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Abstract.  This paper proposes the combination of the THESEUS multi-criteria sorting 
method with an evolutionary optimization-based preference-disaggregation analysis. The 
main features of the combined method are studied by performing an extensive computer 
experiment that explores many models of preferences and sizes of problems as well as 
different degrees of decision-maker involvement. As a result of the experiment, the 
effectiveness of the combined framework and the importance of the decision-maker’s 
involvement are characterized. 
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1. Introduction

Multi-criteria sorting (or multi-criteria ordinal classification) is a particular case of 
classification problems that has received increasing interest in recent years. Unlike nominal 
classification, sorting refers to problems in which the categories have been defined in an 
ordinal way. 

 Multi-criteria methods entail a decision-maker (DM) reflecting his/her preferences in a 
pre-specified mathematical structure. Hence, obtaining preference information from the DM 
and formalizing this information by using preferential parameters is a crucial aspect in 
building a multi-criteria decision model ([5]). The development of these models can be 
based on direct or indirect elicitation procedures. In the first case, the DM must specify 
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preferential parameters through an interactive process guided by a decision analyst in which 
the cognitive difficulties  are an important concern.  On the other hand, indirect procedures, 
which use the so-called preference-disaggregation analysis (PDA), use regression-like 
methods for inferring the set of parameters from a battery of decision examples ([6]). 

In the framework of Multiple Criteria Decision Aid (MCDA), Jacquet-Lagreze and 
Siskos  pioneered the UTA method in the early 1980’s ([14]). Indirect elicitation methods 
still capture the interest of the research field community (e.g.  [23]). According to [13], 
MCDA approaches based on disaggregation paradigms are of increasing interest because 
they require relatively less cognitive effort from the DM. The direct eliciting method has 
been criticized by (among others) Marchant  (Communication in 71st Meeting of the Euro 
Working Group on Multiple Criteria Decision Aiding, Turin 2010) and Pirlot 
(Communication in 71st Meeting of the Euro Working Group on Multiple Criteria Decision 
Aiding, Turin 2010). Marchant stated that the only valid preferential input-information is 
that arising from the DM’s preferential judgments about actions or pairs of actions. These 
criticisms are even more important in the frame of outranking methods, because the DM 
must set parameters that are very unfamiliar to him/her (e.g. veto thresholds). 

Although several authors (e.g. [6]) emphasize the importance of a co-constructive 
process between the DM and the decision-analyst to obtain a final parameter setting, to the 
best of our knowledge there is no published study that addresses this issue in a systematic 
and quantitative fashion. 

The multiplicity of solutions is an important concern for PDA methods. These use an 
error optimization model for fitting the preference parameters that reproduce the reference 
set. When the reference information is relatively scarce, many sets of preference parameters 
may correspond to the same minimal error ([24]). This makes it necessary to study the 
severity of the problem of the multiplicity of preference parameters, and how this problem 
is influenced by the characteristics of the data. 

Here, we are interested in combining a disaggregation approach based on evolutionary 
multi-objective optimization with the THESEUS multi-criteria sorting method proposed in 
[9]. THESEUS uses a set T of training examples (reference actions) that contains implicit 
information about the assignment policy from the DM. His/her preferences are represented 
by an index of credibility of the outranking σ that models the degree of credibility of the 
outranking. As in [15] and [19],  given a certain credibility threshold λ, the  general 
approach of THESEUS is based on the fulfilment of the implications 

∀𝒃𝒃 ∈ 𝑇𝑇 
𝜎𝜎(𝑥𝑥, 𝒃𝒃) ≥ λ  ⇒  𝐶𝐶(𝑥𝑥) ≿ 𝐶𝐶(𝒃𝒃) (1.a) 
𝜎𝜎(𝒃𝒃, 𝑥𝑥) ≥ λ  ⇒  𝐶𝐶(𝒃𝒃) ≿ 𝐶𝐶(𝑥𝑥) (1.b) 

(where C(b) denotes the category to which the object b was assigned; C(x) is the most 
appropriate assignment of x; and  ≿ denotes the statement “at least as good as” on the set of 
categories, which is related to the decision-aiding context). 

σ may be built as in ELECTRE III, ELECTRE TRI, PROMETHEE and other 
outranking methods (e.g. [20]); its parameters may be set directly or indirectly. However, 
THESEUS requires one to work with a pair (σ,λ) that is as consistent as possible with Eqs. 
(1). This claim for consistency requires the use of indirect elicitation methods in the first 
step of THESEUS, prior to the assignment decisions. 

In the present paper, THESEUS is extended in order to become a multi-criteria PDA-
sorting method. We are interested in handling the multiplicity of parameter settings that are 
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compatible with the preference information provided by the DM. We use an evolutionary 
multi-objective approach to find a set of Pareto optimal points that are potential solutions to 
the inference problem. The analyst-DM couple could test the alternative settings by using 
assignments not belonging to the original reference set, but this process could be very 
demanding. As alternative, we propose to consider a particular Pareto optimal setting that 
can be detected automatically; no effort from the DM is needed in order to identify this 
point. Then, we perform an extensive experiment in which the classification accuracy 
associated with that point is compared with the closest points to the  parameter values 
assumed in the simulation study. Some answers are obtained to the following questions: 

1. To what extent is the quality of solutions affected by the number of categories and
criteria?

2. To what extent is the quality influenced by the cardinality of the reference set?
3. To what extent is the quality influenced by the DM’s agreement to express his/her

preferences and beliefs, participating in a co-constructive process with the decision-
analyst?

4. How far can the quality of the final solution be improved by a comparison process
between different potential solutions?

The first two questions have recently been addressed in [7] and [24] in the frame of 
value functions, and in [6] for ELECTRE TRI. To the best of our knowledge, there is no 
published paper that expressly approaches the last two questions concerning PDA in 
outranking methods. 

The paper is structured as follows. The background is presented in Section 2. This 
section includes several premises, some notation and some definitions; the THESEUS 
method and the evolutionary approaches to PDA are briefly outlined in this section. Our 
proposal is introduced in Section 3. Section 4 presents the experiment in which the proposal 
is explored for a very wide range of simulated decision-maker preferences, categories, 
criteria, and reference set cardinalities. Some conclusions are given in Section 5. 

2. Background

2.1. Basic premises and definitions 

Following [11] and [12], let us propose some premises and definitions: 
i) There is a finite set of ordered categories Ct= {C1, …CM}, (M ≥ 2); CM  is assumed

to be the preferred category. The term ‘preferred’ is related to each particular sorting
problem (for instance, ‘higher quality’, ‘more consensual’, ‘less risky’)

ii) Let U be the universe of objects (actions) x described by a coherent set of N criteria,
denoted G= {g1, g2, . . . ,gj, . . . , gN}, with N ≥ 3.

iii) There is a DM who has (or agrees with) a certain decision policy defined on a subset
U’ of the universe.

iv) There is a set of reference actions or training examples T, which is composed of
elements bkj∈U’ assigned to category Ck, (k= 1,...M) (the second subindex (j)
denotes the j-th object in the corresponding category denoted by the first subindex).
T is created or approved by the DM.
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v) There is an index of credibility of outranking σ(x,y) defined on U×U. Its value can
be interpreted as the degree of credibility of the statement ‘x is at least as good as y’
from the DM’s perspective in each particular sorting problem (for instance, ‘x is at
least as consensual as y’, or ‘x is at most as risky as y’).

vi) The DM agrees with certain indifference, strict preference, weak preference and
outranking relations on subsets of U denoted by I, P, Q, and S, respectively. These
were defined in [21] as follows:
- Indifference corresponds to the existence of clear and positive reasons that

justify equivalence between the two actions. Notation: xIy. 
- Strict preference corresponds to the existence of clear and positive reasons that 

justify a significant preference in favour of one (identified) of the two actions. 
The statement ‘x is strictly preferred to y’ is denoted by xPy. 

- Weak preference corresponds to the existence of clear and positive reasons in 
favour of x over y, but these reasons are not sufficient to justify strict preference. 
Indifference and strict preference cannot be distinguished appropriately. This is 
denoted by xQy. 

- Outranking:  It corresponds to the existence of clear and positive reasons that 
justify the statement ‘x is at least as good as y’, but with no significant division 
being established among the situations of strict preference, weak preference and 
indifference. Notation: xSy. 

Definition 1: 
The assignment of x∈ U-T to category C(x) is said to be consistent with T and the DM’s 

preference relations if 
∀bkj∈T 
x outranks  bkj⇒ C(x) is at least as good as Ck (2.a) 
bkj outranks x ⇒ Ck  is at least as good as C(x) (2.b) 

A consistent DM should make consistent assignments in the sense of Definition 1. 
Nevertheless, inconsistent assignments may be a consequence of inadequate assignments of 
some reference objects and the non-transitivity of the DM’s outranking relation. 

Let us consider a real value λ> 0.5. 
Definition 2: 
Given σ(x, y), the following crisp binary relations are defined on the universe: 
(x, y) ∈S(λ) iff σ(x, y) ≥λ  (λ-outranking) 
(x, y) ∈P(λ) iffσ(x, y) ≥λ ∧ σ(y, x) < 0.5 (λ-strict preference) 
(x, y) ∈Q(λ) iff σ(x, y) ≥λ ∧  0.5 ≤σ(y, x) <λ (λ-weak preference) 
(x, y) ∈I(λ) iff σ(x, y) ≥λ ∧ σ(y, x) ≥λ  (λ-indifference) 
(x, y) ∈R(λ) iff σ(x, y) <λ ∧ σ(y, x) <λ (λ-incomparability) 

Definition 3: 
The assignment of x is said to be (T, σ,λ)- consistent if 
∀bkj ∈T 
x S(λ)  bkj⇒ C(x)  is at least as good as Ck            (3.a) 
bkj  S(λ) x ⇒ Ck  is at least as good as C(x)       (3.b) 
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Definition 4: 
A reference set T will be called (σ,λ)-consistent if 
∀ (bkj , bni) ∈ T×T 
bkj P(λ)bni or bkj Q(λ)bni ⇒ k ≥ n      
bkj I(λ)bni ⇒ k = n   

2.2. Some essential aspects of the THESEUS method 

Let us recall from [9], [11] and [12] a brief description of the THESEUS method. 
THESEUS  is based on comparing a new object to be assigned with the objects in T through 
P(λ), Q(λ), I(λ). Suppose that C(x) denotes a potential assignment of the object x.  
According to THESEUS, C(x) should satisfy: 

∀bkj∈T 
xP(λ)bkj ⇒ C(x) ≿ Ck (4.a) 
bkj P(λ)x ⇒ Ck ≿  C(x) 

xQ(λ)bkj ⇒ C(x) ≿  Ck (4.b) 
bkj Q(λ)x ⇒ Ck ≿ C(x) 

xI(λ)bkj ⇒  C(x) = Ck  
(where ≿ denotes the statement ‘is at least as good as’ on the set of categories). 
Equations (4.a-c) express the required consistency amongst the preference model σ, the 

reference set and the appropriate assignments of x. If S(λ) ⊆ S, any assignment that is 
inconsistent with Eqs. (4.a-c) would produce dissatisfaction to a consistent DM.  

The assignment C(x) should be as compatible as possible with the current knowledge 
about the assignment policy, that is contained in σ and T. The inconsistencies with 
Equations (4.a-c) are used by THESEUS to compare the potential assignments of x. 
Specifically: 

• The set of P(λ)-inconsistencies for x and C(x) is defined as AP= {(x,bkj), (bkj,x),bkj∈T
such that  (4.a) is FALSE}; 

• The set of Q(λ)-inconsistencies for x and C(x) is defined as AQ = {(x,bkj),
(bkj,x),bkj∈T such that  (4.b) is FALSE}; 

• The set of I(λ)-inconsistencies for x and C(x) is defined as AI= {(x,bkj), (bkj,x),bkj∈T
such that  (4.c) is FALSE}. 

The above inconsistencies are grouped in different levels of importance. In order to 
clarify this issue, let us suppose that C(x) = Ck and consider bmj∈ T. Cases in which 
xI(λ)bmj∧k-m=1 can be consequences of a certain ‘discontinuity’ of the description; x 
may be close to the upper (lower) boundary of Ck and bmj may be close to the lower (upper) 
boundary of Cj. These are called second-order I(λ)-inconsistencies and grouped in the set 
A2I. The set   A1I = AI – A2I contains the so-called first-order I(λ)-inconsistencies, which are 
not consequences of the discontinuity effect described. Let nP, nQ, n1I, n2I be the cardinality 
of the above-defined inconsistency sets, and N1= nP+ nQ+ n1I , N2= n2I. 
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The THESEUS’ assignment minimizes the above inconsistencies with lexicographic 
priority favouring N1, which is considered the most important criterion. The THESEUS 
assignment rule follows: 

For each x ∈U and given  λ>0.5 
a) Starting with k =1 (k =1,…M) and considering each bkj∈T, calculate N1(Ck);
b) Identify the set {Cj} whose elements hold Cj = argmin N1(Ck);
c) Select Ck*= argmin N2(Ci);

    {Cj} 
d) If Ck* is a single solution, assign x to Ck*; the other case is approached below.
The suggestion may be a single category or a set of categories. The first case is called a 

well-defined assignment; otherwise, the solution obtained highlights the highest category 
(CH) and the lowest category (CL) that are appropriate for assigning the object, but fails in 
determining the most appropriate ([9]). Such solution is called ‘a vague assignment’. In 
order to characterize well-defined assignments, the following Uniqueness Theorem is 
important: 

Theorem: A THESEUS solution Ck*  is unique only if one of the following conditions 
holds: 

i) there is (l,m) such that xS(λ)bk*l and also  bk*mS(λ)x;
ii) there is a bML such that xS(λ)bML;
iii) there is a b1j such that b1jS(λ)x.
In case ii) Ck*= CM; in iii) Ck*= C1. 
(See the proof in [9]). 
In a simple interpretation of the above theorem, in order to be unique the THESEUS 

assignment should be ‘bounded’ by two objects in the same category, or be ‘bounded’ by 
objects belonging to extreme categories. Thus, if no condition of the Uniqueness Theorem 
is satisfied by x, then its assignment is vague or ill-defined. As stated in [12], a pair (bkl, 
bkm) with xS(λ)bkl and bkmS(λ)x is an information element that supports the assignment of x 
to Ck. In the same way, reference actions fulfilling Conditions ii) or iii) are also information 
elements that support the assignment of x to CM or C1. 

2.3. Evolutionary-based PDA approaches 

According to Premise v) in Section 2.1, our interest here is restricted to PDA in ELECTRE 
methods, which are among the most popular multi-criteria decision tools. In ELECTRE-
based models, inferring all the parameters simultaneously requires one to solve a non-linear 
programming problem with non-convex constraints, which is usually difficult (cf. [17]). 
According to [6], the relational form of these models and the veto conditions may make it 
impossible to infer the model parameters in real-size data sets. Otherwise, in small data sets 
the non-linear problem may be ill-determined; there are many different parameter settings 
that are compatible with the preference information, but no mathematical programming 
technique is able to describe the whole set of compatible parameter settings. The problem is 
particularly difficult when considering the effects of reinforced preference on the credibility 
of outranking as in [22]. 

In recent years, evolutionary algorithms have rendered powerful tools for solving 
difficult problems in a variety of fields and, in particular, for the treatment of non-linearity 

218 E. Covantes, E. Fernández, J. Navarro



and global optimization in polynomial time ([2]). Three papers have examined the problem 
of inferring outranking model parameters by evolutionary techniques. In [6], Doumpos et 
al.  used a differential evolution algorithm for inferring parameter values in the ELECTRE 
TRI method. In [8], Fernandez et al. proposed an evolutionary multi-objective algorithm for 
inferring  the parameters of a fuzzy indifference relation model for multi-criteria sorting 
purposes. This method was extended in [10] in order to handle scarce preference 
information and the effect of reinforced preference in a more general decision context.  The 
multi-objective approach, (though more complex), is more flexible than single-objective 
optimization because it allows a richer modelling of preferences. The solution to the 
parameter inference problem must satisfy several constraints in the parameter space. The 
DM may be unable to make a direct elicitation of the model parameters, but (s)he may 
provide subjective information about criterion importance and parameter value ranges. As 
constraints, these judgments can reduce the search space and help to produce more 
acceptable solutions. As an additional advantage, an evolutionary multi-objective algorithm 
is capable of generating many good compromise solutions in the associated parameter 
space. As a result of the evolutionary exploration process, a characterization of the 
complete set of different model parameter settings is achieved. This information may be 
used to obtain a final parameter setting. 

In [8] and [10], the objective functions measure the number of inconsistencies with 
preference relations in a similar way to Eqs. (4) and Section 2.2.  Hence, in order to create a 
unified PDA-THESEUS framework for multi-criteria sorting, this approach seems to be 
desirable. 

3. A combined PDA-THESEUS framework

3.1. Finding potential parameter settings via multi-objective evolutionary 
optimization 

Let us denote by η the set of the σ- model’s parameters and by λ the credibility threshold. 
Consider the following logical implications: 

∀ (bkh , bji) ∈ T×T 
bkh P(η,λ)bji ⇒ k ≥ j (5.a) 
 bkh Q(η,λ)bji ⇒ k ≥ j (5.b) 
bkh I(η,λ)bji ⇒ k = j (5.c) 
k≥ j  ⇒  bkh S(η,λ) bji (5.d) 
Note that Equations (5.a), (5.b), (5.c) correspond to the definition of a (σ,λ)-consistent 

set (Def. 4). Besides, (5.d) is related to the interpretation of S as ‘at least as good as’. 
There is an inconsistency when for a pair (bkh, bji) one of the above implications is false. 

The number of inconsistencies with Eqs. (5) is obviously a function of (η,λ). 
In the following, we shall use the notation NP(η,λ), NQ(η,λ), NI(η,λ) and NS(η,λ) for the 

inconsistencies with Eqs. (5.a), (5.b), (5.c) and (5.d), respectively.  
According to [10] the model’s parameters should be inferred by solving the multi-

objective optimization problem that follows: 
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Minimize {NP (η,λ), NQ (η,λ), NI (η,λ), NS(η,λ)} (6) 
(η,λ) ∈ fR 

where fR denotes a feasible set. This set is determined by constraints that the DM may 
impose on the model’s parameters. 

If σ were calculated as in ELECTRE III or ELECTRE TRI (cf. [20]), with the 
simplification suggested in [18], the parameters in η would be 

i) the vector of weights wi;
ii) the vector of indifference thresholds qi;
iii) the vector of preference thresholds pi;
iv) the vector of veto thresholds vi;
v) the vector of discordance thresholds ui .
The minimal set of constraints is: wi>0; 0≤ qi ≤ pi < ui < vi (i=1,…N); 0.5< λ≤ 1. 
The minimal set of constraints is: wi>0; 0≤ qi ≤ pi < ui < vi (i=1,…N); 0.5< λ≤ 1. 
Suppose that there is a parameter setting (η0,λ0) satisfying NP (η0,λ0) =  NQ (η0,λ0) = NI 

(η0,λ0) = 0, and make (η,λ) = (η0,λ0) in  Eqs.(5).  Upon comparing Eqs. (5)  with Definition 
4, we conclude that the set T is (σ, λ)- consistent. That is, each b∈ T is (T-{b},σ, λ)-
consistently assigned according to Definition 3. So, the larger T, the more likely it is that 
x∈ U-T may be (T,σ, λ)-consistently assigned. The pair (σ(η0), λ0) represents a decision 
policy that is consistent in the sense of Definition 1.  

The following proposition is obvious: 
Proposition 1: A set T is (σ, λ)- consistent for any pair (η0,λ0) that fulfills NP (η0,λ0) =  

NQ (η0,λ0) = NI (η0,λ0) = 0. Reciprocally, the condition NP (η0,λ0) =  NQ (η0,λ0) = NI (η0,λ0) 
= 0 is necessary for   (σ, λ)- consistency. 

Definition 5: 
Under the above notation a (σ, λ)- consistent solution to Problem (6) on a set T is 

defined as  a pair (η0,λ0) for which NP (η0,λ0) =  NQ (η0,λ0) = NI (η0,λ0) = 0. 
Equation (5.d) claims for consistency with S(η,λ). However, false values of the 

implication in Equation (5.d) do not necessarily come from inconsistent preferences from 
the DM; rather, these inconsistencies come from incomparability or from a poor model of 
intensity of preference. Consequently, NS seems to be the less important objective in 
Problem (6). However, if NS were not appropriately controlled within acceptably low 
values, the credibility threshold would reach high values and the inconsistencies with 
Equations (5.a), (5.b) and (5.c) would tend to disappear; then (σ,λ)-consistency would be a 
consequence of a high level of incomparability. 

NP seems to be the most important objective, followed by NQ. However, a P-
inconsistency that comes from j-k= 1 in Eq. (5.a) may not be more significant than a Q-
inconsistency coming from j-k=2 in Eq. (5.b), or than an I-inconsistency with j-k=3 in Eq. 
(5.c). Such effects of ‘intensity of inconsistency’ are not modelled by a simple count of  NP, 
NQ  or NI . Indeed, for this reason the THESEUS method adds inconsistencies only in two 
classes, N1 and N2. Hence, in order to increase the compatibility between the disaggregation 
analysis and THESEUS, instead of Problem (6) we suggest finding a best compromise of 

Minimize  (Nstrong, N2I, NS) (7) 
  (η,λ) ∈ fR           
with Nstrong being the most important objective. 
where: 
Nstrong= NP+ NQ+ N1I;  
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N1I , N2I   count the first-order  and second-order   I(η,λ)-inconsistencies, respectively. 
In case of several optimal solutions (in the objective space) for the first objective of 

Problem (7), all the solutions sharing that optimal value are compared by considering the 
other objective values (the second and third objective in Problem (7)). In this way, a best 
compromise may be identified. 

A solution (0,0, *) to Problem (7) corresponds to a (σ,λ)-consistent solution. If there is a 
Pareto solution (0,0, NS*) with an acceptably low value for NS*, such a solution would be 
the best compromise solution of Problem (7). If there is no solution with these features, the 
DM and the analyst should jointly explore the Pareto frontier of Problem (7), looking for an 
acceptable compromise solution even though this solution is not (σ,λ)-consistent.  

Perhaps the easiest way of finding a compromise solution to Problem (7) consists in 
giving preemptive priority to Nstrong, and assigning the same importance to the remaining 
two objectives. This is equivalent to solving the problem 

Minimize  (Nstrong, N2I +NS) (8) 
  (η,λ) ∈ fR 
with lexicographic priority favouring Nstrong. 
As above, if there are several optimal solutions (in the objective space) for the first 

objective of Problem (8), all the solutions sharing that optimal value are compared by 
considering the second objective. So, the solution which reaches its minimum value is 
chosen.  Problem (8) is a particular case of Problem (7) and it is not solved independently. 
Note that the solution to Problem (8) is a non-dominated solution of Problem (7) for which 
the sum N2I +NS is minimal.  Once the Pareto frontier of Problem (7) has been obtained, the 
solution to Problem (8) is straightforward. Obtaining this solution does not require the DM 
to express his/her preferences on the non-dominated solutions of Problem (7).  

For solving Problem (7) and following [10], we use the Non-dominated Sorting Genetic 
Algorithm-II (NSGA-II) (e.g. [4]). In [10], Fernandez et al. solved Problem (6) with good 
results. Problem (7) is easier and basically the same algorithmic procedure can be used, 
probably with more effectiveness because only three objective functions need to be 
considered.  In problems with two or three objective functions NSGA-II is one of the most 
efficient approaches in the literature on evolutionary multi-objective optimization (cf. [2]). 
This method ranks every member of a K’-size population according to individual non-
domination levels, applies evolutionary operators to build an offspring population, and 
combines parent and offspring populations in a new pool of  size 2K’. This combined 
population is sorted into non-dominated classes. The next K’-size population is obtained by 
selecting the best individuals of the parent-offspring combined pool. In order to keep 
diversity, a crowding distance (a density estimator) is associated with every individual.  

For the selection of ‘parents’, NSGA-II uses a special kind of binary tournament called 
the ‘crowded tournament selection operator’ ([4]). It works as follows: let i, j be two 
randomly selected solutions from the parent population. Solution i wins the tournament 
over j whenever one of the following conditions is true: 

1) if solution i has a better rank than j;
2) if solutions i and j have the same rank but solution i has a better crowding distance

than j (that is, the crowding distance associated with i is greater than that associated
with j).
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Point 1 ensures that the winner lies on a better non-dominated front. Point 2 solves 
possible ties between solutions on the same front by making a decision according to 
crowding distances. In this case, the winner resides in a less crowded region. 

Individuals are represented by a string composed of 5n + 1 positions as shown in Figure 
1. 

Figure 1: Individual coding 

p1 u1 v1 … … pn un vn w1 w2 … wn q1 q2 … qn λ 

Different individuals are considered as different solutions in each NSGA-II population, 
so several individuals can be pre-image of the same point in the objective space thus 
sharing the same ‘fitness’. 

For the weights, we use the approach in [1]. n-1 uniform random numbers are generated 
in (0;1); further, these are ranked 0< a1 < a2…<an-1 <1, and the weights are calculated as wi 
= ai – ai-1. Thus, the normalization condition (w1 + w2 + ... + wn = 1) is satisfied and the 
random weights are uniformly distributed. 

One-point crossover is used (cf. [16]). 2n+1 possible crossover points are defined on the 
individual (see Figure 2). Given the two parents, the specific crossover point is randomly 
generated. A repair process is used to keep the individual within the feasible region. 

Figure 2: Possible crossover points 

    1       …     n-1     n         n+1    n+2  … 2n+1

p1 u1 v1 … … pn un vn w1 w2 … wn q1 q2 … qn λ 

The Uniform mutation is used here as in [16]. The parameters of the evolutionary search 
are set to: Number of generations= 1000, Population size= 100, Crossover probability= 
0.8, Mutation probability= 0.05. More details can be found in [10]. 

3.2. Finding the best parameter setting in a THESEUS frame 

Let us denote by {P*}z* the set of points (η,λ) in the parameter space that are the pre-image 
of a known Pareto solution z* in the objective space of Problem (7). The following steps are 
necessary to set THESEUS: 

Step 1: Set the constraints fR; 
Step 2: Given a reference set T, apply the evolutionary algorithm described in Section 

3.1 to find an approximation to the Pareto frontier of Problem (7);  let us denote 
such a set by Z (the known Pareto frontier). 

Step 3: If there is a (σ, λ)- consistent solution with an acceptable low value of  NS, then 
choose this as the best compromise zbest; obtain the most central point (η,λ)best in 
the set {p*}zbest if there is more than one. 

Else: 
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Look in Z for a good compromise solution zgood. If the DM is not available or if 
(s)he is averse to comparing solutions in Z, then choose the solution to Problem 
(8) as the compromise solution zeasy. 
Obtain the most central point (η,λ)easy  in the set {p*}zeasy if there is more than 
one. 

Remarks: 
a) The most central points (η,λ)best and (η,λ)easy  are the nearest points (in the sense of a

normalized Euclidean distance) to the centroids of the sets {p*}zbest and  {p*}zeasy.
The exploration in Z may use a set B ⊂ U, B ∩T = Φ of objects whose assignments are 

known; those assignments may be compared with the assignments suggested by points in 
{p*}z*, helping to reach the best compromise setting. Once this setting has been found, 
THESEUS is ready to suggest sorting decisions. 

4. Extensive computer experimentation

Concerning the solutions provided by the combined PDA-THESEUS approach, let us 
revisit the questions that we have formulated in the the introduction: 

A) To what extent is their quality affected by the number of categories and criteria?
B) To what extent is their quality influenced by the cardinality of the reference set?
C) To what extent is the quality of solutions influenced by the DM’s level of

involvement in a co-constructive process with the decision-analyst?
D) How far can the quality of the final solution be improved by a comparison process

between different potential solutions?
A formal theoretical answer to the above questions is impossible. Therefore, we choose 

to perform an experimental analysis in which a great diversity of decision-maker 
preferences is simulated and many reference sets are randomly built. The influence of 
imposing constraints on the model’s parameters is examined. The quality of the solution to 
Problem (8) (a solution that is independent of the decision-maker’s preferences) is 
compared with that of other solutions that require the DM to express preferences on Z. 
Thus, the combined PDA-THESEUS performance is explored for a wide range of simulated 
decision-maker preferences (expressed by the model’s parameters), and different levels of 
involvement from the decision-maker, numbers of categories, numbers of criteria, and 
cardinalities of the reference set. 

We shall analyse the performance of three solutions in the parameter space: 
(η,λ)easy: the point corresponding to the solution to Problem (8); this point can be 

detected automatically, being independent of the DM’s preferences on Z. No 
effort from the DM is therefore needed in order to identify this point. 

(η,λ)Eucl : the nearest point (in the sense of a normalized Euclidean distance) to the 
parameter setting used in the simulation study; 

 (η,λ)Tche : the nearest point (in the sense of a normalized Tchebychev distance) to the 
parameter setting used in the simulation study. 

(η,λ)Eucl  and (η,λ)Tche belong to the pre-image of the known Pareto frontier of Problem 
(7). 

 The main design factors of the experiment are shown in Table 1. 
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Table 1. Summary of experimental design factors 

Factor Levels 
Number of criteria (N) 3,  5, 7,  9 
Number of categories (M) 3,  5,  7,  9 
Number of reference objects (card (T)) 50,  100,  200 
Sample size in the model’s parameter space 50 
Size of validation samples 1000 
Number of runs of the evolutionary 
algorithm 

20 

Constraint settings ‘minimal’, ‘additional’ 
(see remarks below) 

The experiment involves the following steps: 
- Generate the outranking model’s parameter set. This set of parameter values, which 

is used in the simulation study, is denoted by (η,λ)sim. 
- Construct a (σ,λ)-consistent reference set T (Def. 4) with the desired cardinality; σ is 

calculated as in ELECTRE III with the simplification of the discordance index 
proposed in [18]. 

- Once T has been built, solve Problems (7) and (8) running 20 times the algorithm 
described in Sections 3.1 and 3.2. Find (η,λ)easy, (η,λ)Eucl and (η,λ)Tche. 

- Generate a validation sample Usample. Using σ((η,λ)sim), the reference set T and the 
THESEUS assignment rule, assign each object x of Usample to a category Csim (x) or to 
an interval [CL, CH]sim. Do the same using (η,λ)easy, (η,λ)Eucl and (η,λ)Tche and count 
the full coincidences with (η,λ)sim. A full coincidence (in the following simply ‘a 
coincidence’) happens if and only if Csim(x)=Cηλ(x) or [CL, CH]sim=[CL, CH]ηλ. 

Remarks: 
1. In solving Problems (7) and (8) the constraints are set in two different and

independent ways: i) under a minimal set of constraints that concern the natural
values of the model’s parameters; and ii) by imposing constraints that can reflect
certain beliefs from the DM related to acceptable parameter values.

2. Since the model’s parameters have a specific interpretation, the random generation
is performed in a way that keeps their relationships and their semantic meaning
([12]). Veto power is not conceded  to criteria having weights clearly lower than the
average. As the i-th criterion has veto capacity, its pre-veto threshold ui is generated
from a normal distribution centred in the middle value of the interval [pi, vi].
Conditions 0≤ qi ≤ pi < ui < vi (i=1,…N) are imposed. This setting is called ‘minimal
constraints’.

3. DM beliefs on acceptable parameter values are simulated by restricting them to
(η,λ)sim-1/3(η,λ)sim ≤ (η,λ) ≤  (η,λ)sim + 1/3(η,λ)sim. This setting is called ‘additional
constraints’.

4. For achieving coincidence with the assignments from (η,λ)*, it would be sufficient
that S(η,λ)sim = S(η,λ)*. The closer S(η,λ)* is to S(η,λ)sim, the higher should be the
number of coincidences. So, the more similar (η,λ) is to (η,λ)sim, the more
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coincidences Csim(x)=Cηλ(x) or [CL, CH]sim=[CL, CH]ηλ there will be. Thus, the 
number of coincidences is a measure of the quality of the solutions of Problems (7) 
and (8). 

5. The prior probability of a random coincidence is 2/(M.(M-1)+2M).

Some results are shown in Figures 3-8 in terms of the average rate of coincidences rc 
when (η,λ)=(η,λ)easy. The closer rc is to 1, better (η,λ)easy reflects the simulated DM with 
parameters (η,λ)sim.  Figures 3-5 correspond to the case in which no constraints of the type 
described in the third remark are imposed (the DM is not involved in setting the feasible 
region of Problems (7) and (8)). Figures 6-8 provide some results obtained under the 
constraints expressed in the third remark above. 

Figure 3: Average rate of coincidences vs card(T) (minimal constraints) 

Figure 4: Average rate of coincidences vs N with M=3 and minimal constraints 
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Figure 5: Average rate of coincidences vs M with N=3 and minimal constraints 

Figure 6: Average rate of coincidences vs card(T) and additional constraints 
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Figure 7: Average rate of coincidences vs N  with M=3 and additional constraints 

Figure 8: Average rate of coincidences vs M  with N=3 and additional constraints 

The detailed results are provided in Tables 3 and 4 (see the Appendix) in terms of the 
average number of coincidences with (η,λ)sim. This number is counted on a validation 
sample with 1000 elements. Since (η,λ)easy  can be automatically detected,  no involvement 
of the DM is reflected in Figures 3-5 and the column ‘Average coincidences with (η,λ)easy’ 
of Table 3 (see the Appendix). Besides, Figures 6-8 and the column ‘Average coincidences 
with (η,λ)easy’ of Table 4 (see the Appendix) correspond to the case in which the DM is able 
to express his/her beliefs and setting some constraints on the parameter values, but (s)he is 
not willing to compare points on the Pareto frontier of Problem (7). 

Table 2 shows a comparison between two levels of DM involvement. Its column ‘DM is 
not involved’ coincides with the column ‘Average coincidences with (η,λ)easy’ in Table 3 
(see the Appendix). The column ‘DM  is involved’ in Table 2 contains the best values of 
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the coincidences that an involved DM could identify with a deep analysis and comparison 
of points on the Pareto frontier of Problem (7) (see Table 4 in the Appendix). Normality of 
the data was checked by the Anderson-Darling test, and statistical significance was 
analysed by using a two sample t-test. Let µni be the population mean of coincidences 
without DM involvement. Let µi denote the population mean with involvement. The null 
hypothesis was µi≤µni. The alternative hypothesis was µi-µni > 0. The significance level was 
set to 0.05. Table 2 only points out the experimental points for which the null hypothesis 
was rejected. 

Table 2. Average number of coincidences with (η,λ)sim in two levels of DM involvement 

M N card (T) DM is not involved DM is involved % of improvement 
3 7 100 786.4 881.1 12.0 

200 815.5 915.8 12.3 
9 50 732.0 820.9 12.1 

100 749.1 844.4 12.7 
200 812.0 908.9 11.9 

5 3 50 790.0 886.6 12.2 
100 801.4 902.7 12.6 
200 804.9 928.2 15.3 

5 50 621.7 818.3 31.6 
100 659.9 872.0 32.1 
200 725.3 899.7 20.0 

7 50 630.1 750.2 19.1 
100 629.2 831.9 32.2 
200 676.9 867.0 28.1 

9 50 534.1 751.6 40.7 
100 547.9 808.2 47.5 
200 554.9 839.1 51.2 

7 3 50 635.1 873.7 37.6 
100 714.4 897.8 25.7 
200 754.8 922.2 22.2 

5 50 542.2 801.8 47.0 
100 546.3 859.6 57.3 
200 599.9 894.4 49.1 

7 50 523.5 720.3 37.6 
100 552.6 796.4 44.1 
200 586.7 838.0 42.8 

9 50 475.7 669.1 40.7 
100 531.9 730.1 37.3 
200 540.7 802.2 48.4 

9 3 50 625.5 843.2 34.8 
100 643.6 870.1 35.2 
200 700.1 914.6 30.6 

5 50 469.9 792.6 68.7 
100 551.1 846.6 53.5 
200 582.9 889.2 52.5 

7 50 417.5 678.1 62.4 
100 544.1 774.4 42.3 
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200 539.3 810.9 50.4 
9 50 420.2 638.8 52.0 

100 444.5 707.1 59.1 
200 498.1 769.6 54.5 

Remarks: 
1. The quality of solutions (measured by the number of coincidences with (η,λ)sim) is

better when  additional constraints are imposed (compare Figures 6-8 with Figures 3-5). 
This suggests that the PDA-THESEUS combined proposal may be improved when the DM 
is willing to provide his/her beliefs on acceptable parameter values. 

2. Fifteen times under the minimal constraints (see the column ‘Better than (η,λ)easy’,
Table 3 in the Appendix) and twenty times under the additional constraints  (see the column 
‘Better than (η,λ)easy’, Table 4 in the Appendix), there is at least one point in Z for which 
the number of coincidences with (η,λ)sim is significantly greater than the one obtained by 
(η,λ)easy. This underlines the importance of the DM’s active participation in exploring the 
set Z in a co-constructive process with the decision analyst. 

3. (η,λ)Eucl and (η,λ)Tche cannot be used in practice because the analyst-DM couple do
not know the true parameter values. But when we proved that (η,λ)Eucl and/or (η,λ)Tche are 
significantly better than (η,λ)easy, one thing is clear: there is at least one parameter setting as 
the Pareto optimal point of Problem (7) that outperforms (η,λ)easy. This is an indication for 
the analyst-DM couple. Comparing the results shown in columns 4-7 (Tables 3 and 4 in the 
Appendix), the analyst-DM can choose between accepting (η,λ)easy and finding a better 
solution by exploring other Pareto optimal points in the parameter space. Note that the best 
result between (η,λ)Eucl and (η,λ)Tche may be outperformed by other Pareto optimal points. 
Therefore, the values obtained from (η,λ)Eucl and (η,λ)Tche are the lower bounds of others 
that can be found in the pre-image of Z. The exploration of the Pareto set may be performed 
by testing different potential settings with assignments not belonging to the original 
reference set. 

4. Generalizing the above remarks, Table 2 shows the importance of the DM’s active
role in a co-constructive process with the decision analyst. 

5. Comparing the first and second halves of Tables 3 and 4 (see the Appendix), (η,λ)easy
provides good results in sorting problems with few categories; with an increase in M up to 
five, (η,λ)Eucl and (η,λ)Tche tend to perform better. 

6. In general, the quality of the solutions is degraded by the increment in M and N (see,
for instance, Figures 4, 5, 7, and 8). However, values of 60% of coincidences with (η,λ)sim 
should not be judged as bad if we consider that with M=9 the prior probability of a random 
coincidence with Csim(x) or [CL, CH]sim  is 1/45. 

7. The quality of solutions seems to be improved by the increments in the cardinality of
the reference set (see, for instance, Figures 3 and 6); such dependence is very often 
statistically significant when card (T) = 200 is compared with card (T) = 50. 

The last remarks could be explained by the following arguments: 
The assignment of x to Csim(x) = Ck*  has to be supported by reference objects bk*l 

fulfilling conditions of the THESEUS Uniqueness Theorem in Section 2. The assignment 
of x to [CL, CH]sim should be supported by reference objects bLn and bHj such that 
xS(η,λ)simbLn and bHjS(η,λ)simx. Reference actions fulfilling those conditions are pieces of 
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information that support assignments. The cardinalities of S(η,λ)sim and S(η,λ)* are reduced 
when N increases because of incomparability effects. Also, when M increases and card (T) 
decreases, the number of pieces of information that support particular assignments reduces 
too. With very few pieces of information supporting Csim or [CL, CH]sim, a slight difference 
between (η,λ)* and  (η,λ)sim may provoke non-coincident assignments. 

5. Concluding remarks

The THESEUS multi-criteria sorting method suggests assignments that are as compatible as 
possible with the previous assignments in the reference set and the fuzzy outranking model 
σ. Consistency requires that the assignments of the reference actions should be compatible 
with σ-values. The model of the crisp outranking relation derived from σ should be as close 
as possible to the DM’s preference relation ‘at least as good as’. 

THESEUS does not perform well if the σ-model’s parameters are directly set by the 
DM. Hence, we have proposed here a combined approach, in which the preference-
disaggregation evolutionary method in [10] is adapted to the THESEUS framework. That 
evolutionary multi-objective-based method works by minimizing certain counts of 
inconsistencies, which is similar to the way in which THESEUS makes assignment 
decisions. 

The evolutionary algorithm is (in structure) not essentially different from those 
described by our previous paper (cf. [10]). Here, the novelty consists in: 

First: THESEUS is extended in order to become a multi-criteria PDA-sorting method. 
We propose a framework with the conjoint use of the evolutionary multi-objective 
optimization based on PDA and THESEUS. The concept of (σ, λ)-consistency is 
introduced and the multi-objective problem is adapted to THESEUS (see discussion in 
Sections 3.1 and 3.2). 

Second and more important: to a certain extent, this paper finds answers to the 
fundamental questions about the quality of solutions, and finds how this quality is 
influenced by the characteristics of the data and by the level of involvement of the DM. 

From an extensive experiment (during which many models of preferences and sizes of 
problems, and different degrees of decision maker involvement were explored), we have 
obtained the following conclusions: 

I. The PDA-THESEUS combined proposal performs very well in sorting problems 
with few categories and criteria; although acceptable, its performance is degraded by 
the increments in the number of categories and criteria; it tends to improve when the 
cardinality of the reference set increases. 

II. The proposal may perform better if the DM is willing to provide his/her beliefs on
acceptable parameter values.

III. When the number of categories (M) is less than five, the DM may accept (η,λ)easy
(the  set of parameters generated automatically by our proposal) as the best setting.
If M ≥ 5 the quality of solutions improves when the DM is involved in the process of
comparing and evaluating different solutions on the known Pareto frontier of the
multi-objective parameter elicitation problem. Analysing the results shown in
columns 4-7 of Tables 3 and 4 in the Appendix, the analyst-DM can choose between
accepting (η,λ)easy and finding a better solution by exploring other Pareto optimal
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points in the parameter space. The exploration of the Pareto set may be performed 
by testing different potential settings with assignments not belonging to the original 
reference set. 

IV. The greater the number of categories, the more important the involvement of the DM
in relation to the above points.

Our results have proved the importance of the DM’s role in comparing different points 
on the approximated Pareto frontier of Problem (7). Analyses of the ways in which the 
DM’s involvement might take place will be the topic of future research. It is interesting to 
examine which constraints on the parameters add most to the improvement of the results. 
Also, a study of the effect of noisy information that the DM may provide would be 
welcome.  

Acknowledgements 
We acknowledge the support from CONACYT project no. 236154. We also thank the 

anonymous reviewers for their helpful remarks. 

References 

[1] Butler, J., Jia, J., Dyer, J. (1997): Simulation techniques for the sensitivity analysis of 
multi-criteria decision models, European Journal of Operational Research 103, 3, 531-
546. 

[2] Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A. (2007): Evolutionary Algorithms 
for Solving Multi_Objective Problems, Second Edition. Springer, New York. 

[3] Corrente, S., Doumpos, M., Greco, S., Slowinski, R., Zopounidis, C. (2015): Multiple 
criteria hierarchy process for sorting problems based on ordinal regression with 
additive value functions, Annals of Operations Research  DOI 10.1007/s10479-015-
1898-1. 

[4] Deb, K. (2001): Multi-Objective Optimization using Evolutionary Algorithms, John 
Wiley & Sons, Chichester-New York-Weinheim-Brisbane-Singapore-Toronto. 

[5] Dias, L., Mousseau, V., Figueira J., Climaco, J. (2002): An aggregation/disaggregation 
approach to obtain robust conclusions with ELECTRE-TRI, European Journal of 
Operational Research, 138, 2, 332-348. 

[6] Doumpos, M., Marinakis, Y., Marimaki, M., Zopounidis, C. (2009): An evolutionary 
approach to construction of outranking models for multicriteria classification: The case 
of ELECTRE TRI method, European Journal of Operational Research, 199, 2,496-
505. 

[7] Doumpos, M., Zopounidis, C., Galariotis, E. (2014): Inferring robust decision models 
in multicriteria classification problems: An experimental analysis, European Journal of 
Operational Research, 236, 2, 601-611. 

[8] Fernandez, E., Navarro, J., Bernal, S. (2009): Multicriteria sorting using a valued 
indifference relation under  a preference disaggregation paradigm, European Journal 
of Operational Research, 198, 2,  602-609. 

[9] Fernandez, E., Navarro, J. (2011): A new approach to multicriteria sorting problems 
based on fuzzy outranking relations: The THESEUS method, European Journal of 
Operational Research, 213, 2, 405-413. 

Handling the multiplicity of solutions in a MOEA based ... 231



[10] Fernandez E., Navarro J., Mazcorro G.(2012): Evolutionary multi-objective 
optimization for inferring outranking model’s parameters under scarce reference 
information and effects of reinforced preference, Foundations of Computing and 
Decision Sciences, 37, 3,  163-197. 

[11] Fernandez E., Navarro J., Salomon E. (2014): Automatic enhancement of the reference 
set for multi-criteria sorting in the frame of THESEUS method, Foundations of 
Computing and Decision Sciences 39, 2,  57-77. 

[12] Fernandez E., Navarro J., Covantes, E., Rodriguez, J. (2016): Analysis of the 
effectiveness of the THESEUS multi-criteria sorting method: theoretical remarks and 
experimental evidence, TOP, DOI: 10.1007/s11750-016-0433-0.  

[13] Greco, S., Mousseau, V., Slowinski, R. (2008): Ordinal regression revisited: Multiple 
criteria ranking with a set of additive value functions, European Journal of 
Operational Research, 191,  415-435. 

[14] Jacquet-Lagreze, E., Siskos, J. (1982): Assessing a set of additive utility functions for 
multicriteria decision making: The UTA method, European Journal of Operational 
Research, 10, 2, 151-164. 

[15] Köksalan, M, Mousseau, V, Özpeynirci, Ö, Özpeynirci, SB. (2009): A New 
Outranking-Based Approach for Assigning Alternatives to Ordered Classes, Naval 
Research Logistics, 56, 1, 74-85. 

[16] Michalewicz, Z. (1996): Genetic Algorithms + Data Structures = Evolution Programs, 
Springer Verlag, Berlin-Heidelberg-New York. 

[17] Mousseau, V., Slowinski, R.(1998): Inferring an ELECTRE-TRI model from 
assignment examples,  Journal of Global Optimization, 12, 2, 157-174. 

[18]  Mousseau, V., Dias, L.C. (2004): Valued outranking relations in ELECTRE providing 
manageable disaggregation procedures, European Journal of Operational Research, 
156, 2, 467–482. 

[19] Rocha, C, Dias, L.C. (2008): An algorithm for ordinal sorting based on ELECTRE 
with categories defined by examples, Journal of Global Optimization, 42, 2, 255-277. 

[20] Roy, B. (1990): The outranking approach and the foundations of ELECTRE methods, 
in: Bana e Costa, C.A., (ed.), Reading in Multiple Criteria Decision Aid, Springer-
Verlag, Berlin, 155-183. 

[21] Roy B. (1996): Multicriteria methodology for Decision Aiding, Kluwer Academic 
Publisher, Dordrecht-Boston-London. 

[22] Roy, B., Slowinski, R. (2008): Handling effects of reinforced preference and counter-
veto in credibility of outranking, European Journal of Operational Research, 188, 1, 
185-190. 

[23] Spyridakos, A., Yannacopoulos, D. (2015): Incorporating collective functions to 
multicriteria disaggregation–aggregation approaches for small group decision making, 
Annals of Operations Research, 227, 1, 119-136. 

[24] Vetschera, R., Chen, Y., Hipel, K.W. (2010): Robustness and information levels in 
case-based multiple criteria sorting, European Journal of Operational Research, 202, 
3, 841-852. 

Received 26.01.2016, Accepted 19.09.2016 

232 E. Covantes, E. Fernández, J. Navarro



APPENDIX 

The results are shown in Tables 3 and 4. The column ‘Better than (η,λ)easy’ takes into 
account statistical significance.  

This analysis was performed by using paired sample t-tests.  The null hypotheses were 
µ(Eucl-easy) ≤0 and  µ(Tche-easy) ≤0. The alternative hypotheses were µ(Eucl-easy) >0 and  µ(Tche-easy) 
>0, respectively. 

Table 3. Average number of coincidences with (η,λ)sim (minimal constraints) 

M N card (T) Ave. 
coincidences 

(η,λ)easy 

Ave. 
coincidences 

(η,λ)Eucl 

Ave. 
coincidences 

(η,λ)Tche 

Better than 
(η,λ)easy* 

3 3 50 859.4 843.5 801.9 - 
100 902.4 899.2 891.0 - 
200 938.7 935.3 895.1 - 

5 50 814.0 801.7 797.3 - 
100 844.2 830.2 819.8 - 
200 876.6 860.0 810.0 - 

7 50 768.8 758.7 765.4 - 
100 786.4 801.8 794.6 - 
200 815.5 822.4 804.1 - 

9 50 732.0 729.9 728.4 - 
100 749.1 760.3 721.2 - 
200 812.0 805.0 808.6 - 

5 3 50 790.0 817.9 794.0 - 
100 801.4 832.1 807.9 - 
200 804.9 846.4 839.3 -

5 50 621.7 736.0 727.4 (η,λ)Eucl 

(η,λ)Tche 
100 659.9 762.0 704.1 (η,λ)Eucl 

200 725.3 789.5 757.9 - 
7 50 630.1 671.2 667.6 - 

100 629.2 737.2 693.5 (η,λ)Eucl 
200 676.9 775.4 710.9 (η,λ)Eucl 

9 50 534.1 589.6 546.9 - 
100 547.9 601.9 598.0 - 
200 554.9 642.5 603.2 (η,λ)Eucl 

7 3 50 635.1 699.4 676.6 - 
100 714.4 741.3 752.8 - 
200 754.8 793.2 798.8 - 

5 50 542.2 644.7 621.5 (η,λ)Eucl 

(η,λ)Tche 
100 546.3 665.8 649.7 (η,λ)Eucl 

(η,λ)Tche 
200 599.9 694.1 699.2 (η,λ)Eucl 

(η,λ)Tche 
7 50 523.5 610.2 612.8 (η,λ)Eucl 
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(η,λ)Tche 
100 552.6 613.5 609.4 - 
200 586.7 636.4 620.5 - 

9 50 475.7 592.4 576.2 (η,λ)Eucl 

(η,λ)Tche 
100 531.9 611.7 585.6 (η,λ)Eucl 

200 540.7 623.1 594.1 (η,λ)Eucl 

9 3 50 625.5 677.2 656.5 -

100 643.6 692.4 687.2 -

200 700.1 745.7 742.1 -

5 50 469.9 595.9 579.4 (η,λ)Eucl 

(η,λ)Tche 
100 551.1 611.4 608.6 -

200 582.9 682.2 694.1 (η,λ)Eucl 

(η,λ)Tche 
7 50 417.5 536.1 518.7 (η,λ)Eucl 

(η,λ)Tche 
100 544.1 577.8 569.3 - 
200 539.3 584.0 592.0 - 

9 50 420.2 455.7 461.4 - 
100 444.5 477.5 472.8 - 
200 498.1 539.1 546.2 - 

* At least one of the null hypotheses was rejected.

Table 4. Average number of coincidences with (η,λ)sim (under additional constraints) 

M N card (T) Ave. 
coincidences 

(η,λ)easy 

Ave. 
coincidences 

(η,λ)Eucl 

Ave. 
coincidences 

(η,λ)Tche 

Better than 
(η,λ)easy* 

3 3 50 899.3 897.4 896.1 - 
100 909.6 922.3 916.0 - 
200 935.2 942.4 940.6 - 

5 50 870.0 868.5 862.0 - 
100 893.3 908.1 904.1 - 
200 923.1 920.4 918.2 - 

7 50 842.4 832.9 834.2 - 
100 857.7 878.3 881.1 - 
200 907.1 905.9 915.8 - 

9 50 782.9 813.0 820.9 - 
100 812.3 829.5 844.4 - 
200 880.6 899.4 908.9 - 

5 3 50 791.9 886.6     841.6 (η,λ)Eucl 
100 812.7 902.7 900.1 (η,λ)Eucl 

(η,λ)Tche 
200 891.8 928.2 919.4 - 

5 50 779.9 818.3 816.8 - 
100 825.3 869.0 872.0 - 
200 848.5 899.7 891.3 - 

7 50 706.7 745.0 750.2 - 
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100 795.5 831.9 829.4 - 
200 833.7 862.4 867.0 - 

9 50 711.3 743.0 751.6 - 
100 789.2 804.9 808.2 - 
200 813.0 833.7 839.1 - 

7 3 50 787.2 873.7 842.4 (η,λ)Eucl 
100 815.6 897.8 869.9 (η,λ)Eucl 

200 850.7 922.2 898.9 (η,λ)Eucl 

5 50 702.9 797.7 801.8 (η,λ)Eucl 

(η,λ)Tche 
100 757.2 859.6 844.8 (η,λ)Eucl 

(η,λ)Tche 
200 811.7 894.4 861.9 (η,λ)Eucl 

7 50 676.1 720.3 718.3 - 
100 714.3 794.8 796.4 (η,λ)Eucl 

(η,λ)Tche 
200 792.9 838.0 834.5 -

9 50 581.4 669.1 664.4 (η,λ)Eucl 

(η,λ)Tche 
100 678.5 725.5 730.1 - 
200 729.1 781.3 802.2  (η,λ)Tche 

9 3 50 761.3 843.2 841.4 (η,λ)Eucl 

(η,λ)Tche 
100 793.4 870.1 845.3 (η,λ)Eucl 
200 832.3 914.6 877.2 (η,λ)Eucl 

5 50 700.1 784.3 792.6 (η,λ)Eucl 
(η,λ)Tche 

100 757.1 846.6 813.1 (η,λ)Eucl 
200 810.6 889.2 851.9 (η,λ)Eucl 

7 50 596.2 671.3 678.1 (η,λ)Eucl 

(η,λ)Tche 
100 685.8 770.7 774.4 (η,λ)Eucl 

(η,λ)Tche 
200 777.2 809.5 810.9 - 

9 50 560.6 638.8 601.5 (η,λ)Eucl 

100 667.8 707.1 703.7 - 
200 711.4 769.6 762.1 - 

* At least one of the null hypotheses was rejected.
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