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Abstract: We solve a linear chance constrained portfolio optimization problem using 
Robust Optimization (RO) method wherein financial script/asset loss return distributions 
are considered as extreme valued. The objective function is a convex combination of 
portfolio’s CVaR and expected value of loss return, subject to a set of randomly perturbed 
chance constraints with specified probability values. The robust deterministic counterpart of 
the model takes the form of Second Order Cone Programming (SOCP) problem. Results 
from extensive simulation runs show the efficacy of our proposed models, as it helps the 
investor to (i) utilize extensive simulation studies to draw insights into the effect of 
randomness in portfolio decision making process, (ii) incorporate different risk appetite 
scenarios to find the optimal solutions for the financial portfolio allocation problem and (iii) 
compare the risk and return profiles of the investments made in both deterministic as well 
as in uncertain and highly volatile financial markets. 

Keywords: Risk Management; Investment Analysis; Robust Optimization; Conditional 
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1. Introduction

The essence of modern portfolio theory is the seminal work of [60], in which one tries to 
maximize the expected value of the portfolio return subject to relevant constraints on 
portfolio variance. Another way to treat the problem would be to minimize the portfolio 
variance subject to constraints on the portfolio returns. In formulating the portfolio, the 
investor′s aim is to combine financial scripts/assets in a way such that it results in 
diversification while at the same time maintain the required optimal risk return profile of 
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the investor. The idea of diversification also highlights the relationship between financial 
scripts/assets which may be quantified by the concept of correlation coefficient. Let us 
consider this in more details. Consider an investor is interested to allocate optimal 
proportions/amounts of funds/money, denoted by 𝑤𝑤𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛, in 𝑛𝑛 different financial 
scripts/assets, with an intention to maximize the portfolio return, 𝑟̅𝑟𝑃𝑃 = ∑ 𝑟̅𝑟𝑖𝑖𝑤𝑤𝑖𝑖𝑛𝑛

𝑖𝑖=𝑖𝑖 , where 𝑟̅𝑟𝑖𝑖 is 
the average return for the 𝑖𝑖𝑡𝑡ℎ financial script/asset, 𝑖𝑖 = 1, … ,𝑛𝑛. While doing so the investor 
has in front of him/her some realistic constraints to satisfy, which may have to do with the 
portfolio risk, 𝜎𝜎𝑃𝑃2 = ∑ ∑ 𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗𝜎𝜎𝑖𝑖,𝑗𝑗𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1 = ∑ ∑ 𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗𝜌𝜌𝑖𝑖,𝑗𝑗𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1 , where 𝜎𝜎𝑖𝑖,𝑗𝑗, 𝜎𝜎𝑖𝑖, 𝜌𝜌𝑖𝑖,𝑗𝑗 are 

covariance, standard deviation, correlation coefficient respectively, being bounded from 
above by a stipulated known value, 𝜎𝜎𝑝𝑝∗2, or the fact that the total investment expenses, 
∑ 𝐼𝐼𝑖𝑖𝑛𝑛
𝑖𝑖=1 , where 𝐼𝐼𝑖𝑖  is the investment expense for the 𝑖𝑖𝑡𝑡ℎ financial script, does not exceed a 

certain fixed percentage, 𝜏𝜏𝑖𝑖, of the total endowment value, 𝑉𝑉0, at time 𝑡𝑡 = 0, etc. In order to 
obtain the desired results the investor may need to formulate and solve relevant financial 
optimization problems. If we pay close attention to the above problem, one would notice 
that the optimal proportions/amounts based on which the investor invests, may vary due to 
the fact that input prices of financial scripts/assets and hence, 𝑟𝑟𝑖𝑖, are non-deterministic. 
Added to this the changing economic environment may also have a fluctuating effect on 𝑉𝑉0. 
It is also possible that due to extraneous considerations the changing interest rates may 
influence different variables like 𝐼𝐼𝑖𝑖′𝑠𝑠,  𝑖𝑖 = 1, … ,𝑛𝑛, and 𝑉𝑉0 considered in the problem. 

Thus one observes that in trying to solve financial optimization problems or for that 
matter any optimization problem we encounter situations where the problem structure along 
with the input parameters, 𝑫𝑫 = (𝐷𝐷1, … . ,𝐷𝐷𝑛𝑛) and/or the decision variables, 𝒙𝒙 =
(𝑥𝑥1, … . , 𝑥𝑥𝑛𝑛), are non-deterministic. The question then is, how does one solve such non-
deterministic problems? There are a variety of solution techniques, one of which is the 
concept of Robust Optimization (RO) method which we use here. 

Before we discuss about RO let us consider a generic optimization model as given in (1) 

𝑚𝑚𝑚𝑚𝑚𝑚
∀𝑥𝑥

𝑓𝑓(𝒙𝒙,𝑫𝑫)

s. t. : 𝑔𝑔𝑗𝑗(𝒙𝒙,𝑫𝑫) ≤ 0
𝒙𝒙 ∈ ℝ𝑛𝑛

(1) 

where 𝒙𝒙 ∈ ℝ𝑛𝑛 is the vector of 𝑛𝑛 number of decision variables, 𝑫𝑫 is the parameter vector 
(also termed as input data), 𝑓𝑓(∙) is the objective function and 𝑔𝑔𝑗𝑗(∙) is the 𝑗𝑗𝑡𝑡ℎ constraint 
where 𝑗𝑗 = 1, … ,𝑚𝑚. If the parameter values are unknown then one needs to estimate or 
compute them accurately. Furthermore if the estimated values of the parameters differ from 
their nominal (average) values, then the optimal solution obtained may violate some or all 
of the critical constraints. This results in sub-optimal or even unfeasible solution. To tackle 
these uncertainties one uses the concept of Robust Optimization (RO). 

Before discussing the model, the RO formulation with proofs and the simulation results, 
let us state the general plan of this research article. The focus of this paper is to model and 
solve linear Chance Constrained Optimization Problem (CCOP) using RO approach with 
application in financial portfolio optimization, the discussion of which is covered in Section 
2. In Section 3 we talk about the proposed model, where we solve a robust Chance
Constrained Portfolio Optimization Problem (CCPOP), with an objective function which is 
a convex combination of Conditional Value at Risk (CVaR) and portfolio′s expected value 
of loss return, subject to a system of randomly perturbed chance constraints with given 
probabilities. The data analysis part, is then covered in Section 4, where time series return 
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data of indices (considered here as financial scripts/assets) for 12 different countries, 
namely (i) AORD (Australia); (ii) BVSP (Brazil); (iii) CAC40 (France); (iv) DAX 
(Germany); (v) FTSE (England); (vi) GSPTSE (Canada); (vii) HANGSENG (Hong Kong); 
(viii) MERVAL (Argentina); (ix) NIKKEI (Japan); (x) NSE (India); (xi) NYSE (USA) and 
(xii) SGX (Singapore) are considered. Finally Section 5 ends this paper with few 
conclusions and ideas about future research. 

2. Robust Optimization
In real life optimization models, the parameter values are generally not known beforehand, 
hence one needs to estimate them from available historical data. These parameter values 
usually have measurement/estimation errors, and it is impossible to accurately measure 
them. Furthermore there may be implementation errors as it is difficult to put into practice 
the solution exactly as computed. RO as a technique incorporates these data uncertainties 
such that the solution found does not violate the critical constraints for all or most possible 
realizations of the uncertain parameters. The levels of uncertainty in the 
parameter/coefficient values are described using uncertainty sets and these uncertainty sets 
contain all possible values that may be realized for the uncertain parameters. Using these 
uncertainty sets we convert the uncertain optimization problem into its deterministic 
counterpart, and in doing so it must be remembered that the optimal solution for the 
problem should remain feasible for any realization of the uncertain parameters within the 
pre-specified uncertainty sets of these parameters. Thus the corresponding RO formulation 
for the optimization problem, (1), (considering uncertainties in 𝑫𝑫) may be expressed as 
shown in (2). 

𝑚𝑚𝑚𝑚𝑚𝑚
∀𝑥𝑥

𝑡𝑡

s. t. : 𝑃𝑃𝑃𝑃{𝑓𝑓(𝑫𝑫,𝒙𝒙 ) ≥ 𝑡𝑡} ≥ 𝛽𝛽0
𝑃𝑃𝑃𝑃�𝑔𝑔𝑗𝑗  (𝑫𝑫,𝒙𝒙 ) ≤ 0� ≥ 𝛽𝛽𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑚𝑚

𝒙𝒙 ∈ ℝ𝑛𝑛

(2) 

where, 𝛽𝛽0, is the level of probability associated with the objective function, 𝛽𝛽𝑗𝑗′𝑠𝑠 are the 
probability levels corresponding to the 𝑗𝑗𝑡𝑡ℎ constraint, 𝑗𝑗 = 1, … . ,𝑚𝑚, while 𝑡𝑡 is the 
equivalent RO objective which needs to be optimized. Though (2), seems expressively rich 
but there are some computational difficulties. For example, it is difficult to obtain the true 
distribution of the uncertain parameters. Furthermore even if we know the distributions, the 
evaluations of chance constraints are computationally challenging, let alone the 
optimization of the model. Moreover the presence of chance constraint can hamper the 
desired convexity properties and hence enhance the complexity of the problem. 

Thus in RO the focus is to design and solve optimization problems keeping in mind the 
non-deterministic nature of the parameters/variables. As an optimization technique RO is 
relatively new and is based on the idea that the non-deterministic nature of 
parameters/variables may be described using the concepts of uncertainty sets. In RO our 
aim is to obtain solutions such that they are robust up to the permissible perturbation of the 
probabilistic values of parameters/variables. Furthermore, one may allow fluctuation in the 
parameters/variables values in order to study the sensitivity of the final results, as well as 
allow acceptable deviation of the objective function(s). Thus RO provides us a different 
approach to handle data uncertainty in optimization model by proposing the robust 

Robust and reliable portfolio optimization ... 85



counterpart approach. In order to capture the effect of uncertainty of the 
parameters/variables on the feasibility and optimality of the solutions, we form uncertainty 
sets such that these sets contain all possible values that may be realized for the uncertain 
parameters/variables. The concept of uncertainty sets, is used to model the perturbation of 
the uncertain parameter by utilizing the idea of nominal value/average value along with it 
corresponding fluctuations, such that the variations in the fluctuations are considered 
keeping in mind the level of reliability one wants to ensure. Ideas of 𝐿𝐿2 and 𝐿𝐿∞ norms are 
used, utilizing the box and ball robustness of the uncertainty sets, such that all the probable 
fluctuations in the parameter values are thereby considered. In doing so the corresponding 
robust value as specified in the model is incorporated using concepts of standard normal 
deviate, Φ, such that it is incorporated into the problem formulation through the concept of 
perturbation. One may refer to [7], [15] and [22] to get a good idea about the concept of 
uncertainty sets, perturbations, and the different type of uncertainty sets used in RO. 

The work by [68] is considered as the first paper in RO. As an optimization method it 
has been revitalized in the late 1990s and early 2000s through the seminal work of [17], 
[18], [27] and [47]. Few good survey papers in RO and related areas of uncertainty are 
those by [28], [39], [41] and [67]. Good works in the area of RO and its use in methods as 
diverse as multi-stage programming, cone programming, linear optimization, convex 
programming, semi-definite programming, etc., are those by [2], [6], [12], [13], [14], [16], 
[19], [21], [24], [25], [26], [29], [31], [37], [38], [43], [44], [47] and [62]. Considering its 
usefulness, RO has also been adopted in many application areas across various fields like 
optimal control theory, circuit design, engineering, statistics [5], [11], [35], [36], [46], and 
[70]), inventory management, dynamic pricing and revenue management [1], [8] and [30], 
network with multi commodity flow [3], etc. In the domain of portfolio optimization, asset 
allocation problem, financial risk management, etc., few good references are [10], [33], 
[40], [48], [49], [50], [51], [52], [54], [61], [63], [69] and [71]. RO has also been used in the 
context of dynamic models and few relevant references for this are [20], [45] and [55]. Few 
interesting readings which one may refer to get a good understanding of RO and its 
similarities as well as differences with stochastic programming and other such non-
deterministic methods are, [34], [42], [56], [64] and [65]. Other interesting writings like [4] 
(use of RO for maximizing payoff functions under ambiguous distribution), [9] and [53], 
(solutions methods for different class of RO formulations), etc., may also be referred by the 
readers to get a good idea about RO as an useful method for optimization. Finally few good 
books, survey papers, application tools, etc., for RO are by [7], [15], [23], [32], [57] and 
[66]. 

3. Problem Description and Model Formulation
In our proposed model we simultaneously minimize CVaR as well as maximize expected 
value of loss return, subject to two probability constraints whereby uncertainty is present in 
one of the parameters, which is loss return of each of the 𝑁𝑁 number of indices/financial 
scripts/assets considered in the portfolio. It should be remembered that no uncertainty exists 
for the objective function value. Before discussing the model, we explain the variables used 
in this model, for a better understanding of the model amongst readers. A variable may be 
classified as an element of 𝑫𝑫 or 𝒙𝒙 or as deterministic. For the case of 𝑫𝑫 or 𝒙𝒙, the variable 
has been marked accordingly, while for the one which is deterministic we have not labeled 
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it and have left that for the reader to understand and appreciate its significance with respect 
to the problem. 

1) 𝑟𝑟𝑗𝑗,𝑖𝑖  (∈ 𝑫𝑫): The loss return of the 𝑗𝑗𝑡𝑡ℎ index (𝑗𝑗 = 1, . . . . . . ,𝑁𝑁) for the 𝑖𝑖𝑡𝑡ℎ day
(𝑖𝑖 =  1, . . . . . . ,𝑇𝑇). 

2) 𝑟̅𝑟𝑗𝑗 (∈ 𝑫𝑫): The nominal value of loss return of the 𝑗𝑗𝑡𝑡ℎ index (𝑗𝑗 = 1, . . . . . . ,𝑁𝑁).
3) 𝜎𝜎𝑗𝑗2 (∈ 𝑫𝑫): The variance of loss return of the 𝑗𝑗𝑡𝑡ℎ index (𝑗𝑗 = 1, . . . . . . ,𝑁𝑁).
4) 𝑥𝑥𝑗𝑗 (∈ 𝒙𝒙): The weight of investment in the 𝑗𝑗𝑡𝑡ℎ index, (𝑗𝑗 = 1, . . . . . . ,𝑁𝑁).
5) 𝑁𝑁: The number of different indices/financial scripts/assets considered in the

portfolio (denoted by 𝑃𝑃).
6) 𝑇𝑇: The total time period for which we consider the price of each of the 𝑗𝑗𝑡𝑡ℎ index,

(𝑗𝑗 = 1, . . . . . . ,𝑁𝑁). 
7) 𝛼𝛼∆𝐿𝐿: The confidence level for 𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃,∆𝐿𝐿, considering the loss (Δ𝐿𝐿) distribution of

the portfolio.
8) β1 and β2: The probability level values corresponding to the first and the second

constraints, respectively.
9) 𝛾𝛾∆𝐿𝐿,𝑃𝑃: The variable (∈ ℝ) over which the minimization of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿 is done,

considering loss (Δ𝐿𝐿) distribution of the portfolio.
10) 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿: Conditional Value at Risk of the portfolio′s loss distribution that

needs to be minimized.
11) 𝑟𝑟𝑃𝑃,∆𝐿𝐿 (∈ 𝑫𝑫): Return of the portfolio′s loss distribution that needs to be

maximized.
12) Δ𝐿𝐿 (∈ 𝑫𝑫): Loss distribution for the portfolio, 𝑃𝑃.
13) λ1, and λ2: The variables, ∈ [0,1], which are required to ensure a convex

combination of 𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃,∆𝐿𝐿 and 𝑟𝑟𝑃𝑃,∆𝐿𝐿 of the portfolio.
14) 𝒵𝒵 (∈ 𝑫𝑫): Uncertainty set for the robust counterpart.
15) 𝜁𝜁𝑗𝑗  (∈ 𝑫𝑫): Perturbation vector set for 𝑗𝑗 = 1, . . . . . . ,𝑁𝑁.
16) Ω1 and Ω2 (∈ 𝑫𝑫): Radius of ball or ellipsoid for the first and the second

constraint respectively.
17) 𝑧𝑧𝑗𝑗 (∈ 𝑫𝑫): Dummy variables for the first robust counterpart, 𝑗𝑗 = 1, . . . . . . ,𝑁𝑁.
18) 𝑤𝑤𝑗𝑗  (∈ 𝑫𝑫): Dummy variables for the second robust counterpart, 𝑗𝑗 = 1, . . . . . . ,𝑁𝑁.

Based on the above set of information, the model is of the form as shown in (3). 

𝑚𝑚𝑚𝑚𝑚𝑚
∀𝑥𝑥

�𝜆𝜆1𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿 − 𝜆𝜆2𝑟𝑟𝑃𝑃,∆𝐿𝐿�

𝑠𝑠. 𝑡𝑡. :𝑃𝑃𝑃𝑃 �� 1
(1−𝛼𝛼∆𝐿𝐿)𝑇𝑇

∑ ∑ (𝑟𝑟𝑗𝑗,𝑖𝑖𝑥𝑥𝑗𝑗 − 𝛾𝛾∆𝐿𝐿,𝑃𝑃
𝑁𝑁
𝑗𝑗=1

𝑇𝑇
𝑖𝑖=1 )+ + 𝛾𝛾∆𝐿𝐿,𝑃𝑃�  ≤  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�  ≥  𝛽𝛽1

𝑃𝑃𝑃𝑃 ��1
𝑇𝑇
∑ ∑ 𝑟𝑟𝑗𝑗,𝑖𝑖𝑥𝑥𝑗𝑗𝑁𝑁

𝑗𝑗=1
𝑇𝑇
𝑖𝑖=1 �  ≥  𝑟𝑟𝑃𝑃,∆𝐿𝐿�  ≥  𝛽𝛽2

∑ 𝑥𝑥𝑗𝑗𝑁𝑁
𝑗𝑗=1 = 1

∑ 𝜆𝜆𝑘𝑘2
𝑘𝑘=1 = 1

𝑥𝑥𝑗𝑗 ≥ 0,     𝛾𝛾∆𝐿𝐿,𝑃𝑃 ∈ ℝ, 𝑗𝑗 = 1, … ,𝑁𝑁

(3) 

The objective function comprises of two parts. The first is an unknown value of 
conditional value at risk, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿, which we intend to minimize while the second part is 
the unknown value of expected loss return, 𝑟𝑟𝑃𝑃,∆𝐿𝐿, which we need to maximize. The first 
constraint denotes that the conditional value at risk of the loss return distribution for the 
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portfolio, i.e., � 1
(1−𝛼𝛼∆𝐿𝐿)𝑇𝑇

∑ ∑ (𝑟𝑟𝑗𝑗,𝑖𝑖𝑥𝑥𝑗𝑗 − 𝛾𝛾∆𝐿𝐿,𝑃𝑃
𝑁𝑁
𝑗𝑗=1

𝑇𝑇
𝑖𝑖=1 )+ + 𝛾𝛾∆𝐿𝐿,𝑃𝑃�, is less than or equal to the 

objective 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿 value with a level of probability  𝛽𝛽1. On the other hand the second 
constraint implies that the return of the portfolio′s loss distribution, �1

𝑇𝑇
∑ ∑ 𝑟𝑟𝑗𝑗,𝑖𝑖𝑥𝑥𝑗𝑗𝑁𝑁

𝑗𝑗=1
𝑇𝑇
𝑖𝑖=1 � , is 

greater than or equal to the objective return value, 𝑟𝑟𝑃𝑃,∆𝐿𝐿, with 𝛽𝛽2 as its corresponding 
probability. The third constraint implies that the sum of the weights of all investments 
should equal to one, while the fourth constraint ensures the convex property of the objective 
function. Finally the fifth constraint imposes the condition that short-selling is not allowed 
for any of the indices/financial scripts/assets as well as the fact that conditional value at risk 
can assume any real number. 

Theorem 1: The robust counterpart of the uncertain linear constraint 
𝑃𝑃𝑃𝑃 �� 1

(1−𝛼𝛼∆𝐿𝐿)𝑇𝑇
∑ ∑ (𝑟𝑟𝑗𝑗,𝑖𝑖𝑥𝑥𝑗𝑗 − 𝛾𝛾∆𝐿𝐿,𝑃𝑃

𝑁𝑁
𝑗𝑗=1

𝑇𝑇
𝑖𝑖=1 )+ + 𝛾𝛾∆𝐿𝐿,𝑃𝑃�  ≤  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�  ≥  𝛽𝛽1 with uncertainty set 

𝒵𝒵 =  �𝜁𝜁𝑗𝑗 ∈ ℝ𝑁𝑁: ‖𝜻𝜻‖∞ ≤ 1, ‖𝜻𝜻‖2 ≤ Ω1} = 𝐵𝐵𝐵𝐵𝐵𝐵1 ⋂𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵Ω1   is equivalent to the system of 
conic quadratic constraints 

𝑧𝑧𝑗𝑗 + 𝑤𝑤𝑗𝑗 = ∑ [𝜎𝜎𝑗𝑗]𝑇𝑇𝑥𝑥𝑗𝑗𝑁𝑁
𝑗𝑗=1 , 𝑗𝑗 = 1, … ,𝑁𝑁 (4) 

�� 1
(1−𝛼𝛼∆𝐿𝐿)𝑇𝑇

∑ ∑ �𝑟̅𝑟𝑗𝑗𝑥𝑥𝑗𝑗 +  ∑ �𝑧𝑧𝑗𝑗� +𝑁𝑁 Ω1�∑ 𝑤𝑤𝑗𝑗2𝑁𝑁
𝑗𝑗=1  − 𝛾𝛾∆𝐿𝐿,𝑃𝑃�

+
𝑁𝑁
𝑗𝑗=1

𝑇𝑇
𝑖𝑖=1 � + 𝛾𝛾∆𝐿𝐿,𝑃𝑃�  ≤  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿 (5) 

Here 𝑥𝑥𝑗𝑗 components of every feasible solutions to these equations (4) and (5) satisfy the 

randomly perturbed inequality, with probability at least �1 − exp �−Ω1
2

2
��, where 𝑧𝑧𝑗𝑗 and 𝑤𝑤𝑗𝑗  

are the dummy variables for box and ball robustness respectively. 
Proof: See Appendix A.1 for proof. 
Theorem 2: The robust counterpart of the uncertain linear constraint 

Pr ��1
𝑇𝑇
∑ ∑ 𝑟𝑟𝑗𝑗,𝑖𝑖𝑥𝑥𝑗𝑗𝑁𝑁

𝑗𝑗=1
𝑇𝑇
𝑖𝑖=1 �  ≥  𝑟𝑟𝑃𝑃,∆𝐿𝐿� ≥ 𝛽𝛽2 with uncertainty set 𝒵𝒵 = {𝜻𝜻 ∈ ℝ𝑁𝑁: ‖𝜻𝜻‖∞ ≤

1, ‖𝜻𝜻‖2 ≤ Ω2} =  𝐵𝐵𝐵𝐵𝐵𝐵1 ⋂𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵Ω2  is equivalent to the system of conic quadratic constraints 

𝑧𝑧𝑗𝑗 + 𝑤𝑤𝑗𝑗 =  ∑ [𝜎𝜎𝑗𝑗]𝑇𝑇𝑥𝑥𝑗𝑗𝑁𝑁
𝑗𝑗=1 , 𝑗𝑗 = 1, … … … . ,𝑁𝑁 (6) 

�1
𝑇𝑇

(∑ ∑ 𝑟̅𝑟𝑗𝑗𝑥𝑥𝑗𝑗 −  ∑ �𝑧𝑧𝑗𝑗� − 𝑁𝑁 Ω2�∑ 𝑤𝑤𝑗𝑗2𝑁𝑁
𝑗𝑗=1  )𝑁𝑁

𝑗𝑗=1
𝑇𝑇
𝑖𝑖=1 �  ≥  𝑟𝑟𝑃𝑃,∆𝐿𝐿 (7) 

Here 𝑥𝑥𝑗𝑗 components of every feasible solution to these equations (6) and (7) satisfy the 

randomly perturbed inequality, with probability at least �1 − exp �−Ω2
2

2
��; where 𝑧𝑧𝑗𝑗 and 𝑤𝑤𝑗𝑗  

are the dummy variables for box and ball robustness respectively. 
Proof: See Appendix A.2 for proof. 
Using the above two theorems (Theorem 1 and Theorem 2), the robust counterpart of 

the model is as follows, (8). 
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min
𝑥𝑥

[𝜆𝜆1 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿 −  𝜆𝜆2 × 𝑟𝑟𝑃𝑃,∆𝐿𝐿]

s. t. : �� 1
(1−𝛼𝛼∆𝐿𝐿)𝑇𝑇

∑ ∑ �𝑟̅𝑟𝑗𝑗𝑥𝑥𝑗𝑗 + ∑ �𝑧𝑧𝑗𝑗� +𝑁𝑁 Ω1�∑ 𝑤𝑤𝑗𝑗2𝑁𝑁
𝑗𝑗=1  − 𝛾𝛾∆𝐿𝐿,𝑃𝑃�

+
𝑁𝑁
𝑗𝑗=1

𝑇𝑇
𝑖𝑖=1 � + 𝛾𝛾∆𝐿𝐿,𝑃𝑃�  ≤  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿

�1
𝑇𝑇
�∑ ∑ 𝑟̅𝑟𝑗𝑗𝑥𝑥𝑗𝑗 −  ∑ �𝑧𝑧𝑗𝑗� − 𝑁𝑁 Ω2�∑ 𝑤𝑤𝑗𝑗2𝑁𝑁

𝑗𝑗=1  𝑁𝑁
𝑗𝑗=1

𝑇𝑇
𝑖𝑖=1 ��  ≥  𝑟𝑟𝑃𝑃,∆𝐿𝐿

𝑧𝑧𝑗𝑗 + 𝑤𝑤𝑗𝑗 =  ∑ [𝜎𝜎𝑗𝑗]𝑇𝑇𝑥𝑥𝑗𝑗𝑁𝑁
𝑗𝑗=1 , 𝑗𝑗 = 1, … … … . ,𝑁𝑁
∑ 𝑥𝑥𝑗𝑗𝑁𝑁
𝑗𝑗=1 = 1

∑ 𝜆𝜆𝑖𝑖2
𝑖𝑖=1 = 1

𝑥𝑥𝑗𝑗 ≥ 0,     𝛾𝛾∆𝐿𝐿,𝑃𝑃 ∈ ℝ, 𝑗𝑗 = 1, … ,𝑁𝑁

4. Data Description, Pre-processing and Results with Discussions

4.1. Data Description and Pre-processing 
The dataset for the computational analysis comprises of the daily closing prices of indices 
(considered here as financial scripts/assets) from 12 countries as mentioned in Section 1. 
The data series for each of the indices/financial scripts/assets is considered for a range of 11 
years, which corresponds to a total number of 2840 trading days. For the simulation study 
we divide each of the data series into two different sets, each of size 1420, where the first 
set of 1420 return data points, which is from 01/01/2000 (dd/mm/yyyy) to 31/12/2005 
(dd/mm/yyyy) comprise the in-sample data series. While the data series from 01/01/2006 
(dd/mm/yyyy) to 31/12/2010 (dd/mm/yyyy) is considered as the out-of-sample dataset. 

Use of fat tailed distributions for financial modeling is very important. Hence to 
ascertain that the loss distributions of asset returns are in general heavy tailed (i.e., EVD) 
we conduct relevant statistical tests. Apart from that we also calculate the parameters of the 
underlying loss distribution of returns for all the 12 indices (considered here as financial 
scripts/assets), using which we generate data for both in-sample as well as out-of-sample 
simulation tests. Our first job is to obtain the loss distribution of returns which we do by 
considering only those values of returns which are negative. Next we consider non-
overlapping sets of these negative values and consider the maximum negative value of each 
such set as a candidate for the block bootstrap method ([58], [59]). A sample of 71 data 
points are used whereby each point is the maximum negative loss value pertaining to a 
block of 20 consecutive negative return data points. Thus with these 71 values we perform 
block-bootstrap sampling. It should be noted that for the time series data of negative returns 
one simply cannot use bootstrap method because the empirical distribution does not include 
any of the time series information as required. Hence one has to take recourse of block 
bootstrap method, whereby the time series is re-sampled in blocks keeping in mind that the 
blocks are sufficiently long. This ensures that each block preserves, in the re-sampled 
series, the dependence structure present in the original data sequence. Thus the re-sampling 
scheme implies that we sample with replacement from the blocks and form the bootstrap 
time series estimates of the parameters which are of relevance to us. In the context of our 
research, we denote the bth (𝑏𝑏 = 1, … ,𝐵𝐵 = 5000) bootstrap estimate of 𝑟𝑟𝑗𝑗, 𝑗𝑗 = 1, … ,𝑁𝑁 =
12 as 𝑟̂𝑟𝑗𝑗,𝑏𝑏, and utilize these block bootstrap values to calculate the estimates of the means as 

(8) 
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well as that of the variances of all the 12 indices/financial scripts/assets. Using these means 
(i.e., location parameters) and variances (i.e., scale parameters) for both in-sample as well 
as out-of-sample data sets we generate the random extreme value numbers for the in-sample 
and out-of-sample data series respectively. These in-sample and out-of-sample data series 
thus generated can now be considered as the population of the negative return distributions 
of all the 12 indices/financial scripts/assets included for our study. We perform Q-Q plots 
of the block boot-strap results and draw the density function for all the 12 indices/financial 
scripts/assets to check the underlying sample distributions of the indices/financial 
scripts/assets. Lilliefors tests are also performed to check the hypothesis whether the return 
of all the different indices/financial scripts/assets as well as the bootstrapped expected 
returns (i.e., mean values) come from normal distribution. From the tests (both in-sample as 
well as out-of-sample) it is apparent that none of the 12 indices/financial scripts/assets 
follow normal distribution, but on the contrary are closer to EVD, such that each has heavy 
tails. For paucity of space we do not show these detailed results/graphs for Q-Q plots, 
density functions and Lilliefors tests, as our main emphasis is to discuss the simulations 
results for the RO model. 

To compare our proposed probabilistic model we simulate our model for different 
values of probability levels 𝛽𝛽1 = 𝛽𝛽2 and confidence levels of 𝛼𝛼∆𝐿𝐿. We then evaluate the 
values of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿, 𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃,∆𝐿𝐿 and 𝑟𝑟𝑃𝑃,∆𝐿𝐿 thus obtained with the corresponding values 
generated using the deterministic equal weight and deterministic unequal weight models. 
For the reader we would like to clarify that the deterministic equal weight example signifies 
the case where contributions of each country′s index/financial script/asset in the portfolio is 
equal, along with the fact that prices are known with certainty. On the other hand the 
deterministic unequal weight method denotes the instance where the optimization model 
calculates the contribution of each country′s index/financial script/asset in the final 
portfolio, while still considering price of indices/financial scripts/assets as deterministic. 
The runs for the computational analysis are performed using MATLAB 7.8.0, on a 2.0 GHz 
Pentium 4 machine and the operating system used is Windows Vista for MATLAB codes. 
Along with our developed MATLAB codes we also take the help of Robust Optimization 
Made Easy (ROME) (URL: www.robustopt.com) modelling language developed by 
Melvyn Sim and Joel Goh ([66]). Moreover MOSEK (URL: www.mosek.com) is also 
utilized as the optimization solver engine to handle the computational aspect of second 
order cones. Finally all the different analyses discussed, are run for both in-sample as well 
as for out-of-sample data sets. 

4.2. Results with Discussion 
In this section we discuss the simulated optimization results for both in-sample and out-of-
sample data sets wherein the changes in portfolio risk (measured using 𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃,∆𝐿𝐿 and 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿) as well as portfolio return values (𝑟𝑟𝑃𝑃,∆𝐿𝐿) are observed with respect to the 
changing risk appetite levels (𝛼𝛼 and 𝛽𝛽 values) of the investor. In order to study the impact 
of uncertainty on stock-prices and hence on risk-return profile of an investor we also 
compare the results obtained in the uncertain scenario with those found in the deterministic 
cases. We run our model for different levels of 𝛼𝛼∆𝐿𝐿 (i.e., 90%, 95%, 97% and 99%) and 
𝛽𝛽1 = 𝛽𝛽2 (i.e., 0.90, 0.95, 0.97 and 0.99) values. Based on 2497 number of runs for each of 
the combinations, we report the values of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿, 𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�, 𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 and 𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿� 
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obtained for both in-sample as well as for out-of-sample data series separately. The 
summary of these results are shown in tables 1 & 2. 

Table 1. Average and Standard deviation values of 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑷𝑷,∆𝑳𝑳 and 𝒓𝒓𝑷𝑷,∆𝑳𝑳 for the in-
sample data set 

𝛼𝛼∆𝐿𝐿 = 0.90 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃,∆𝐿𝐿 = −0.04500 
Deterministic equal weights Deterministic un-equal weights 𝛽𝛽1

= 
𝛽𝛽2 

Probabilistic unequal weights 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝐷𝐷�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 

-0.04500 
(0.01396) 

-0.03722 
(0.00997) 

-0.76149 
(0.64170) 

-0.11665 
(0.07573) 

0.90 -0.53915 
( 0.15770) 

0.06086 
(0.01088) 

0.95 -0.64736 
( 0.16082) 

0.07179 
(0.01093) 

0.97 -0.71960 
( 0.16201) 

0.07904 
(0.01095) 

0.99 -0.85924 
( 0.16303) 

0.09303 
(0.01101) 

𝛼𝛼∆𝐿𝐿 = 0.95 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃,∆𝐿𝐿 = −0.04685 
Deterministic equal weights Deterministic un-equal weights 𝛽𝛽1 

= 
𝛽𝛽2 

Probabilistic unequal weights 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 

-0.04685 
(0.01484) 

-0.03722 
(0.00997) 

-1.44291 
(1.25322) 

-0.11665 
( 0.07573) 

0.90 -0.97007 
( 0.30775) 

0.06316 
(0.00893) 

0.95 -1.18925 
( 0.31824) 

0.07387 
(0.00925) 

0.97 -1.33570 
( 0.32328) 

0.08096 
(0.00936) 

0.99 -1.61915 
( 0.32973) 

0.09458 
(0.00970) 

𝛼𝛼∆𝐿𝐿 = 0.97 and 𝑉𝑉𝑎𝑎𝑎𝑎𝑃𝑃,∆𝐿𝐿 = −0.04809 
Deterministic equal weights Deterministic un-equal weights 𝛽𝛽1 

= 
𝛽𝛽2 

Probabilistic unequal weights 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 

-0.04809 
( 0.01549) 

-0.03722 
(0.00997) 

-2.33337 
( 2.05814) 

-0.11665 
( 0.07573) 

0.90 -1.53796 
(0.52637) 

0.06394 
(0.00853) 

0.95 -1.90098 
(0.54583) 

0.07477 
(0.00871) 

0.97 -2.14391 
(0.55474) 

0.08191 
(0.00887) 

0.99 -2.61445 
(0.56683) 

0.09561 
(0.00925) 
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𝛼𝛼∆𝐿𝐿 = 0.99 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃,∆𝐿𝐿 = −0.05062 
Deterministic equal weights Deterministic un-equal weights 𝛽𝛽1 

= 
𝛽𝛽2 

Probabilistic unequal weights 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝐷𝐷�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 

-0.05062 
( 0.01701) 

-0.03722 
(0.00997) 

-6.65321 
(5.99087) 

-0.11665 
( 0.07573) 

0.90 -4.27579 
(1.67393) 

0.06459 
(0.00831) 

0.95 -5.35692 
(1.74918) 

0.07545 
(0.00852) 

0.97 -6.08020 
(1.78640) 

0.08269 
(0.00864) 

0.99 -7.48341 
(1.83691) 

0.09649 
(0.00894) 

Table 2. Average and Standard deviation values of 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑷𝑷,∆𝑳𝑳 and 𝒓𝒓𝑷𝑷,∆𝑳𝑳 for the out-
of-sample data set 

𝛼𝛼∆𝐿𝐿 = 0.90 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃,∆𝐿𝐿 = −0.04200 
Deterministic equal weights Deterministic un-equal weights 𝛽𝛽1 

= 
𝛽𝛽2 

Probabilistic unequal weights 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 

-0.04200 
(0.00723) 

-0.03699 
( 0.00632) 

-0.44222 
( 0.18898) 

-0.08202 
( 0.02311) 

0.90 -1.24918 
(0.16932) 

0.10598 
(0.01728) 

0.95 -1.44203 
(0.17312) 

0.12443 
(0.01775) 

0.97 -1.56796 
(0.17363) 

0.13693 
(0.01780) 

0.99 -1.81186 
(0.17632) 

0.16092 
(0.01805) 

𝛼𝛼∆𝐿𝐿 = 0.95 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃,∆𝐿𝐿 = −0.04333 
Deterministic equal weights Deterministic un-equal weights 𝛽𝛽1 

= 
𝛽𝛽2 

Probabilistic unequal weights 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝐷𝐷�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 

-0.04333 
( 0.00750) 

-0.03699 
( 0.00632) 

-0.81715 
( 0.36800) 

-0.08202 
( 0.02311) 

0.90 -2.29889 
(0.23820) 

0.11555 
(0.01296) 

0.95 -2.68825 
(0.24460) 

0.13377 
(0.01339) 

0.97 -2.94827 
(0.25088) 

0.14567 
(0.01369) 

0.99 -3.44317 
(0.25882) 

0.16925 
(0.01428) 
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𝛼𝛼∆𝐿𝐿 = 0.97 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃,∆𝐿𝐿 = −0.04421 
Deterministic equal weights Deterministic un-equal weights 𝛽𝛽1 

= 
𝛽𝛽2 

Probabilistic unequal weights 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 

-0.04421 
( 0.00768) 

-0.03699 
( 0.00632) 

-1.30456 
( 0.60348) 

-0.08202 
( 0.02311) 

0.90 -3.72984 
(0.37080) 

0.11926 
(0.01283) 

0.95 -4.56204 
(0.34077) 

0.12925 
(0.00967) 

0.97 -4.81494 
(0.03938) 

0.14913 
(0.01341) 

0.99 -5.64270 
(0.40335) 

0.17253 
(0.01383) 

𝛼𝛼∆𝐿𝐿 = 0.99 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃,∆𝐿𝐿 = −0.04590 
Deterministic equal weights Deterministic un-equal weights 𝛽𝛽1 

= 
𝛽𝛽2 

Probabilistic unequal weights 
𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�� 
𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 

�𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿�� 

-0.04590 
( 0.00807) 

-0.03699 
( 0.00632) 

-3.65777 
( 1.75765) 

-0.08202 
( 0.02311) 

0.90 -10.86932 
(1.11025) 

0.12284 
(0.01317) 

0.95 -12.82539 
(1.13895) 

0.14090 
(0.01357) 

0.97 -14.11982 
(1.15804) 

0.15290 
(0.01386) 

0.99 -16.60636 
(1.19280) 

0.1762) 
(0.01438) 

Table 3. Percentage change in 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪��������𝑷𝑷,∆𝑳𝑳 and 𝒓𝒓�𝑷𝑷,∆𝑳𝑳 with respect to change in 𝜶𝜶∆𝑳𝑳 and 
𝜷𝜷𝟏𝟏 = 𝜷𝜷𝟐𝟐 for both in-sample and out-of-sample data sets 

In-sample data set 
%∆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 
deterministic 

equal 
weights 

%∆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 
deterministic 

un-equal 
weights 

%∆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 
probabilistic 

case 

%∆𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 
deterministi

c equal 
weights 

%∆𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 
deterministi
c un-equal 

weights 

%∆𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 
probabil

istic 
case 

∆𝛼𝛼∆𝐿𝐿 90% 𝑡𝑡𝑡𝑡 95% 4.11% 89.49% - 0% 0% - 
95% 𝑡𝑡𝑡𝑡 97% 2.65% 61.72% - 0% 0% - 
97% 𝑡𝑡𝑡𝑡 99% 5.26% 185.13% - 0% 0% - 

∆𝛽𝛽1,∆𝛽𝛽2 
and 𝛼𝛼∆𝐿𝐿 

90% 𝑡𝑡𝑡𝑡 95% 
and 90% 

- - 20.07% - - 17.96% 

90% 𝑡𝑡𝑡𝑡 95% 
and 95% 

- - 22.59% - - 16.96% 

90% 𝑡𝑡𝑡𝑡 95% 
and 97% 

- - 23.61% - - 16.94% 

90% 𝑡𝑡𝑡𝑡 95% 
and 99% 

- - 25.29% - - 16.81% 

95% 𝑡𝑡𝑡𝑡 97% 
and 90% 

- - 11.16% - - 10.10% 

95% 𝑡𝑡𝑡𝑡 97% 
and 95% 

- - 12.31% - - 9.60% 

95% 𝑡𝑡𝑡𝑡 97% - - 12.78% - - 9.55% 
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and 97% 
95% 𝑡𝑡𝑡𝑡 97% 
and 99% 

- - 13.51% - - 9.60% 

97% 𝑡𝑡𝑡𝑡 99% 
and 90% 

- - 19.40% - - 17.70% 

97% 𝑡𝑡𝑡𝑡 99% 
and 95% 

- - 21.22% - - 16.82% 

97% 𝑡𝑡𝑡𝑡 99% 
and 97% 

- - 21.95% - - 16.73% 

97% 𝑡𝑡𝑡𝑡 99% 
and 99% 

- - 23.08% - - 16.69% 

Out-of-sample data set 
%∆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 
deterministi

c equal 
weights 

%∆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 
deterministi
c un-equal 

weights 

%∆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 
probabilistic 

case 

%∆𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 
deterministi

c equal 
weights 

%∆𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 
deterministi
c un-equal 

weights 

%∆𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 
probabil

istic 
case 

∆𝛼𝛼∆𝐿𝐿 90% 𝑡𝑡𝑡𝑡 95% 3.17% 84.79% - 0% 0% - 
95% 𝑡𝑡𝑡𝑡 97% 2.03% 59.65% - 0% 0% - 
97% 𝑡𝑡𝑡𝑡 99% 3.82% 180.38% - 0% 0% - 

∆𝛽𝛽1,∆𝛽𝛽2 
and 𝛼𝛼∆𝐿𝐿 

90% 𝑡𝑡𝑡𝑡 95% 
and 90% 

- - 15.44% - - 17.41% 

90% 𝑡𝑡𝑡𝑡 95% 
and 95% 

- - 16.94% - - 15.77% 

90% 𝑡𝑡𝑡𝑡 95% 
and 97% 

- - 22.32% - - 8.38% 

90% 𝑡𝑡𝑡𝑡 95% 
and 99% 

- - 18.00% - - 14.70% 

95% 𝑡𝑡𝑡𝑡 97% 
and 90% 

- - 8.74% - - 10.05% 

95% 𝑡𝑡𝑡𝑡 97% 
and 95% 

- - 9.67% - - 8.90% 

95% 𝑡𝑡𝑡𝑡 97% 
and 97% 

- - 5.55% - - 15.38% 

95% 𝑡𝑡𝑡𝑡 97% 
and 99% 

- - 10.10% - - 8.52% 

97% 𝑡𝑡𝑡𝑡 99% 
and 90% 

- - 15.55% - - 17.52% 

97% 𝑡𝑡𝑡𝑡 99% 
and 95% 

- - 16.79% - - 16.19% 

97% 𝑡𝑡𝑡𝑡 99% 
and 97% 

- - 17.19% - - 15.69% 

97% 𝑡𝑡𝑡𝑡 99% 
and 99% 

- - 17.61% - - 15.29% 

Utilizing tables 1 & 2 it is evident that for an increase in 𝛼𝛼∆𝐿𝐿 values, the corresponding 
increase in 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 or 𝑟̅𝑟𝑃𝑃,∆𝐿𝐿, for the deterministic equal weights, deterministic unequal 
weights and the probabilistic case are of different percentages and convey separate 
findings. The summary of this is shown in table 3. What is interesting from these readings 
is the fact that for any particular value of 𝛽𝛽1 = 𝛽𝛽2 and 𝛼𝛼∆𝐿𝐿 or ∆𝛼𝛼∆𝐿𝐿 as the case may be, the 
variations in percentage values of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 or 𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 when one compares the results of in-
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sample to that of out-of-sample output is on an average in the range of -24.46% and -3.97% 
respectively. Added to that, the 𝑆𝑆𝑆𝑆�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿� and 𝑆𝑆𝑆𝑆�𝑟𝑟𝑃𝑃,∆𝐿𝐿� values are also very low. 
Hence one may reasonable conclude that our probabilistic optimization model is very 
robust as it should be. The next interesting observation is the fact that for both deterministic 
equal weights and deterministic unequal weights case, the increase in 𝑟̅𝑟𝑃𝑃,∆𝐿𝐿 is zero, in-spite 
of the fact that 𝛼𝛼∆𝐿𝐿 hence, both 𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃,∆𝐿𝐿 as well as 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�������𝑃𝑃,∆𝐿𝐿 values increase. This may be 
attributed to the fact that one of the main input parameters, 𝑟𝑟𝑖𝑖,∆𝐿𝐿, 𝑖𝑖 = 1, … 12, is considered 
deterministic. While for the non-deterministic case we obtain the results as predicted, as it 
concurs with the general notion that an increase in the return values of the portfolio has an 
equally proportionate compensating increase in the risk values. 

We run our model for different values 𝛼𝛼∆𝐿𝐿 and 𝛽𝛽1 = 𝛽𝛽2, which result in 48 different 
combinations of runs which are shown in figures 1 to 6. The outputs are generic in nature. 
Hence rather than give a detailed explanation for each of the output separately we highlight 
the important observations and give the analysis for the same. 

First let us consider figure 1(a) which shows the 3D scatter plots of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿, 𝑟𝑟𝑃𝑃,∆𝐿𝐿 and 
𝑉𝑉𝑎𝑎𝑎𝑎𝑃𝑃,∆𝐿𝐿 for 2497 number of simulated runs considering each of the combinations 
pertaining to (i) 𝛼𝛼∆𝐿𝐿 = 0.90,𝛽𝛽1 = 𝛽𝛽2 = 0.90, depicted by circular (o) plots; (ii) 𝛼𝛼∆𝐿𝐿 =
0.90,𝛽𝛽1 = 𝛽𝛽2 = 0.95, shown by star (*) plots; (iii) 𝛼𝛼∆𝐿𝐿 = 0.90,𝛽𝛽1 = 𝛽𝛽2 = 0.97, illustrated 
using plus (+) plots, and finally (iii) 𝛼𝛼∆𝐿𝐿 = 0.90,𝛽𝛽1 = 𝛽𝛽2 = 0.99, highlighted utilizing 
square (�) plots. From figure 1(a) it is evident that as the values of 𝛽𝛽1 and 𝛽𝛽2 
increase/decrease the values of 𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑃𝑃,∆𝐿𝐿 also increase/decrease. This means that as we 
become more/less reliable with respect to the estimated values of the input data, the 
conditional value at risk values also increase/decrease proportionally, but in the negative 
direction. This is logical as we consider the return distribution to be that of loss only. 

The next interesting point is the way the four set of scatter plots (considering four 
different combinations of 𝛽𝛽1,𝛽𝛽2) are spread with respect to the value at risk. From our 
model it is clear, that 𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃,∆𝐿𝐿, values are same for all the four different combinations of 
𝛼𝛼∆𝐿𝐿, 𝛽𝛽1 and 𝛽𝛽2. This is true as the simulated values of 𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃,∆𝐿𝐿 depend only on, 𝛼𝛼∆𝐿𝐿, 
irrespective of the reliability levels. The third observation worth highlighting is the general 
trend of the return values with respect to the change of 𝛽𝛽1,𝛽𝛽2. It is noticed that with an 
increase/decrease in the reliability levels, the shift in the trend of the return values of the 
portfolio signify that we move away/towards the portfolio′s average value. This means that 
one is less/more certain about the average returns of the portfolio. A similar set of 
conclusions can be deduced if one now concentrates on figure 1(b) which pertains to the 
four different sets of scatter plots, but now for the out-of-sample data series. The only 
change in figure 1(b) with respect to figure 1(a) is the greater spread of the value at risk 
values for out-of-sample data series than that for the in-sample data points. 
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On a similar line one can deduce analogous set of conclusions from figures 2, figures 3 
and figures 4 which relate to the scatter plots corresponding to values of 𝛼𝛼∆𝐿𝐿 = 95%, 97% 
and 99% respectively. 

The next set of figures, i.e., figures 5 and 6 depict the 3D scatter plots of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿, 𝑟𝑟𝑃𝑃,∆𝐿𝐿 
and 𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃,∆𝐿𝐿 for the deterministic equal weight and the deterministic unequal weight 
examples respectively. Figure 5(a) shows the plot for the in-sample data set, while the out-
of-sample case is shown in figure 5(b). In both these figures it is worth noting that a change 
in the 𝛼𝛼𝑃𝑃,∆𝐿𝐿 value does change the 𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃,∆𝐿𝐿 values which is predictable, but what is 
interesting is the general trend of the scatter plot envelopes formed for the four different 
values of 𝛼𝛼𝑃𝑃,∆𝐿𝐿. The reader can easily make out that they form distinct contours which are 
almost parallel non-overlapping envelopes. The envelope contour formed for 𝛼𝛼𝑃𝑃,∆𝐿𝐿 = 90% 
is the outer most one which encompasses all the other three envelopes contours such that 
the scatter plot for 𝛼𝛼𝑃𝑃,∆𝐿𝐿 = 99% is at the lowest level followed by 𝛼𝛼𝑃𝑃,∆𝐿𝐿 = 97% and then 
by 𝛼𝛼𝑃𝑃,∆𝐿𝐿 = 95% respectively. Thus these contours depict the fact that a change in 𝛼𝛼𝑃𝑃,∆𝐿𝐿 
only changes 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿 and not 𝑟𝑟𝑃𝑃,∆𝐿𝐿 as the case should be. 

Finally in figures 6(a) & (b) we draw the values of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿, 𝑟𝑟𝑃𝑃,∆𝐿𝐿 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃,∆𝐿𝐿 for the 
deterministic unequal weight optimized problem considering the in-sample and out-of-
sample examples respectively. It is true that 𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃,∆𝐿𝐿 values change only with 𝛼𝛼𝑃𝑃,∆𝐿𝐿, but 
what is note-worthy is the corresponding marked fluctuation in 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿 values which are 
much more pronounced than the corresponding values depicted in figures 5(a) & (b). The 
logical reason for such high values of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿 may be the fact that we first optimize the 
weights of the indices/financial scripts/assets and then obtain 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿 for the unequal 
weight problem. These values of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿 are definitely optimal (with respect to 
minimization) and better than the sub-optimal values obtained for the deterministic equal 
weight model, where the weights are already pre-fixed and not optimized.  

5. Conclusion and future work
The research work deals with a simple yet interesting application of RO in financial 
portfolio optimization. In our proposed model we consider an optimization problem 
whereby we use CVaR as the risk measure (as it eliminates the drawbacks of VaR) and the 
average return considering the loss distribution of 12 indices/financial scripts/assets. We 
find the robust counterpart of the two probabilistic constraints and run a whole set of 
exhaustive simulation runs considering 12 different indices/financial scripts/assets for both 
in-sample as well as out-of-sample data points with some interesting results. 

A comparison of our work with existing research corroborates few important points 
which are: 

1) Portfolios optimized using robust methods yield better combinations of risk and
returns profiles, as the case should be, due to the fact that an investor is able to
portray his/her risk level more precisely due to the uncertainty values of the input
data.

2) Probability/reliability levels force diversification and hence reduces portfolio
risk.

3) An increase in the level of probability/reliability helps better portfolio
management, as it aids diversification.
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4) A decrease in investor′s attitude of how probable/reliable the input data is, has an
adverse effect on the optimal value of the portfolio risk.

The work may be extended to cases where we consider RO in other kind of financial 
optimization problems whereby one can use Quadratic Programming (QP), Integer 
Programming (IP), Semi-Definite Programming (SDP), Mixed Integer Programming 
(MIP), etc., depending on the complexity of the portfolio one wants to formulate. 
Possibility of improvement would also encompass areas where our main concern would be 
to develop solution methodology which can handle the robust counterparts of different 
optimization problems like those mentioned above. This can definitely be a good focus area 
of research, considering the fact that robust counterpart of simple linear program, which are 
conic optimization problem by their own right, are themselves, computationally expensive. 

Furthermore our research work tries to capture the effect of extreme uncertainty of 
parameters, and we propose solutions that are robust with respect to extreme realization of 
parameter values. Our proposed model suggests the optimum values for portfolio CVaR, 
portfolio returns and VaR under extreme uncertainty in parameters values. Moreover as 
EVD of financial asset returns are considered to measure the tail risks, hence we consider 
robust formulations of portfolio optimization models using financial indices/financial 
scripts/assets which do have heavy tails.  
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Appendix A.1: Proof of Theorem 1 

If 𝒙𝒙 = (𝑥𝑥1, … . , 𝑥𝑥𝑁𝑁), 𝒛𝒛 = (𝑧𝑧1, … . , 𝑧𝑧𝑁𝑁) and 𝒘𝒘 = (𝑤𝑤1, … . ,𝑤𝑤𝑁𝑁), are feasible for (4) and (5), 
then 𝒙𝒙 is feasible for constraint Pr �� 1

(1−𝛼𝛼∆𝐿𝐿)𝑇𝑇
∑ ∑ (𝑟𝑟𝑗𝑗,𝑖𝑖𝑥𝑥𝑗𝑗 − 𝛾𝛾∆𝐿𝐿,𝑃𝑃

𝑁𝑁
𝑗𝑗=1

𝑇𝑇
𝑖𝑖=1 )+ + 𝛾𝛾∆𝐿𝐿,𝑃𝑃�  ≤

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�  ≥  𝛽𝛽1 with probability at least �1 –  exp (−Ω1
2

2
)�. Now the constraint 

Pr �� 1
(1−𝛼𝛼∆𝐿𝐿)𝑇𝑇

∑ ∑ (𝑟𝑟𝑗𝑗,𝑖𝑖𝑥𝑥𝑗𝑗 − 𝛾𝛾∆𝐿𝐿,𝑃𝑃
𝑁𝑁
𝑗𝑗=1

𝑇𝑇
𝑖𝑖=1 )+ + 𝛾𝛾∆𝐿𝐿,𝑃𝑃�  ≤  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿�  ≥  𝛽𝛽1 can be written in the 

form of perturbation set as 

Pr

⎣
⎢
⎢
⎡
��

1
(1 − 𝛼𝛼∆𝐿𝐿)𝑇𝑇

(��𝑟̅𝑟𝑗𝑗,𝑖𝑖𝑥𝑥𝑗𝑗 + ��𝜁𝜁𝑗𝑗�𝜎𝜎𝑗𝑗�
𝑇𝑇𝑥𝑥𝑗𝑗)

𝑁𝑁

𝑗𝑗=1

𝑇𝑇

𝑖𝑖=1

− 𝛾𝛾∆𝐿𝐿,𝑃𝑃

𝑁𝑁

𝑗𝑗=1

𝑇𝑇

𝑖𝑖=1

�

+

+ 𝛾𝛾∆𝐿𝐿,𝑃𝑃�  ≤  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿

⎦
⎥
⎥
⎤

 ≥  𝛽𝛽1 

(A.1.1) 

If one considers the term inside the probability in (A.1.1), then one can write it as 

∑ ∑ 𝜁𝜁𝑗𝑗[𝜎𝜎𝑗𝑗]𝑇𝑇𝑥𝑥𝑗𝑗𝑁𝑁
𝑗𝑗=1

𝑇𝑇
𝑖𝑖=1  ≤  (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿 −  𝛾𝛾∆𝐿𝐿,𝑃𝑃) × (1 − 𝛼𝛼∆𝐿𝐿)𝑇𝑇 + 𝛾𝛾∆𝐿𝐿,𝑃𝑃 −  ∑ ∑ 𝑟̅𝑟𝑗𝑗,𝑖𝑖𝑥𝑥𝑗𝑗𝑁𝑁

𝑗𝑗=1
𝑇𝑇
𝑖𝑖=1 (A.1.2) 

Moreover we are aware of the general uncertain linear inequality which is of the form as 
given below: 
𝒂𝒂𝑇𝑇𝒙𝒙 ≤ 𝒃𝒃,    [𝒂𝒂;𝒃𝒃] = [𝒂𝒂0;𝒃𝒃] +  ∑ 𝜁𝜁𝑗𝑗[𝑎𝑎𝑗𝑗;𝟎𝟎]𝑁𝑁

𝑗𝑗=1 , i.e., 

∑ 𝜁𝜁𝑗𝑗  [𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙𝑁𝑁
𝑗𝑗=1   ≤  𝒃𝒃 − [𝒂𝒂0]𝑇𝑇𝒙𝒙 (A.1.3) 

Here (i) 𝒂𝒂0 is the vector set of nominal values of uncertain coefficients, (ii) 𝒃𝒃 is the 
deterministic vector signifying the right hand side of the constraints and (iii) 𝑎𝑎𝑗𝑗, 𝑗𝑗 =
1,2, … ,𝑁𝑁 denotes the basic shifts of the 𝑗𝑗𝑡𝑡ℎ coefficient. 
A comparison of (A.1.2) and (A.1.3) gives us, 

[𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙 =  �𝜎𝜎𝑗𝑗�
𝑇𝑇𝑥𝑥𝑗𝑗

𝒃𝒃 =  (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿 −  𝛾𝛾∆𝐿𝐿,𝑃𝑃) × (1 − 𝛼𝛼∆𝐿𝐿)𝑇𝑇
[𝒂𝒂0]𝑇𝑇𝒙𝒙  =    ∑ ∑ 𝑟̅𝑟𝑗𝑗,𝑖𝑖𝑥𝑥𝑗𝑗𝑁𝑁

𝑗𝑗=1
𝑇𝑇
𝑖𝑖=1

 (A.1.4) 

Box Robustness: In case of Box Robustness, or Interval Uncertainty, 𝒵𝒵 (i.e., the 
uncertainty set) corresponds to a Box of the form 𝒵𝒵 = 𝐵𝐵𝐵𝐵𝐵𝐵1 = �𝜻𝜻 ∈ ℝ𝑁𝑁: ‖𝜻𝜻‖∞ ≤ 1�. 
Utilizing the concept of Box robustness, (A.1.3) can be written as ∑ 𝜁𝜁𝑗𝑗  [𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙𝑁𝑁

𝑗𝑗=1   ≤  𝒃𝒃 −
[𝒂𝒂0]𝑇𝑇𝒙𝒙, ∀ (𝜻𝜻: �𝜁𝜁𝑗𝑗� ≤ 1, 𝑗𝑗 = 1,2, … … . ,𝑁𝑁). Furthermore considering maximum perturbation 
value of the uncertain variable, 𝜁𝜁𝑗𝑗, we have  max

−1 ≤ 𝜁𝜁𝑗𝑗 ≤ +1 
�∑ 𝜁𝜁𝑗𝑗  [𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙𝑁𝑁

𝑗𝑗=1 �  ≤  𝒃𝒃 − [𝒂𝒂0]𝑇𝑇𝒙𝒙. 

Now the maximum value for the left hand side of the above given constraint is 
∑ � [𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙�𝑁𝑁
𝑗𝑗=1 , so it can be written in the form of explicit convex constraint as follows: 

[𝒂𝒂0]𝑇𝑇𝒙𝒙  +  ∑ � 𝑧𝑧𝑗𝑗�𝑁𝑁
𝑗𝑗=1   ≤  𝒃𝒃 (A.1.5) 

where 𝑧𝑧𝑗𝑗, 𝑗𝑗 = 1, … … . ,𝑁𝑁 are deterministic dummy variables such that −𝑧𝑧𝑗𝑗 ≤  [𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙 ≤
 𝑧𝑧𝑗𝑗 for 𝑗𝑗 = 1,2, … ,𝑁𝑁 
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Ball Robustness: For the case when we have Ball Robustness, 𝒵𝒵 corresponds to an 
ellipsoid. So the uncertainty set is ellipsoidal uncertainty set and we assume that 𝒵𝒵 is only a 
ball of radius Ω1 whose centre is at origin and is of the form 𝒵𝒵 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵Ω1 = �𝜻𝜻 ∈
ℝ𝑁𝑁: ‖𝜁𝜁‖2 ≤ Ω1�. 

Utilizing the concept of Ball robustness, (A.1.3) can be written as ∑ 𝜁𝜁𝑗𝑗  [𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙𝑁𝑁
𝑗𝑗=1   ≤

 𝒃𝒃 − [𝒂𝒂0]𝑇𝑇𝒙𝒙, ∀ (𝜻𝜻: ‖𝜻𝜻‖2 ≤ Ω1). 
In a similar line (as for Box robustness), considering maximum perturbation value of 

the uncertain variable, 𝜁𝜁𝑗𝑗 , we have max
 ‖𝜻𝜻‖2 ≤ Ω1 

�∑ 𝜁𝜁𝑗𝑗  [𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙𝑁𝑁
𝑗𝑗=1 �  ≤  𝒃𝒃 − [𝒂𝒂0]𝑇𝑇𝒙𝒙, hence the 

chance constraint (A.1.3) is of the following form given below: 

Pr� ∑ 𝜁𝜁𝑗𝑗  [𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙𝑁𝑁
𝑗𝑗=1   ≤  𝒃𝒃 −  [𝒂𝒂0]𝑇𝑇𝒙𝒙�  ≥  𝛽𝛽1 (A.1.6) 

Now for (A.1.6) we are aware that the random variable 𝜁𝜁𝑗𝑗  has 𝐸𝐸�𝜁𝜁𝑗𝑗� = 0 and {𝜁𝜁𝑗𝑗}𝑗𝑗=1𝑁𝑁  
are 𝑖𝑖. 𝑖𝑖.𝑑𝑑., which results in 𝚽𝚽 ≡ ∑ 𝜁𝜁𝑗𝑗[𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙  ≤ 𝒃𝒃 −  [𝒂𝒂0]𝑇𝑇𝒙𝒙𝑁𝑁

𝑗𝑗=1 . Furthermore using the 
given properties of  𝜁𝜁𝑗𝑗, which are 𝐸𝐸�𝜁𝜁𝑗𝑗� = 0 and {𝜁𝜁𝑗𝑗}𝑗𝑗=1𝑁𝑁  being 𝑖𝑖. 𝑖𝑖.𝑑𝑑., if 𝒙𝒙 is fixed, we see 
that 𝚽𝚽 is a random variable with zero mean and a standard deviation given by 𝑆𝑆𝐷𝐷[𝚽𝚽] =

�∑ ([𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙)2 𝐸𝐸{𝜁𝜁𝑗𝑗2}𝑁𝑁
𝑗𝑗=1  ≤ �∑ ([𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙)2𝑁𝑁

𝑗𝑗=1 . Moreover for chance constraint (A.1.6) to be 

satisfied with probability  ≥ 𝛽𝛽1 one easily notes that 𝚽𝚽 is never greater than the quantity 

 Ω1�∑ ([𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙)2𝑁𝑁
𝑗𝑗=1 , where Ω1 is a safety parameter pertaining to 𝛽𝛽1. Larger values of Ω1 

implies less are chances for the constraint to violate the robust conditions. Here [𝑎𝑎𝑗𝑗]𝑇𝑇  value 
is calculated from the extreme value distribution. 
So the parametric safe versions of the randomly perturbed constraint are: 

Ω1�∑ ([𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙)2𝑁𝑁
𝑗𝑗=1  ≤  𝒃𝒃 − [𝒂𝒂0]𝑇𝑇𝒙𝒙,

[𝒂𝒂0]𝑇𝑇𝒙𝒙 +  Ω1�∑ ([𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙)2𝑁𝑁
𝑗𝑗=1  ≤ 𝒃𝒃

(A.1.7) 

It is apparent that with properly defined Ω1 every feasible solution to this constraint 
satisfies the inequality (A.1.3) with probability at least 𝛽𝛽1. Hence with 𝑤𝑤𝑗𝑗 , 𝑗𝑗 = 1,2, … … ,𝑁𝑁 
as deterministic coefficients and 𝜁𝜁𝑗𝑗 , 𝑗𝑗 = 1,2, … … ,𝑁𝑁 as independent random variable with 

zero mean and standard deviation Ω2�∑ ([𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙)2𝑁𝑁
𝑗𝑗=1 , for every Ω2  ≥ 0, it holds that 

𝑃𝑃𝑃𝑃 �[𝒂𝒂0]𝑇𝑇𝒙𝒙  +  �𝜁𝜁𝑗𝑗  [𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙
𝑁𝑁

𝑗𝑗=1

  ≥  𝒃𝒃�  ≤  1 − 𝛽𝛽1 

i.e., 𝑃𝑃𝑃𝑃 � ∑ 𝑤𝑤𝑗𝑗𝜁𝜁𝑗𝑗𝑁𝑁
𝑗𝑗=1 ≥  𝛺𝛺1�∑ 𝑤𝑤𝑗𝑗2𝑁𝑁

𝑗𝑗=1 �   ≥   1 − 𝛽𝛽1, where, 𝛽𝛽1 = 1 − exp {−Ω1
2/2} 

Ball-Box Robustness: Consider 𝑧𝑧𝑗𝑗 ,𝑤𝑤𝑗𝑗 , 𝑗𝑗 = 1,2, … … … …𝑁𝑁 as the deterministic dummy 
variables and 𝜁𝜁𝑗𝑗 , 𝑗𝑗 = 1,2, … … …𝑁𝑁 with Box-Ball perturbations. Then using both ‖𝜻𝜻‖∞ ≤ 1 
and ‖𝜻𝜻‖2  ≤  Ω1 conditions along with the inequalities (A.1.5) and (A.1.7) we obtain 

[𝒂𝒂0]𝑇𝑇𝒙𝒙  +  ∑ �𝑧𝑧𝑗𝑗� +𝑁𝑁 Ω1�∑ 𝑤𝑤𝑗𝑗2𝑁𝑁
𝑗𝑗=1  ≤ 𝒃𝒃 and 𝑧𝑧𝑗𝑗 + 𝑤𝑤𝑗𝑗 =  [𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙. 
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Putting values of [𝒂𝒂0]𝑇𝑇𝒙𝒙, [𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙 and 𝒃𝒃 from (A.1.4) in the above equations we derive 

⎣
⎢
⎢
⎢
⎡

⎩
⎪
⎨

⎪
⎧

1
(1 − 𝛼𝛼∆𝐿𝐿)𝑇𝑇

���𝑟̅𝑟𝑗𝑗,𝑖𝑖𝑥𝑥𝑗𝑗 +  ��𝑧𝑧𝑗𝑗� +
𝑁𝑁

Ω1��𝑤𝑤𝑗𝑗2
𝑁𝑁

𝑗𝑗=1

 − 𝛾𝛾∆𝐿𝐿,𝑃𝑃�

+
𝑁𝑁

𝑗𝑗=1

𝑇𝑇

𝑖𝑖=1
⎭
⎪
⎬

⎪
⎫

+ 𝛾𝛾∆𝐿𝐿,𝑃𝑃

⎦
⎥
⎥
⎥
⎤

 ≤  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃,∆𝐿𝐿 

𝑧𝑧𝑗𝑗 + 𝑤𝑤𝑗𝑗 =  ∑ �𝜎𝜎𝑗𝑗�
𝑇𝑇𝑥𝑥𝑗𝑗𝑁𝑁

𝑗𝑗=1  ,  𝑗𝑗 = 1, … … … . ,𝑁𝑁 
where, 𝛽𝛽1 = 1 − exp {−Ω1

2/2} ∎ 

Appendix A.2: Proof of Theorem 2 

If 𝒙𝒙 = (𝑥𝑥1, … . , 𝑥𝑥𝑁𝑁), 𝒛𝒛 = (𝑧𝑧1, … . , 𝑧𝑧𝑁𝑁),𝒘𝒘 = (𝑤𝑤1, … . ,𝑤𝑤𝑁𝑁), is feasible for (6) and (7), then 
𝒙𝒙 is feasible for constraint Pr��1

𝑇𝑇
∑ ∑ 𝑟𝑟𝑗𝑗,𝑖𝑖𝑥𝑥𝑗𝑗𝑁𝑁

𝑗𝑗=1
𝑇𝑇
𝑖𝑖=1 �  ≥  𝑟𝑟𝑃𝑃,∆𝐿𝐿�  ≥  𝛽𝛽2 with probability at 

least �1 –  exp (−Ω2
2

2
)�. 

Pr ��1
𝑇𝑇

(∑ ∑ 𝑟̅𝑟𝑗𝑗,𝑖𝑖𝑥𝑥𝑗𝑗 − ∑ ∑ 𝜁𝜁𝑗𝑗[𝜎𝜎𝑗𝑗]𝑇𝑇𝑥𝑥𝑗𝑗)𝑁𝑁
𝑗𝑗=1

𝑇𝑇
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1

𝑇𝑇
𝑖𝑖=1 �  ≥  𝑟𝑟𝑃𝑃,∆𝐿𝐿�  ≥ 𝛽𝛽2 (A.2.1) 

If one considers the term inside the probability in (A.2.1), then one can write it as 

−∑ ∑ 𝜁𝜁𝑗𝑗[𝜎𝜎𝑗𝑗]𝑇𝑇𝑥𝑥𝑗𝑗)𝑁𝑁
𝑗𝑗=1

𝑇𝑇
𝑖𝑖=1  ≥  𝑟𝑟𝑃𝑃,∆𝐿𝐿 × 𝑇𝑇 −  ∑ ∑ 𝑟̅𝑟𝑗𝑗,𝑖𝑖𝑥𝑥𝑗𝑗𝑁𝑁

𝑗𝑗=1
𝑇𝑇
𝑖𝑖=1  (A.2.2) 

Moreover we are aware of the general uncertain linear inequality which is of the form as 
given below: 

 𝒂𝒂𝑇𝑇𝒙𝒙 ≥ 𝒃𝒃,    [𝒂𝒂;𝒃𝒃] = [𝒂𝒂0;𝒃𝒃] −  ∑ 𝜁𝜁𝑗𝑗[𝑎𝑎𝑗𝑗; 0]𝑁𝑁
𝑗𝑗=1 , i.e., 

−∑ 𝜁𝜁𝑗𝑗  [𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙𝑁𝑁
𝑗𝑗=1   ≥  𝒃𝒃 − [𝒂𝒂0]𝑇𝑇𝒙𝒙 (A.2.3) 

Here (i) 𝒂𝒂0 is the vector set of nominal values of uncertain coefficients, (ii) 𝒃𝒃 is the 
deterministic vector signifying the right hand side of the constraints and (iii) 𝑎𝑎𝑗𝑗 , 𝑗𝑗 =
1,2, … ,𝑁𝑁 denotes the basic shifts of the 𝑗𝑗𝑡𝑡ℎ coefficient. 
A comparison of (A.2.2) and (A.2.3) gives us 

[𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙 =  �𝜎𝜎𝑗𝑗�
𝑇𝑇𝑥𝑥𝑗𝑗

𝒃𝒃 = 𝑟𝑟𝑃𝑃,∆𝐿𝐿 × 𝑇𝑇
[𝒂𝒂0]𝑇𝑇𝒙𝒙 = ∑ ∑ 𝑟̅𝑟𝑗𝑗,𝑖𝑖𝑥𝑥𝑗𝑗𝑁𝑁

𝑗𝑗=1
𝑇𝑇
𝑖𝑖=1

(A.2.4) 

Box Robustness: In case of Box Robustness, or Interval Uncertainty, 𝒵𝒵 (i.e., the 
uncertainty set) corresponds to a Box of the form 𝒵𝒵 =  𝐵𝐵𝐵𝐵𝐵𝐵1 = �𝜻𝜻 ∈ ℝ𝑁𝑁: ‖𝜻𝜻‖∞ ≤ 1�. Now 
utilizing the concept of Box robustness, (A.2.3) can be written as −∑ 𝜁𝜁𝑗𝑗  [𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙𝑁𝑁

𝑗𝑗=1   ≥  𝒃𝒃 −
[𝒂𝒂0]𝑇𝑇𝒙𝒙, ∀ (𝜻𝜻: �𝜁𝜁𝑗𝑗� ≤ 1, 𝑗𝑗 = 1, … … . ,𝑁𝑁). Furthermore considering maximum perturbation 
value of the uncertain variable, 𝜁𝜁𝑗𝑗, we have  max

−1 ≤ 𝜁𝜁𝑗𝑗 ≤ +1 
�−∑ 𝜁𝜁𝑗𝑗  [𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙𝑁𝑁

𝑗𝑗=1 �  ≥  𝒃𝒃 − [𝒂𝒂0]𝑇𝑇𝒙𝒙. 

Now the maximum value for the left hand side of the above given constraint is 
∑ � [𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙�𝑁𝑁
𝑗𝑗=1 , so the above can be written in the form of explicit convex constraint as 

follows: 
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[𝒂𝒂0]𝑇𝑇𝒙𝒙 −  ∑ � 𝑧𝑧𝑗𝑗�𝑁𝑁
𝑗𝑗=1   ≥  𝒃𝒃 (A.2.5) 

Where 𝑧𝑧𝑗𝑗, 𝑗𝑗 = 1, … … . ,𝑁𝑁 are deterministic dummy variables such that −𝑧𝑧𝑗𝑗 ≤  [𝑎𝑎𝑗𝑗]𝑇𝑇𝑥𝑥 ≤
 𝑧𝑧𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑁𝑁 

Ball Robustness: For the case when we have Ball Robustness, 𝒵𝒵 corresponds to an 
ellipsoid. So the uncertainty set is ellipsoidal uncertainty set, hence we assume that 𝒵𝒵 is 
only a ball of radius Ω1 whose centre is at origin and is of the form 𝒵𝒵 =  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵Ω2 =
�𝜻𝜻 ∈ ℝ𝑁𝑁: ‖𝜻𝜻‖2 ≤ Ω2�. 

Utilizing the concept of Ball robustness, (A.2.3) can be written as −∑ 𝜁𝜁𝑗𝑗  [𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙𝑁𝑁
𝑗𝑗=1   ≥

 𝒃𝒃 − [𝒂𝒂0]𝑇𝑇𝒙𝒙, ∀ (𝜻𝜻: ‖𝜻𝜻‖2 ≤ Ω2). 
In a similar line (as for Box robustness), considering maximum perturbation value of 

the uncertain variable, 𝜁𝜁𝑗𝑗 , we have  max
 ‖𝜻𝜻‖2 ≤ Ω2 

�−∑ 𝜁𝜁𝑗𝑗  [𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙𝑁𝑁
𝑗𝑗=1 �  ≥  𝒃𝒃 − [𝒂𝒂0]𝑇𝑇𝒙𝒙, hence the 

chance constraint (A.2.3) is of the following form given below: : 

Pr�−  ∑ 𝜁𝜁𝑗𝑗  [𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙𝑁𝑁
𝑗𝑗=1   ≥  𝒃𝒃 −  [𝒂𝒂0]𝑇𝑇𝒙𝒙�  ≥  𝛽𝛽2  (A.2.6) 

Now for (A.2.6) we are aware that the random variable 𝜁𝜁𝑗𝑗  has 𝐸𝐸�𝜁𝜁𝑗𝑗� = 0 and {𝜁𝜁𝑗𝑗}𝑗𝑗=1𝑁𝑁  are 
𝑖𝑖. 𝑖𝑖.𝑑𝑑., which results in 𝚿𝚿  ≡  −∑ 𝜁𝜁𝑗𝑗[𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙  ≥ 𝒃𝒃 −  [𝒂𝒂0]𝑇𝑇𝒙𝒙𝑁𝑁

𝑗𝑗=1 . Furthermore using the 
given properties of  𝜁𝜁𝑗𝑗, which are 𝐸𝐸�𝜁𝜁𝑗𝑗� = 0 and {𝜁𝜁𝑗𝑗}𝑗𝑗=1𝑁𝑁  being 𝑖𝑖. 𝑖𝑖.𝑑𝑑., if  𝒙𝒙 is fixed, we see 
that 𝚿𝚿 is a random variable with zero mean and a standard deviation given by  𝑆𝑆𝑆𝑆[𝚿𝚿] =

�∑ ([𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙)2 𝐸𝐸{𝜁𝜁𝑗𝑗2}𝑁𝑁
𝑗𝑗=1  ≤ �∑ ([𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙)2𝑁𝑁

𝑗𝑗=1 . Moreover for the chance constraint (A.2.6) to 

be satisfied with probability ≥ 𝛽𝛽2 one easily notes that 𝚿𝚿 is never greater than the quantity 

 −Ω2�∑ ([𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙)2𝑁𝑁
𝑗𝑗=1 , where Ω2 is a safety parameter pertaining to 𝛽𝛽2. Larger values of Ω2 

implies less are chances for the constraint to violate the robust conditions. Here, [𝑎𝑎𝑗𝑗]𝑇𝑇  
comes from extreme value distribution. 

So the parametric safe versions of the randomly perturbed constraint are: 

− Ω2�∑ ([𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙)2𝑁𝑁
𝑗𝑗=1  ≥  𝒃𝒃 − [𝒂𝒂0]𝑇𝑇𝒙𝒙,

[𝒂𝒂0]𝑇𝑇𝒙𝒙 −   Ω2�∑ ([𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙)2𝑁𝑁
𝑗𝑗=1  ≥  𝒃𝒃

(A.2.7) 

It is apparent that with properly defined Ω2; every feasible solution to this constraint 
satisfies the inequality (A.2.3) with probability at least 𝛽𝛽2. Hence with 𝑤𝑤𝑗𝑗 , 𝑗𝑗 = 1,2, … … ,𝑁𝑁 
as deterministic coefficients and 𝜁𝜁𝑗𝑗 , 𝑗𝑗 = 1,2, … … ,𝑁𝑁 as independent random variable with 

zero mean and standard deviation Ω2�∑ ([𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙)2𝑁𝑁
𝑗𝑗=1 , then for every Ω2  ≥ 0, it holds that 

Pr�[𝒂𝒂0]𝑇𝑇𝒙𝒙 −  �𝜁𝜁𝑗𝑗  [𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙
𝑁𝑁

𝑗𝑗=1

  ≤  𝒃𝒃�  ≥  1 −  𝛽𝛽2 

𝑃𝑃𝑃𝑃 �−∑ 𝑤𝑤𝑗𝑗𝜁𝜁𝑗𝑗𝑁𝑁
𝑗𝑗=1 ≤  − Ω2�∑ 𝑤𝑤𝑗𝑗2𝑁𝑁

𝑗𝑗=1 �   ≥   1 −  𝛽𝛽2, where, 𝛽𝛽2 = 1 − exp {−Ω2
2/2} 
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Ball-Box Robustness: Consider 𝑧𝑧𝑗𝑗 ,𝑤𝑤𝑗𝑗 , 𝑗𝑗 = 1,2, … … … …𝑁𝑁 as the deterministic dummy 
variables and 𝜁𝜁𝑗𝑗 , 𝑗𝑗 = 1,2, … … …𝑁𝑁 with Box-Ball perturbations. Then using both ‖𝜻𝜻‖∞ ≤ 1 
and ‖𝜻𝜻‖2  ≤  Ω2 conditions along with the inequalities (A.2.5) and (A.2.7) we obtain 

[𝒂𝒂0]𝑇𝑇𝒙𝒙 −  ∑ �𝑧𝑧𝑗𝑗� −𝑁𝑁 Ω2�∑ 𝑤𝑤𝑗𝑗2𝑁𝑁
𝑗𝑗=1  ≥ 𝒃𝒃 and 𝑧𝑧𝑗𝑗 +  𝑤𝑤𝑗𝑗 =  [𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙 

Putting values of [𝒂𝒂0]𝑇𝑇𝒙𝒙 , [𝑎𝑎𝑗𝑗]𝑇𝑇𝒙𝒙 and 𝒃𝒃 from (A.2.4) in above equations, we get 

�
1
𝑇𝑇
���𝑟̅𝑟𝑗𝑗,𝑖𝑖𝑥𝑥𝑗𝑗 −  ��𝑧𝑧𝑗𝑗� − 

𝑁𝑁

Ω2��𝑤𝑤𝑗𝑗2
𝑁𝑁

𝑗𝑗=1

 
𝑁𝑁

𝑗𝑗=1

𝑇𝑇

𝑖𝑖=1

��  ≥  𝑟𝑟𝑃𝑃,∆𝐿𝐿 

𝑧𝑧𝑗𝑗 +  𝑤𝑤𝑗𝑗 =  �[𝜎𝜎𝑗𝑗]𝑇𝑇𝑥𝑥𝑗𝑗

𝑁𝑁

𝑗𝑗=1

 ,  𝑗𝑗 = 1, … … … . ,𝑁𝑁 

where, 𝛽𝛽2 = 1 − exp {−Ω2
2/2} ∎ 
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