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DIFFICULTY FACTORS AND PREPROCESSING IN
IMBALANCED DATA SETS: AN EXPERIMENTAL
STUDY ON ARTIFICIAL DATA

Szymon WOJCIECHOWSKI, Szymon WILK *

Abstract. In this paper we describe results of an experimental study where
we checked the impact of various difficulty factors in imbalanced data sets on the
performance of selected classifiers applied alone or combined with several preprocess-
ing methods. In the study we used artificial data sets in order to systematically
check factors such as dimensionality, class imbalance ratio or distribution of specific
types of examples (safe, borderline, rare and outliers) in the minority class. The
results revealed that the latter factor was the most critical one and it exacerbated
other factors (in particular class imbalance). The best classification performance was
demonstrated by non-symbolic classifiers, particular by k-NN classifiers (with 1 or 3
neighbors — INN and 3NN, respectively) and by SVM. Moreover, they benefited from
different preprocessing methods — SVM and 1NN worked best with undersampling,
while oversampling was more beneficial for 3NN.

Keywords: imbalanced data, difficulty factors, preprocessing methods, learning
and classification

1 Introduction

Data characterizing many real-world classification problems manifest an imbalanced
distribution of examples across decision classes, namely, one of the decision classes is
underrepresented (sometimes heavily) comparing to the others. A typical example is
medical diagnosis where the number of patients from a critical class requiring special
management is usually much smaller than the number of patients from remaining
classes [32]. Such a phenomenon is referred to as the class imbalance, the underrep-
resented class is called the minority class, while the other classes are referred to as
the majority classes.
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The class imbalance poses a difficulty for many learning algorithms — induced
classifiers are often biased towards the majority classes [19, 7]. Many methods have
been already proposed to deal with this challenge (see [12] for a review). They can
be divided into two groups operating at the algorithm level and data level. Methods
from the former group adjust a learning process appropriately so it can be applied
directly to imbalanced data, while methods from the latter group preprocess learning
data, e.g., by resampling. Although implementing modifications at the algorithm level
can potentially lead to more extensive improvement in the classification performance,
preprocessing methods constitute a dominant approach.

However, the imbalanced distribution of classes itself is not the only one or the
major difficulty, but there are other factors that combined together with the class
imbalance can lead to a serious deterioration of classification accuracy, especially for
the minority class [24]. These other data difficulty factors include: small data set size
[14], small disjuncts [15], overlapping regions of the minority and majority classes [9],
and multiple minority class examples located inside the majority classes [24].

In order to approximate the data difficulty factors we employ the taxonomy of mi-
nority class examples proposed in [25]. This taxonomy defines four types of examples
based on their local characteristic: safe, borderline, rare and outlier. Safe examples
lie inside the minority class and are surrounded mostly by neighbors from the same
class; borderline examples are located close to class boundaries and thus their neigh-
borhood is a mixture of the majority and minority class examples; rare examples form
small islands (consisting of 2-3 examples) inside the majority classes; finally outliers
are isolated examples “thrown” into the majority classes. Borderline, rare and outlier
examples are considered as unsafe, because they are more difficult to learn.

This paper extends our previous work where we focused mostly on preprocessing
borderline and outlier examples [24]. Here we consider difficulty factors captured by
various distributions of minority example types and combine them with the varying
class imbalance and data dimensionality (i.e., we go beyond 2-dimensional data sets).
In order to examine all these factors in a systematic way we use artificial data sets
created with our new data generator (specifically, we consider two non-linear data
shapes and modify data characteristics according to the difficulty factors). More-
over, our evaluation involves 6 classifiers (both non-symbolic and symbolic) and 5
preprocessing methods (both random and informed).

Summarizing, this study answers the following research questions (in all these
questions we primarily focus on the classification performance with respect to the
minority class):

1. What is the impact of the varying class imbalance and data dimensionality on
the classification performance?

2. What is the impact of the varying distributions of minority example types on
the classification performance?

3. What is the impact of preprocessing methods on the classification performance
and what are the best performing combinations of preprocessing methods and
classifiers?
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The paper is organized as follows. The next section presents related work on data
difficulty factors, their impact on the classification performance and comparison of
different preprocessing methods. In Section 3 we present the data generator used to
create artificial data set and describe the experimental design behind our study. The
results of our experiments are presented in details in Section 4. Finally, Section 5
presents a discussion and concluding remarks.

2 Related work

One of the very first papers about imbalanced data was [19]. The authors found
that the performance of classifiers significantly deteriorated when the majority class
included much more examples than the minority one, and they proposed a one-sided
selection method to reduce the number of examples from the majority class. They also
explained how the class imbalance affected k-nearest neighbor (k-NN), Bayesian and
tree-based classifiers. These conclusions were verified and broadened by subsequent
research.

Jo and Japkowicz [16] revealed that the class imbalance itself was not a problem
in itself, however, it may have resulted in small disjuncts in the minority class that
actually degraded the classification performance. Also Garcia et al. [9] claimed that
the class imbalance was not the only cause of deteriorated performance, but an im-
portant role was played by an overlap of the minority and majority classes. This
claim came from comparison of 6 learning algorithms on 2-dimensional artificial nu-
merical data sets with the controlled class overlap. Moreover, the authors stated that
effects of the class overlap combined with class imbalance were strongly dependent on
the classifier characteristics. In turn, Napierala and Stefanowski [25] stated that the
distribution of example types in the minority class had greater impact on the classifi-
cation performance than other difficulty factors, e.g., class imbalance or the size of a
data set. Their observation was based on the analysis of 26 real-life data sets. Besides
that, they found that in most considered data sets the minority class included a large
portion of unsafe examples, especially outliers. This finding was consistent with our
study [32] where we also found that the minority class in 5 imbalanced real-life clinical
data sets consisted mostly of borderline and outlier examples.

Other researchers were interested in examining the influence of difficulty factors
on the performance of classifiers constructed using different learning algorithms. Jap-
kowicz and Stephen [14] compared a tree-based classifier (induced with the C5.0 algo-
rithm), multi-layer perceptron and a support vector machine (SVM) on a collection
of artificial data sets. They concluded that SVM was not sensitive to small disjuncts
at all, while the decision tree was heavily affected. Garcia et al. [10] found out that
comparing to other types of classifiers k-NN was more sensitive to the size of the class
overlap than to the overall class imbalance, but yet the most critical factor was the
local imbalance ratio.

Finally, some researchers also performed comparison of various preprocessing meth-
ods. Garcia et al. [11] conducted an experiment on real data sets to examine the influ-
ence of the imbalance ratio and classifier characteristic on the classification accuracy.
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Considered data sets were divided into two groups: imbalanced and balanced. That
comparison involved 4 preprocessing methods and 8 classifiers. The authors concluded
that in case of high imbalance oversampling performed better than undersampling (the
latter may have removed too many important examples in order to balance the class
distribution), while both preprocessing methods performed comparably when data
sets were balanced. They also stated that selecting a preprocessing method was more
important than selecting a classifier because of the smaller impact of the latter on
the observed performance. Then, in [24] we concluded that focused preprocessing
methods (like neighborhood cleaning rule, NCR, or SPIDER2) outperformed both
random and cluster oversampling methods when dealing with borderline and outlier
examples from the minority class. This observation was made on 2-dimensional arti-
ficial numerical data sets. In turn, in our study [32] involving difficult clinical data
sets, all considered classifiers performed poorly, and while applying any preprocessing
method improved the classification performance, the largest increase was observed for
random undersampling.

3 Methods
3.1 Data generator

In our early work on artificial data sets and their analysis [24] we used a simple
data generator limited to two-class and two-dimensional problems, and to safe and
borderline examples. While it was sufficient to create data sets for the first round of
computational experiments, it did not allow us to simulate more complex situations,
e.g., the minority class containing both rare and outlier examples.

Given the above shortcomings, we decided to design and implement a new gener-
ator with improved functionality and thus increased versatility. Specifically, the new
data generator has the following capabilities:

e Support for multi-class and multi-dimensional data sets (current implementation
is limited to 40 dimensions due to restrictions imposed by libraries implementing
quasi-random numbers, however, it should be sufficient to generate data sets
with sizes similar to these of real-life data sets [25]),

e Support for decision classes composed of one or more regions. A region is de-
fined either as a hyper-ellipsis or a hyper-rectangle with uniform or normal
distribution of safe and borderline examples. It is also possible to associate
diversified weights with regions from a given class to introduce intra-class im-
balance. Finally, the generator supports special so-called integumental regions
that fill empty space between regular regions. Such regions are usually intro-
duced for the majority class, however, they are not obligatory, and the majority
class can be defined using regular regions as well,

e Support for all four types examples introduced in [25] — safe, borderline, rare
and outlier. It is also possible to specify a different distribution of example
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types for each decision class (e.g., it is possible to obtain data sets with two
differently distributed minority classes),

Ability to switch between pseudo- and quasi-random numbers to obtain uni-
formly distributed examples. Quasi-random numbers fill the data space more
uniformly than pseudo-random numbers (they result in a smaller number of
empty “holes”) and are often used in simulation and optimization [22]. Specifi-
cally, the new generator currently employs the Halton sequence to obtain quasi-
random numbers, however, it can be easily modified to use other low-discrepancy
sequences,

Ability to generate pairs of learning and testing data sets where locations of rare
and outlier examples are preserved (e.g., in both data sets such examples are
located in similar positions). This allows for a more robust evaluation of learned
classifiers, as we avoid situations that are quite likely in k-fold cross validation,
where all rare and outlier examples from a certain area would be used for testing,
thus preventing a classifier from learning them and deteriorating its accuracy.

The generator is controlled through a set of properties providing the characteristics

of generated data. Listing 1 shows a sample configuration that defines a 2-dimensional
3-class data set with 500 examples categorized into two minority classes and the
majority class (lines 1-7). The first minority class is composed of a single rectangular
region and it includes all types of examples, including rare and outliers (lines 15-19).
The second minority class consists of two elliptical regions (the former contains twice
as many examples as the latter) and it is limited to safe and borderline examples
(lines 21-29). Finally, the majority class is associated with a single integumental
region (lines 31-35). The obtained data set is visualized in Figure 1.

Listing 1. Configuration for a sample data set

0O Utk WN -

attributes = 2

classes = 3

names.attributes = X, Y
names.classes = MIN1, MIN2, MAJ
names.decistion = CLASS

classRatio = 1:1:3
ezamples = 500

minOutlierDistance = 0.5
defaultRegion.weight = 1
defaultRegion.distribution =
defaultRegion.borderZone = 0.
defaultRegion.nolutlierZone = 0.4

Y
6

class.1l.regions = 1
class.1l.ezamplelTypeRatio = 50:20:20:10
class.1l.region.1l.shape = R
class.1l.region.1.center = -1, 2.5
class.1l.region.1.radius = 2.5, 1
class.2.regions = 2

class.2. ezampleTypeRatio = 70:30:0:0
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Figure 1. Visualization of the data set defined in Listing 1
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23 class.2.region.l.weight = 2

24 class.2.region.1l.shape = C

25 class.2.region.1l.center = 0, -2
26 class.2.region.l.radius = 3, 2
27 class.2.region.2.shape = C

28 class.2.region.2.center = 3.8, 1
29 class.2.region.2.radius = 0.5, 2
30

31 class.3.regions = 1

32 class.3.exapleTypeRatio = 100:0:0:0
33 class.3.region.1.shape =1

34 class.3.region.1.center = 0, O
35 <class.3.region.l.radius = 5, 5

3.2 Experimental design

An overall goal of our experimental study was to check if the characteristics of an
imbalanced data set, in particular the dimensionality, the imbalance ratio and the
distribution of example types, affected the performance of selected classifiers and how
this performance could be improved using preprocessing methods. In the experiment
we considered two data shapes — paw3 and flower5 — illustrated in Figure 2. Both
shapes capture non-linear relation between attributes. In flower5 the minority class
resembles a flower with 5 elliptic petals, while paw3 is composed of 3 regions and
resembles a paw print. In both shapes the majority class constituted a single integu-
mental region that filled an empty data space. Similar shapes were considered in our
early study on imbalanced data [24] where they presented a challenge to classification
methods comparable to the one associated with real-life data sets.

The numbers of examples for each shape were fixed throughout the experiment at



Difficulty factors and preprocessing in imbalanced ...

155

| 1354% s

(LK TS 2 PR T
{. o 0% ) “t" R
ry "o.. % ¢ “" !:‘.
e :
® MIN < MAJ o MIN < MAJ

(a) paw3 shape

(b) flower5 shape

Figure 2. Data shapes considered in the study

1200 for paws and 1500 for flowers. A larger number of examples for the latter shape
was associated with a larger number of regions in the minority class and allowed us to
ensure reasonable number of safe examples in each region, even for larger imbalance
ratios and “extreme” distributions of example types (see description below). We used
2-, 3-, 5- and 7-dimensional versions of each shape. Specifically, we systematically
expanded the complexity by adding new dimensions to existing ones. Moreover, we
considered four possible imbalance ratios — 1:5, 1:7, 1:9, and 1:13 that correspond to
16.7%, 12.5%, 10.0%, and 7.1% share of the minority class in a data set, respectively.
Such imbalance ratios are typical for many benchmark real-life data sets (see [25, 26]).

We also considered 6 possible distributions of example types in the minority class
(further in the text we refer to them as to type distributions), given in Table 1.
These distributions were inspired by experimental evaluation from [25]. Specifically,
the first two distributions — 100:0:0:0 and 70:30:0:0 correspond to easy data sets
with the majority of safe examples (the former was used as a baseline). Distributions
40:50:10:0 and 30:40:15:15 correspond to moderate data sets where safe and borderline
examples prevail in the minority class, however, the number of borderline examples
is comparable to the number of safe ones. Finally, distributions 10:20:35:35 and
0:15:35:50 correspond to difficult data sets where most examples from the minority
class are rare or outlier examples. Figure 3 illustrates how selected type distributions
affect the 2-dimensional flower5 shape with the imbalance ratio of 1:5. Summarizing,
for each shape we considered 96 derived data configurations (4 dimensionalities x 4
imbalance ratios x 6 example type distributions), thus the total number of processed
data configurations was equal to 192.

The considered preprocessing methods are listed in Table 2 (for their brief descrip-
tion see [32, 25]). We selected them to preserve consistency with previous research



156 S. Wojciechowski, S. Wilk

06 X X A
% 8% 5% x .
. »> { A
% TN X5 e
R 0¥ X R K
X ) o ) :
R S »
RO 0 o5 X X
osf o o % L5 & 2
LA . X -
X % oy 2 (
g { f0g% S8 %
A % X * .
* X % %
200 oo B A4 o ) % A
% 2
% Ve AN L X
XA A X
*
. A X X
YT 2 &
S a
o] " S5 30 X% Sl Sk K HC
oA ) R < 2
QM VALY A
A RK %
G A KX
3 A N 5
A
B 2 s
ost os|
% s % o W % £ % W W
a a
@ MIN-SAFE m MIN-BORDER ¢ MIN-RARE - MAJ © MIN-SAFE 8 MIN-BORDER ¢ MIN-RARE A MIN-OUTLIER ' MAJ
(a) 40:50:10:0 (b) 30:40:15:15
081
051
2 00

% s @ r w % s @ 3 w
© MIN-SAFE 8 MIN-BORDER ¢ MIN-RARE A MIN-OUTLIER  MAJ = MIN-BORDER ¢ MIN-RARE A MIN-OUTLIER  MAJ
(c) 10:20:35:35 (d) 0:15:35:50

Figure 3. Impact of the type example distributions on the flower5 shape
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Table 1. Considered type distributions in the minority class (S = safe, B = border-
line, R = rare, O = outlier)

Distribution S [%] B [%] R [%] O [%]

100:0:0:0 100 0 0 0
70:30:0:0 70 30 0 0
40:50:10:0 40 50 10 0
30:40:15:15 30 40 15 15
10:20:35:35 10 20 35 35
0:15:35:50 0 15 25 50

Table 2. Considered preprocessing methods

Method Description

none no preprocessing (baseline)

RU random undersampling

RO random oversampling

NCR neighborhood cleaning rule [20]

SM SMOTE (Synthetic Minority Over-sampling
TEchnique) [4]

SP2 SPIDER2 (Selective Preprocessing of

Imbalanced Data, version 2) [24]

and to allow for more reliable comparison. Following our past experience [32], the RU,
RO and SM methods were parametrized to produce a balanced distribution of classes
in resulting data sets. Moreover, SM and SP2 were used with & = 5 nearest neighbors,
and the latter was set for extended amplification of the minority class examples and
for relabeling of the majority class examples (such settings were supported by our
earlier studies [32, 24]).

The preprocessing methods were combined with classifiers given in Table 3 (all
were implemented in WEKA). Such selection was driven by the consistency with
previous research and also by the characteristic of specific classifiers (e.g., we selected
RBF over a multi-layer perceptron due better handling of noisy data by the former
[33]). For C4.5 and PART we considered both pruned and unpruned versions of
induced classifiers for a comprehensive evaluation. Unpruned classifiers are generally
suggested when class imbalance has been encountered [21]. However, our past results
with imbalanced medical data sets showed that when combined with preprocessing
methods pruned classifiers worked comparably or better than unpruned ones [32],
thus, we wanted to further verify this finding.

Crucial parameters for RBF (standard deviation and the number of clusters) and
SVM (gamma for the RBF kernel and complexity) were selected using a simple grid
search (systematic exploration of possible combinations of parameter values [27]) over
original (i.e., not preprocessed) data sets. During the search we optimized the geo-
metric mean of sensitivity and specificity for the minority class (G-mean in short).
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Table 3. Considered classifiers

Classifier Description

1NN, 3NN, 5NN k-NN classifier with Euclidean distance and k=1,
3 and 5 nearest neighbors, respectively

C45-P, C45-U a tree-based classifier induced using the C4.5

algorithm with and without pruning, respectively
PART-P, PART-U a rule-based classifier induced using the PART
algorithm with and without pruning, respectively

NB a naive Bayes classifier with a kernel density
estimator

RBF a radial basis function (RBF) neural network

SVM a support vector machine with an RBF kernel

G-mean is typically used for imbalanced data as it avoids the bias associated with
uneven distribution of classes. We considered the following ranges of parameters:
standard deviation from le—3 to le—1, number of clusters from 3 to 60, gamma from
1 to le+3 and complexity from le+1 to le+5. We were not able to find a single
set of parameters for each classifier that would have resulted in reasonable values of
G-mean for all data sets. We also failed to find a single parameter configuration for
a set of files with the same type distribution. Thus, we finally identified specific pa-
rameters for each of the 192 data configurations!. Interestingly, we observed certain
patterns in the obtained configurations — more difficult sets required larger numbers
of clusters for RBF and greater complexity for SVM, and the remaining parameters
were less sensitive to the type distributions and thus more stable throughout the data
configurations.

Most of the remaining classifiers were run with default values of parameters. Only
for classifiers induced using PART and C4.5 algorithms we had to turn off the min-
imum description length correction for info gain. Otherwise, these algorithms were
unable to handle difficult type distributions (they failed to construct tree paths or
rules for the minority class). Moreover, in case of NB we decided to use a kernel den-
sity estimator, as in our preliminary tests it turned out to be better suited to numerical
data than the other options (using normal distribution or internal discretization).

The classification performance was evaluated using sensitivity and specificity for
the minority class and the already mentioned GM. We did not use the AUC (area
under the ROC curve) measure, as the classifiers selected for our study gave determin-
istic predictions. Here we should also note that the minority class was set a priori and
even though some of the processing methods heavily modified the class distribution
(making the minority class most prevalent), we did not change it.

The above measures were estimated using a validation scheme with independent
learning and testing data sets. More precisely, for each considered data configuration
we generated 10 pairs of learning and testing sets and averaged results over these
pairs. The size of the testing sets was fixed to 500 examples, while the learning sets

1A document with RBF and SVM parameters for specific data configurations is available at
http://www.cs.put.poznan.pl/swilk/fcds-generator/rbf-svm-params.pdf
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included either 1200 (paw3) or 1500 (flower5) examples. Obviously, preprocessing
methods were applied to learning sets only. In order to gain better insight into
differences between specific combinations of preprocessing methods and classifiers, we
applied non-parametric Friedman test that globally compared their performance over
multiple data sets [5]. We also carried out a post-hoc analysis (the Nemenyi test) of
differences between ranks. All these tests were performed with o = 0.05.

4 Results

4.1 Impact of the dimensionality and class imbalance on the clas-
sification performance

Here we study the impact of the dimensionality and the imbalance ratio on the per-
formance of considered classifiers. Table 4 reports sensitivity for 4 selected classifiers
applied with no preprocessing — INN, 3NN, PART-U and SVM (due to space limits
we focused on most representative and interesting ones). To give better insight, we
present results not only for the baseline 100:0:0:0 type distribution, but also for the
most difficult one — 0:15:35:50.

The first observation is that for the easy type distribution lower imbalance ratios
(1:5 — 1:9) had limited impact on sensitivity — a larger decrease was observed for the
ratio of 1:13. This impact became more evident for the difficult type distribution
where increasing class imbalance deteriorated the classification performance for the
minority class (e.g., for 3NN or PART-U). Such finding is consistent with literature
that associates data difficulties not only with class imbalance, but also with other
factors (see discussion in Sections 1 and 2).

The obtained results also reveal that increasing dimensionality improved sensitivity
(especially for difficult type distributions), although an extent of such improvement
was dependent on the classifier. It was largest for INN (also for 3NN and RBF),
and for other classifiers the improvement was more limited. While this may seem
surprising, neural networks and support vector machines were already demonstrated
to improve their performance with higher dimensionality [3]. Moreover, our findings
are consistent with results presented in [23] where the authors explored the effect of the
following three factors on classification accuracy: the length of the class boundary,
the number of dimensions and the number of examples. The class boundary was
established by constructing a minimum spanning over all examples and computing
the ratio of edges connecting examples from different classes. A value close to 1.0
indicated that decision classes were highly interleaved, while a value close to 0.0
corresponded to their good separability. Results obtained in that study on real-life
and artificial data revealed that the length of the class boundary was the most crucial
factor — the other two did not affect the accuracy if the length was constant.

In our study increasing the dimensionality was associated with decreasing data
density (the number of examples was constant). The drop in density was slower
for the minority class, than for the majority one (when the number of dimensions
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increases, then the volume of a hyper-ellipsis “shrinks” in comparison to the volume
of a surrounding hyper-rectangle). In other words, examples from the minority class
became more concentrated than the majority class examples, what improved the
separability of both classes (and thus shortened the class boundary). Impact of the
improved separability is especially visible for difficult data set and 1NN and 3NN
classifiers.

In Table 5 we present specificity for the selected classifiers. It increased with the
imbalance ratio. Moreover, in most cases it also increased with the dimensionality,
and — as for sensitivity — the extent of change was dependent on the type distribution
and the classifier. The largest increase was observed for the difficult type distribution
and for the INN and PART-U classifiers. Similar changes were also observed for
SVM, however, they were more evident for lower dimensionalities. Finally, specificity
observed for 3NN was most stable in comparison to other classifiers.

We should also note that the data shape had negligible impact on the performance
of classifiers — paw3 despite apparent simplicity of (smaller number of regions in the
minority class) demonstrated the same challenge as flower5.

4.2 Impact of the type distribution on the classification perfor-
mance

In this section we discuss the impact of the type distribution on the performance
of the considered classifiers applied to data sets without any preprocessing methods.
While we checked the classifiers on all 192 data configurations, here we present de-
tailed results for configurations with 3 dimensions and the imbalance ratio of 1:7.
Observations for other configurations were similar — if there were any differences, we
note them explicitly.

Table 6 shows sensitivity obtained by specific classifiers — in this table (and all
subsequent ones) the best value in each row is marked in bold and the second best in
italics. The impact of the type distribution on the performance is clear — sensitivity
deteriorated when the ratio of rare cases and outliers increased. This effect was es-
pecially visible when moving from moderate to difficult data sets. For 2-dimensional
data also the differences between easy and moderate sets stood out, and for larger
numbers of dimensions extensive changes in sensitivity were encountered when switch-
ing within the moderate type distributions from 40:50:10:0 to 30:40:15:15. This may
imply that outliers always caused problems for classifiers, while the undesirable impact
of a limited number of rare cases was mitigated by increased dimensionality.

The results also allowed us to identify most competent classifiers for specific groups
of data sets. For easy data sets it was 5NN (and often SVM), for moderate data sets
the best sensitivity was demonstrated by SVM, 3NN and 1NN. Finally, for difficult
data sets INN performed best. Here we need to highlight performance of SVM, which
was a strong competitor for k-NN classifiers for easy and moderate data sets. It only
lost to INN on difficult data sets with larger number of dimensions (5 and 7), however,
even then it was the second best classifier. Interestingly, unlike in other related stud-
ies (e.g., [25]), none of the symbolic classifiers was able to demonstrate a competitive
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performance. This may be associated with the characteristics of synthetic data and
with more extensive tuning of parameters for some of non-symbolic classifiers (SVM
and RBF) — we discuss it in Section 5. We should also note that unpruned sym-
bolic classifiers generally performed better than their pruned variants. While pruning
worked well for easy data sets, it became detrimental for difficult data sets, thus
confirming observations from [21]. We also observed that flower5 was somewhat eas-
ier for symbolic classifiers (especially for moderate and difficult types distributions),
however, differences were minor — usually around 3-5%. Finally, we need to point
out poor performance of the NB classifier. While it was acceptable for the easy type
distributions, it failed for the difficult ones and it was unable to correctly recognize
any example from the minority class.

To further validate the above findings and to examine the importance of differences
between specific classifiers given their sensitivity we conducted the Friedman test. It
relied on ranks of classifiers (in our analysis these ranks were interpreted as positions
in a ranking, i.e., the lower, the better) and involved all 192 data configurations.
The null hypothesis saying that all classifiers performed equally was rejected (p <
5e — 8). The ranking of classifiers according to their average positions across all
data sets is given in Figure 4a. The figure also gives the critical difference (CD)
according to the Nemeyi test. The best classifiers were SVM, INN and 3NN and their
sensitivity was significantly better than for the remaining classifiers. Also, there was
a significant difference between two groups of classifiers — one involving k-NN, SVM
and RBF) and the other with symbolic classifiers and NB. The ranking also indicates
that unpruned classifiers induced using C4.5 and PART algorithms performed better
than their pruned counterparts, although the differences was statistically significant
only for C4.5.

We also applied the Friedman separately to easy, moderate and difficult data sets
in order to get better insight into performance of the classifiers in these groups. In each
test the null hypothesis was rejected as well. The obtained rankings and associated
critical values are given in Figure 4b, 4c and 4d, respectively. The rankings for easy
and moderate data sets are very similar to the ranking for all data sets, and the
ranking for difficult data sets reveals several interesting observations. While the top
of this ranking remained unchanged (INN, SVM and 3NN), the PART-U and C45-
U classifiers were “promoted”. This is consistent with results from [25] according to
which these two classifiers were well suited for data sets with many rare cases and
outliers.

Additionally, in Table 7 we present G-mean for specific classifiers. As previously,
we observed a larger deterioration of this measure when moving from moderate to
difficult data set that was caused by the drop in sensitivity (specificity was relatively
stable). Moreover, SVM was the best classifier for easy and moderate data sets — only
for difficult ones 1NN took the lead due to its better sensitivity. However, SVM took
advantage of its better specificity for the data sets with 5 and 7 dimensions, and the
differences in G-mean between these two classifiers were smaller than for sensitivity.
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1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 71 8 9 10
- ]
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3NN PART-P SVM b—— C45-U
RBF —MM I——————— PART-U RBF I
5NN 1NN NB
(a) all data sets (CD = 0.98) (b) easy data sets (CD = 1.69)
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(c) moderate data sets (CD = 1.69) (d) difficult data sets (CD = 1.69)

Figure 4. Rankings of classifiers (based on their sensitivity)

4.3 Impact of preprocessing methods on the classification perfor-
mance

In this section we discuss the impact of preprocessing methods on the classification
performance of selected classifiers. Specifically, we focus on the classifiers identified as
the best ones in the previous section — SVM and 3NN (1NN behaved similarly to SVM,
therefore, we excluded it from the detailed analysis). Moreover, for better comparison
with findings from [25] we also include PART-U. As previously, we present detailed
results for 3 dimensions and the imbalance ratio of 1:7, however, the discussion covers
other data configurations as well.

In Tables 8 and 9 we show sensitivity for SVM and 3NN, respectively. In com-
parison to the baseline (none) application of preprocessing methods in most cases
improved the performance. An extent of this improvement was dependent on the
type distribution — for easy data set the improvement was negligible due to a stellar
baseline performance, however, it intensified for moderate data sets and became very
strong for difficult ones. Moreover, 3NN turned out to be more prone to improvement
than SVM and when combined with preprocessing, it resulted in better sensitivity
than SVM. Finally, both considered data shapes were similar in terms of the observed
performance of 3NN and SVM and we were not able to point at any of the shapes as
more difficult than the other.

SVM and 3NN required different preprocessing methods to attain the best observ-
able performance. In case of SVM the best method was RU that consistently led to
the best sensitivity (its superiority was especially evident for moderate and difficult
data sets). The other method worth mentioning was NCR. On the contrary, for 3NN
the best results were observed for RO and SP2.

In Table 10 we also present sensitivity for PART-U. As previously, preprocessing
always improved its performance, however, the increase was smaller than for SVM
and 3NN (especially for difficult data sets). Moreover, both considered data shapes
were comparable in terms of their difficulty. Similarly to SVM, the most suitable
preprocessing method was RU — only for easy data sets SP2 resulted in better perfor-
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mance.

Table 8. Sensitivity for SVM combined with preprocessing methods and varying
type distributions (3 dimensions, imbalance ratio 1:7)

SVM
none RO RU NCR SM SP2

paws
100:0:0:0 0.983 0.983 0.995 0.995 0.986  0.998
70:30:0:0 0.992 1.000 1.000 1.000 1.000 1.000
40:50:10:0 0.917 0916 0.971 0.965 0.941  0.949
30:40:15:15 0.803 0.832 0.916 0.905 0.878 0.848
10:20:35:35 0.592 0.606 0.894 0.776 0.714  0.635
0:15:35:50 0.544 0.562 0.903 0.768 0.697 0.589

flowers
100:0:0:0 0.998 1.000 1.000 1.000 1.000 1.000
70:30:0:0 0.994 0.997 1.000 1.000 0.997 1.000
40:50:10:0 0.948 0.948 0.981 0.971 0.957 0.956
30:40:15:15 0.840 0.848 0.957 0.910 0.862 0.854
10:20:35:35 0.589 0.622 0.895 0.825 0.729 0.635
0:15:35:50 0.519  0.552 0.884 0.737 0.714 0.565

Table 9. Sensitivity for 3NN combined with preprocessing methods and varying type
distributions (3 dimensions, imbalance ratio 1:7)

3NN
none RO RU NCR SM SP2

paws
100:0:0:0 0.997 1.000 1.000 1.000 1.000 1.000
70:30:0:0 0.986 1.000 1.000 1.000 0.998 1.000
40:50:10:0 0.935 0.997 0.995 0968 0976  0.997
30:40:15:15 0.775 0.973 0.871 0.814  0.889 0.970
10:20:35:35 0.440 0.949 0.759  0.568  0.811 0.941
0:15:35:50 0.337 0.933 0.733 0.470 0.819 0.932

flowers
100:0:0:0 0.997 1.000 1.000 1.000 0.998 1.000
70:30:0:0 0.998 1.000 1.000 1.000 1.000 1.000
40:50:10:0 0.940 0.994 0.990 0967 0970 0.992
30:40:15:15  0.759 0.979 0.879 0.806 0.883 0.979
10:20:35:35 0.449 0.957 0.775  0.598  0.821 0.957
0:15:35:50 0.297 0.946 0.738 0.460 0.824  0.940

For all these classifiers we performed Friedman tests to check differences between
specific preprocessing methods considering the observed sensitivity. In each case the
null hypothesis was rejected (with p < 5e — 8). Moreover, we conducted similar tests
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Table 10. Sensitivity for PART-U combined with preprocessing methods and varying
type distributions (3 dimensions, imbalance ratio 1:7)

PART-U
none RO RU NCR SM SP2

paws
100:0:0:0 0.892 0.884 0.948 0910 0.894 0.965
70:30:0:0 0.887 0.868 0.959 0.933 0.919 0.987
40:50:10:0 0.771 0.754 0.913 0.843 0.844 0.887
30:40:15:15 0.619 0.597 0.798 0.684 0.735 0.694
10:20:35:35 0.330 0.329 0.702 0.432 0.556 0.368
0:15:35:50 0.224 0.213 0.667 0.370 0.470 0.278

flowers
100:0:0:0 0.897 0.902 0.981 0964 0.940 0.992
70:30:0:0 0.890 0.883 0.965 0.962 0.927 0.987
40:50:10:0 0.810 0.814 0.905 0.870 0.879 0.897
30:40:15:15 0.654 0.633 0.841 0.744 0.768 0.722
10:20:35:35 0.384 0.360 0.700 0.468 0.570 0.429
0:15:35:50 0.244 0.230 0.654 0.383 0.522 0.268

for specific group of data files. The results are presented in Figures 5, 6 and 7. The
obtained rankings confirm and generalize our findings discussed above. In case of
SVM the best method was clearly RU. It was always ranked first and its rank (with
the exception of easy data sets) was statistically better than the rank of the second
best method — NCR. For easy data sets SP2 became a stronger competitor that
overtook NCR. For 3NN the best two methods were RO and SP2 (RO in most cases
was ranked first, but the difference was statistically significant only when considering
all data sets). Interestingly, for easy data sets all methods were ranked similarly
(no statistical differences), and RU was located before RO. Finally, observations for
PART-U are very similar to those for SVM — RU was the best method, only for
easy data sets it was superseded by SP2, however, the difference in ranks was not
statistically significant.

For a more comprehensive overview, in Tables 11, 12 and 13 we show G-mean
for SVM, 3NN and PART-U, respectively. These tables reveal that preprocessing
improved (or in case of easy data sets it did not worsen) the classification performance.
For SVM the largest improvement was observed for NCR and sometimes RU (usually
for difficult data sets). In case of 3NN RO and SP2 worked best. Finally, for PART-U
positive impact on GM was observed for SM, SP2 and NCR. The latter method had
also positive impact on GM for INN.



Difficulty factors and preprocessing in imbalanced ... 169

Table 11. G-mean for SVM combined with preprocessing methods and varying type
distributions (3 dimensions, imbalance ratio 1:7)

SVM
none RO RU NCR SM SP2

paws
100:0:0:0 0.987 0.987 0974 0983 0.988 0.978
70:30:0:0 0.985 0.987 0.973 0.985 0.987 0.978
40:50:10:0 0.944 0942  0.920 0.954 0.937 0.942
30:40:15:15  0.865 0.877 0.807 0.898 0.856  0.873
10:20:35:35 0.727 0.735 0.788 0.818 0.718 0.745
0:15:35:50 0.696 0.706 0.713 0.806 0.695 0.718

flowers
100:0:0:0 0.996 0.996 0.991 0.993 0.996 0.984
70:30:0:0 0.991 0.993 0.990 0.991 0.993 0.984
40:50:10:0 0.966 0.966 0.975 0.973 0.953 0.956
30:40:15:15 0.898  0.901 0.927 0.927 0.856 0.896
10:20:35:35 0.745 0.763  0.790 0.855 0.741  0.765
0:15:35:50 0.676 0.695 0.696 0.776 0.701 0.696

Table 12. G-mean for 3NN combined with preprocessing methods and varying type
distributions (3 dimensions, imbalance ratio 1:7)

3NN
none RO RU NCR SM SP2

paws
100:0:0:0 0.984 0.973 0944 0.980 0.980 0.975
70:30:0:0 0976 0970 0.941 0.978 0.977 0.973
40:50:10:0 0.946 0.954 0.902 0.955 0.945 0.955
30:40:15:15 0.861  0.907 0.825 0.874 0.860 0.907
10:20:35:35 0.645 0.825 0.662 0.715 0.741 0.825
0:15:35:50 0.566 0.792 0.609 0.648 0.722 0.795

flowers
100:0:0:0 0.988 0.983 0.961 0.986  0.987 0.982
70:30:0:0 0.987 0.982 0.961 0984 0.985 0.981
40:50:10:0 0.956  0.968 0.926 0.962 0.956  0.965
30:40:15:15 0.855 0.923 0.834 0.875 0.869 0.922
10:20:35:35 0.658  0.853 0.678 0.739 0.761 0.853
0:15:35:50 0.533 0.791 0.623 0.637 0.721  0.790
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Table 13. G-mean for PART-U combined with preprocessing methods and varying
type distributions (3 dimensions, imbalance ratio 1:7)

PART-U
none RO RU NCR SM SP2

paws
100:0:0:0 0.938 0934 0936 0.941 0.937 0.963
70:30:0:0 0932 0923 0944 0.953 0.949 0.972
40:50:10:0 0.863 0.851 0.879 0.898 0.884 0.912
30:40:15:15 0.761 0.750 0.726 0.791 0.779  0.797
10:20:35:35 0.541 0.541 0.582  0.600 0.627 0.567
0:15:35:50 0.437 0432 0.547 0.547 0.564 0.492

flowers
100:0:0:0 0.940 0.943 0.967 0.970 0961 0.979
70:30:0:0 0.936 0.931 0.958 0.969 0.954 0.977
40:50:10:0 0.888 0.889 0.892 0.915 0908 0.923
30:40:15:15 0.786 0.772 0.760 0.827 0.805  0.820
10:20:35:35 0.582 0.568 0.598 0.628 0.644 0.615
0:15:35:50 0.461 0.442 0.540 0.554 0.586 0.479

CcD —_—

2 3 4 5 6 E 2 3 - 2 ©
g— 177 L =g I e
SMOTE SP2 NCR SMOTE
(a) all data sets (CD = 0.54) (b) easy data sets (CD=0.94)

c o
1 2 3 4 5 6 2 3 4 5 6
oy e e
SMOTE sP2 SMOTE S2
(¢) moderate data sets (CD=0.94) (d) difficult data sets (CD=0.94)

Figure 5. Rankings of preprocessing methods for SVM (based on their sensitivity)
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Figure 6. Rankings of preprocessing methods for 3NN (based on their sensitivity)
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Figure 7. Rankings of preprocessing methods for PART-U (based on their sensitivity)

5 Discussion

The study described in this paper is a follow-up to our earlier work on artificial imbal-
anced data [24]. The new data generator allowed us to consider other types of minor-
ity class examples than safe and borderline. Moreover, we considered data sets with
varying dimensionality and imbalance ratio. Finally, we expanded the set of examined
preprocessing methods and classifiers. The experimental design — in particular con-
sidered distributions of safe, borderline, rare and outlier examples (corresponding to
easy, moderate and difficult data sets), selected classifiers and preprocessing methods
— was inspired by the work described in [25]. There were, however, several important
differences that may have affected the results — they are briefly discussed below:

1. All the data sets considered in this study were numerical (as in [24]) what gave
advantage to distance-based classifiers (e.g., k-NN) that demonstrated very good
classification performance,

2. Instead of k-fold cross validation we employed a scheme with pairs of corre-
sponding learning and testing sets. This may have resulted in more optimistic
evaluation of performance, as such scheme saved us from situations where ex-
amples in certain data regions were underrepresented in a learning set and over-
represented in a testing set (for this reason we employed this scheme already in
several experiments described in [24]). While adoption of this validation scheme
does not allow for direct comparison of qualitative results, trends observed in
classification performance and obtained rankings of classifiers and preprocessing
methods can be still compared to other reports.

3. We performed more thorough optimization of parameters for SVM and RBF
neural network classifiers. Unlike in [25] we failed to find a single set of pa-
rameters for each of these classifiers that would have resulted in reasonable
performance on all data configurations, and ultimately we optimized selected
parameters for each individual configuration. This gave handicap to these two
classifiers and positively affected their performance.

With the above factors in mind, the major findings from our study, and at the
same responses to questions formulated in Section 1, are as follows:
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1. The impact of the data shape, dimensionality and imbalance ratio (within the

scope considered in the study) on the classification performance was limited.
Both shapes (paw3 and flower5) were comparable in terms of difficulty, however,
the latter presented a greater computational challenge for selected classifiers (in
particular SVM) than the former. Deterioration of sensitivity associated with
increasing the imbalance ratio alone from 1:5 to 1:13 in most cases did not exceed
10%. Moreover, increasing the dimensionality improved the performance (in
terms of sensitivity and G-mean) — data sets with 2 and 3 dimensions were more
difficult than those with 5 and 7 dimensions. This improvement was consistent
with results from [23] where the authors showed the impact of the length of the
class boundary (capturing how examples from various classes were interleaved)
on the classification accuracy. Introduction of additional dimensions decreased
data density, especially for the majority class, and improved the separability of
examples from both classes, thus shortening the class boundary.

The critical factor affecting the performance in terms of sensitivity was the
distribution of example types. We observed the first large drop in performance
when introducing outliers (15% of all minority class examples) and then when
increasing their ratio from 15% to 35%. Introducing rare examples alone had
much more limited impact (it was only visible for 2 dimensional data sets), thus
we hypothesize outliers pose a special challenge for classifiers and preprocessing
methods. Difficult data distributions also exacerbated the problem of class
imbalance — its impact on performance was more visible in difficult data sets
than in easy and moderate ones. These observations are consistent with the
literature [9, 25, 16] and highlight the importance of other data difficulty factors
than the sole class imbalance.

When no preprocessing methods were applied, the best sensitivity was demon-
strated by SVM and k-NN with 1 and 3 neighbors (INN and 3NN, respectively).
Moreover, SVM was also best given G-mean, and 1NN and 3NN were second
best. Further breakdown into groups of files revealed that for easy data sets
3NN (and also 5NN) was better than 1NN, however, the latter demonstrated
its advantage on moderate and difficult data sets, which was consistent with
findings from [10, 29].

While symbolic classifiers were not competitive for non-symbolic ones, we ob-
served that for difficult data sets an unpruned rule-based classifier induced by
PART (PART-U) became the 4th classifier given its sensitivity. It overtook not
only all other symbolic classifiers, but also some non-symbolic ones, (e.g., RBF,
however, the difference was not statistically significant). Better performance
on difficult data sets was also observed for an unpruned tree-based classifier
induced by C4.5 (C45-U). Such behavior was consistent with findings from [25]
about suitability of PART-U and C45-U for data sets with prevalent rare and
outlier examples. Poorer performance of these classifiers in comparison to the
leaders (1NN, 3NN and SVM), inconsistent with results from [25], may be ex-
plained by lower dimensionality of the data sets considered in our study (larger
number of dimensions may deteriorate the performance of k-NN [29]) and by
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more extensive customization of parameters for SVM (and also for RBF). Fi-
nally, consistently with the literature [21], we observed that unpruned classifiers
performed better than their pruned variants. While on easy and moderate data
sets the differences were minor, they revealed their advantage on difficult data
sets.

3. We observed that preprocessing methods were able to improve the performance
of classifiers in terms of both sensitivity and G-mean. Moreover, the improve-
ment of sensitivity in certain cases exceeded 60%. While it was larger than
reported by other researchers (improvement of 30% or less [25, 2]), it could be
attributed to the employed validation scheme (comparable improvements were
observed in our earlier study [24] where we used pairs of learning and testing
examples). We were able to identify certain combinations of classifiers and pre-
processing methods that optimized the performance. For SVM undersampling
methods worked best (this was reported by other researchers [28, 17] and we
also observed it in our earlier study [32]). Specifically, random undersampling
(RU) maximized sensitivity, while neighborhood cleaning rule (NCR) was most
beneficial for G-mean (these two methods had the same impact on 1NN). On the
other hand, 3NN worked best with oversampling — in particular with random
oversampling (RO) and SPIDER2 (SP2) which improved both sensitivity and
G-mean. While RU is generally preferred over RO [6], similar results showing
beneficial impact of RO on 3-NN were presented in [31]. Finally, PART-U ben-
efited from RU considering sensitivity, and from NCR, SP2 and SMOTE given
G-mean (these methods were also suggested in [25] as best ones for PART-U,
however given sensitivity). Interestingly, our results did not reveal clear benefits
of informed resampling over random one and in this sense they are consistent
with [13]. However, we can hypothesize that informed sampling is essential
for obtaining a more balanced classification accuracy (as captured by G-mean)
where more careful modifications of learning data are necessary.

At the end we need to mention several limitations of our study:

1. The imbalance ratios examined in the experiment were typical for many real-life
data sets, however, they were far from extreme imbalance that is becoming a
relevant research topic [18]. Also the dimensionality was very small (we limited
it to have a better control over and insight into generated sets), especially from
the perspective of extreme dimensionality where problems with hundreds or
event thousands of dimensions are considered [1, 30].

2. The data shapes were relatively regular and the variance within specific regions
of the minority class was limited (especially in the case of the paw3 shape).
Moreover, the majority class was defined as a single integumental region. This
could have made it less susceptible to RU, as demonstrated by G-mean. In
real-life data sets the majority class often forms clusters (as demonstrated, e.g.,
in [25]), thus RU may have a more detrimental effect on the classification per-
formance for this class.
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3. We employed a set of well-established preprocessing methods. While many of
them were considered in other studies (e.g., [8]), this set did not include new
developments in this field, e.g., new variants of the SMOTE method [26].

We believe that despite the above limitations, our study may be interesting for the
research community. As part of our future work we plan to expand the data generator
with an ability to create data sets with both numerical and symbolic attributes and
make it publicly available.
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