a lines,
surfaces or meshes) and using more sophisticated registration algorithms, such as e.g.
ICP flavours relying on lines (ICL). In the future we also plan to extend the system
by introducing other types of features, extracted from both color and depth, in order
to make the system more robust.

Besides, we are also working on incorporation of new types of RGB-D sensors, that
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No ICP, No LUM ICP, No LUM No ICP, LUM ICP, LUM

Figure 14: Exemplary results of registration. Columns contain (from left): registra-
tion on the basis of board pose estimation, with the use of ICP with color, without
ICP but with the use of LUM, using both ICP color and LUM. Rows contain (from
top): a Lipton tea box (data from Kinect, bottom views), the same Lipton tea box
(from textured stereo, bottom views), a Lightning McQueen toy (from Kinect, side
views), a sugar bag (from Kinect, side views) and the same sugar bag (textured stereo,
side and bottom views)
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recently appeared on the market (e.g. Intel Realsense R200). In particular, utiliza-
tion of Kinect XBO will enable us to compare three most popular depth acquisition
methods. The modularity of the ModReg system will highly facilitate those tasks.
Following the community standards we have made the source code of the ModReg
system to be publicly available4.

Finally, the developed system was used for capturing of the significant amount
of data constituting the WUT Visual Perception Dataset [35], the dataset created
for the purpose of development, comparison and evaluation of diverse algorithms for
object model registration and object recognition. The dataset is also publicly available
on-line5.

Acknowledgment

The authors would like to thank Marta Łępicka and Mikołaj Kamionka for help
with the evaluation of selected registration algorithms and kindly acknowledge the
support of the National Science Centre according to the decision number DEC-
2012/05/D/ST6/03097, the National Centre for Research and Development grant
no. PBS1/A3/8/2012 and grant of the Dean of Faculty of Electronics and Informa-
tion Technology of Warsaw University of Technology no. 504/01446/1031/42.

References

[1] Aldoma A., Tombari F., Di Stefano L., and Vincze M. A global hypotheses
verification method for 3D object recognition. In Computer Vision (ECCV 2012),
pages 511–524. Springer, 2012.

[2] Aldoma A., Tombari F., Prankl J., Richtsfeld A., Di Stefano L., and Vincze M.
Multimodal cue integration through hypotheses verification for RGB-D object
recognition and 6DOF pose estimation. In Robotics and Automation (ICRA),
2013 IEEE International Conference on, pages 2104–2111. IEEE, 2013.

[3] Belter D., Nowicki M., Skrzypczyński P., Walas K., and Wietrzykowski J.
Lightweight RGB-D SLAM System for Search and Rescue Robots. In Progress in
Automation, Robotics and Measuring Techniques, pages 11–21. Springer, 2015.

[4] Besl P. and McKay N. A method for registration of 3-D shapes. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 14(2):239 –256, 1992.

[5] Bradski G. and Kaehler A. Learning OpenCV: Computer vision with the OpenCV
library. O’Reilly Media, 2008.

[6] Correll N., Bekris K. E., Berenson D., Brock O., Causo A., Hauser K., Okada K.,
Rodriguez A., Romano J. M., and Wurman P. R. Analysis and observations from

4https://github.com/DisCODe/Registration
5http://robotyka.ia.pw.edu.pl/datasets/

198 T. Kornuta, M. Stefańczyk

https://github.com/DisCODe/Registration
http://robotyka.ia.pw.edu.pl/datasets/


the first amazon picking challenge. IEEE Transactions on Automation Science
and Engineering, 2016.

[7] Dziergwa M., Kaczmarek P., and Kędzierski J. RGB-D Sensors in Social
Robotics. Journal of Automation Mobile Robotics and Intelligent Systems,
9(1):18–27, 2015.

[8] Figat J., Kornuta T., and Kasprzak W. Performance evaluation of binary de-
scriptors of local features. In Chmielewski L., Kozera R., Shin B.-S., and Woj-
ciechowski K., editors, Proceedings of the International Conference on Computer
Vision and Graphics, volume 8671 of Lecture Notes in Computer Science, pages
187–194. Springer Berlin / Heidelberg, 2014.

[9] Firman M. Rgbd datasets: Past, present and future. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pages 19–
31, 2016.

[10] Großmann B., Siam M., and Krüger V. Comparative evaluation of 3D pose esti-
mation of industrial objects in RGB pointclouds. In Computer Vision Systems,
pages 329–342. Springer, 2015.

[11] Hirschmuller H. Stereo processing by semiglobal matching and mutual informa-
tion. IEEE Trans. Pattern Anal. Mach. Intell., pages 328–341, II 2008.

[12] Holz D., Ichim A. E., Tombari F., Rusu R. B., and Behnke S. Registration with
the Point Cloud Library: A Modular Framework for Aligning in 3-D. Robotics
& Automation Magazine, IEEE, 22(4):110–124, 2015.

[13] Konolige K. Projected texture stereo. In International Conference on Robotics
and Automation (ICRA), pages 148–155. IEEE, 2010.

[14] Kornuta T. and Laszkowski M. Perception subsystem for object recognition
and pose estimation in RGB-D images. In Szewczyk R., Zieliński C., and
Kaliczyńska M., editors, Recent Advances in Automation, Robotics and Measur-
ing Techniques, volume 440 of Advances in Intelligent Systems and Computing
(AISC), pages 597–607. Springer, 2016.

[15] Kornuta T. and Stefańczyk M. Acquisition of RGB-D images: sensors (in Polish).
Pomiary – Automatyka – Robotyka PAR, 18(2):92–99, 2014.

[16] Kornuta T. and Stefańczyk M. Comparison of methods of aquisition of RGB-D
images for the purpose of registration of three-dimensional models of objects (in
Polish). In XIV Krajowa Konferencja Robotyki – Postępy robotyki, volume 2,
pages 357–366, 2016.

[17] Kornuta T. and Stefańczyk M. Utilization of textured stereovision for registration
of 3D models of objects. In 21th IEEE International Conference on Methods
and Models in Automation and Robotics, MMAR’2016, pages 1088–10093. IEEE,
2016.

199MODREG: a modular framework for RGB-D ...



[18] Lai K., Bo L., Ren X., and Fox D. A large-scale hierarchical multi-view RGB-D
object dataset. In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 1817–1824. IEEE, 2011.

[19] Lenz I., Knepper R., and Saxena A. DeepMPC: Learning deep latent features
for model predictive control. In Proceedings of Robotics: Science and Systems,
Rome, Italy, July 2015.

[20] Lowe D. Object recognition from local scale-invariant features. In Computer
Vision, The Proceedings of the Seventh IEEE International Conference on, vol-
ume 2, pages 1150–1157. Ieee, 1999.

[21] Lu F. and Milios E. Globally consistent range scan alignment for environment
mapping. Autonomous Robots, 4(4):333–349, 1997.

[22] Łępicka M., Kornuta T., and Stefańczyk M. Utilization of colour in ICP-based
point cloud registration. In Proceedings of the 9th International Conference on
Computer Recognition Systems (CORES 2015), volume 403 of Advances in In-
telligent Systems and Computing, pages 821–830. Springer, 2016.

[23] Muja M. and Lowe D. G. Fast approximate nearest neighbors with automatic
algorithm configuration. In VISAPP (1), pages 331–340, 2009.

[24] Newcombe A. J., Richard A and Davison, Izadi S., Kohli P., Hilliges O., Shot-
ton J., Molyneaux D., Hodges S., Kim D., and Fitzgibbon A. KinectFusion:
Real-time dense surface mapping and tracking. In Mixed and augmented reality
(ISMAR), 2011 10th IEEE international symposium on, pages 127–136. IEEE,
2011.

[25] Peng X., Sun B., Ali K., and Saenko K. Learning deep object detectors from
3d models. In Proceedings of the IEEE International Conference on Computer
Vision, pages 1278–1286, 2015.

[26] Pomerleau F., Colas F., and Siegwart R. A review of point cloud registration
algorithms for mobile robotics. Foundations and Trends in Robotics (FnTROB),
4(1):1–104, 2015.

[27] Ramey A., González-Pacheco V., and Salichs M. A. Integration of a low-cost
RGB-D sensor in a social robot for gesture recognition. In Proceedings of the
6th international conference on Human-robot interaction, pages 229–230. ACM,
2011.

[28] Ren X., Fox D., and Konolige K. Change Their Perception: RGB-D for 3-D
Modeling and Recognition. Robotics & Automation Magazine, IEEE, 20(4):49–
59, 2013.

[29] Rusu R., Blodow N., and Beetz M. Fast point feature histograms (FPFH) for 3D
registration. In Robotics and Automation, 2009. ICRA’09. IEEE International
Conference on, pages 3212–3217. IEEE, 2009.

200 T. Kornuta, M. Stefańczyk



[30] Rusu R. B. and Cousins S. 3D is here: Point Cloud Library (PCL). In Interna-
tional Conference on Robotics and Automation, Shanghai, China, 2011 2011.

[31] Seredyński D. and Szynkiewicz W. Fast grasp learning for novel objects. In
Recent Advances in Automation, Robotics and Measuring Techniques, volume
440 of Advances in Intelligent Systems and Computing (AISC), pages 681–692.
Springer, 2016.

[32] Sprickerhof J., Nüchter A., Lingemann K., and Hertzberg J. A heuristic loop
closing technique for large-scale 6D SLAM. Automatika: Journal for Control,
Measurement, Electronics, Computing & Communications, 52(3), 2011.

[33] Stefańczyk M. and Kornuta T. Acquisition of RGB-D images: methods (in
Polish). Pomiary – Automatyka – Robotyka PAR, 18(1):82–90, 2014.

[34] Stefańczyk M. and Kornuta T. Handling of asynchronous data flow in robot
perception subsystems. In Simulation, Modeling, and Programming for Au-
tonomous Robots, volume 8810 of Lecture Notes in Computer Science, pages
509–520. Springer, 2014.

[35] Stefańczyk M., Laszkowski M., and Kornuta T. WUT Visual Perception Dataset
– a dataset for registration and recognition of objects. In Challenges in Au-
tomation, Robotics and Measurement Techniques, volume 440 of Advances in
Intelligent Systems and Computing (AISC), pages 635–645. Springer, 2016.

[36] Sturm J., Engelhard N., Endres F., Burgard W., and Cremers D. A benchmark
for the evaluation of RGB-D SLAM systems. In Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, pages 573–580. IEEE,
2012.

[37] Tang J., Miller S., Singh A., and Abbeel P. A textured object recognition pipeline
for color and depth image data. In Robotics and Automation (ICRA), 2012 IEEE
International Conference on, pages 3467–3474. IEEE, 2012.

[38] Thrun S., Burgard W., and Fox D. A probabilistic approach to concurrent
mapping and localization for mobile robots. Autonomous Robots, 5(3-4):253–
271, 1998.

[39] Tombari F. and Di Stefano L. Object recognition in 3D scenes with occlusions
and clutter by hough voting. In Image and Video Technology (PSIVT), 2010
Fourth Pacific-Rim Symposium on, pages 349–355. IEEE, 2010.

[40] Tombari F., Salti S., and Di Stefano L. Unique signatures of histograms for local
surface description. In Computer Vision–ECCV 2010, pages 356–369. Springer,
2010.

This is an extended version of the paper presented at the 14th National Conference
on Robotics (KKR 2016), Polanica Zdrój, Poland, September 14-18, 2016.

201MODREG: a modular framework for RGB-D ...


	Motivation of the work
	Contributions of the paper
	Structure of the paper

	Registration of the models of objects
	The ModReg system
	Data acquisition
	Turntable
	Textured stereovision
	Structured light

	Object segmentation
	View processing
	Cloud storage
	Pairwise registration
	Correspondence estimation
	Loop closure

	Analysis of results
	Summary

