
POLYNOMIAL TIME ALGORITHMS FOR VARIANTS OF
GRAPH MATCHING ON PARTIAL k-TREES

Takayuki NAGOYA ∗

Abstract. In this paper, we deal with two variants of graph matching, the graph
isomorphism with restriction and the prefix set of graph isomorphism. The former
problem is known to be NP-complete, whereas the latter problem is known to be
GI-complete. We propose polynomial time exact algorithms for these problems on
partial k-trees.

Keywords: graph isomorphism with restriction, partial k-trees, polynomial time
algorithm

1 Introduction

Graphs can be effectively used to represent relationships between objects such as social
networks, web search engines and genome sequencing. Comparison of structures of
graphs has been of significant importance and has wide-spread applications. For
example, the subgraph isomorphism problem is used to search for, given two graphs
G and H, a subgraph of G whose structure is equal to H, and algorithms for the
problem have been designed (e.g., [9, 15]).

The most basic version of graph matching is the graph isomorphism problem. We
say that two graphs G = (V,E) and H = (W,F ) are isomorphic if there is a bijection
ϕ : V → W such that for every two vertices v1, v2 ∈ V , the edge (v1, v2) is in E if
and only if the edge (ϕ(v1), ϕ(v2)) is in F . We call such a bijection an isomorphism.
The graph isomorphism problem (GI for short) is to determine whether given two
graphs are isomorphic or not. The problem is clearly in NP, but not known either
to be solvable in polynomial time, or to be NP-complete. Thus, several works have
been done for GI on restricted graph classes [2, 3, 11, 16, 17] and for variants of GI
[10, 14].

∗Tottori University of Environmental Studies, 1-1-1 Wakabadai-Kita, Tottori, Tottori 689-1111,
Japan (email:nagoya@kankyo-u.ac.jp)

F O U N D A T I O N S   O F   C O M P U T I N G   A N D   D E C I S I O N   S C I E N C E S
Vol. 41    (2016)

DOI: 10.1515/fcds-2016-0010

No. 3
ISSN 0867-6356

e-ISSN 2300-3405 



We consider two variants of graph isomorphism. The first one is the graph iso-
morphism with restriction (GIR for short). This problem is to determine whether for
given two graphs G and H and a binary relation R ⊆ V ×W , there is an isomorphism
between G and H that avoids any element of R. This problem can be applicable to
the situation in that we want to decide a mapping between vertices of two graphs G
and H under the constraint that some vertices of G are not allowed to be mapped to
some vertices of H. The second one is the prefix set of graph isomorphism (PrefixGI
for short). This problem is to determine whether for given two graphs G and H and
an isomorphism ϕ from an induced subgraph of G to an induced subgraph of H, there
is an isomorphism between G and H that is an extension of ϕ. This problem can
applicable to the situation in that we want to decide a mapping between vertices of
two graphs G and H under the constraint that some vertices of G have to mapped to
some vertices of H according to ϕ.

The above two problems are generalizations of GI and that have a more wide
application than GI. However, unfortunately, NP-completeness of GIR have shown
by A. Lubiw [10]. Also, J. Köbler et al [8] have shown that PrefixGI is GI-complete.
Namely, PrefixGI and GI is of the same difficulty. Thus, exact algorithm for these
problems is not likely to be found.

In this paper, we propose polynomial time exact algorithms for GIR and PrefixGI
on partial k-trees (i.e. subgraphs of k-trees). For a natural number k, k-trees is a
class of graphs with tree structure. Roughly speaking, a k-tree is a tree with width
k and that is a generalization of tree. For example, 1-tree is the set of all trees. It is
known that the class of partial k-trees is a large set of graphs. Thus, our algorithms
could be powerful tools for several graph problems.

We finish this section by explaining theoretical aspects of our result. Bodlaender
[3] designed a polynomial time algorithm for GI on partial k-trees. Also, GIR for
chordal graphs with bounded clique size can be solved in polynomial time [13]. Since
GIR is harder than or equal to GI and partial k-trees is a super class of chordal graphs
with bounded clique size, our result extends those results.

2 Preliminary

Throughout this paper, we suppose that all graphs are undirected and simple. Let
G = (V,E) be a graph. We denote by G[U ] the subgraph that is induced by U ⊆ V .
We often identify a graph and its vertex set.

Definition 1. The class of k-trees is defined recursively as follows:

1. A clique (i.e., a complete graph) with k vertices is a k-tree.

2. If G = (V,E) is a k-tree, and x 6∈ V , and v1, · · · , vk form a clique in G with k
vertices, then H = (V ∪ {x}, E ∪ {(x, vi) : 1 ≤ i ≤ k}) is a k-tree.

3. All k-trees can be formed with rules 1 and 2.

Definition 2. A graph is a partial k-tree, if and only if it is a subgraph of a k-tree.

164 T. Nagoya



Figure 1 is an example of a 4-tree. According to Definition 1, this graph is con-
structed recursively as follows. First, we construct a complete graph with vertex set
{v1, · · · , v4}. Next, we add the new vertex x and the edges that connect x and each
vertex of {v1, v2, v3, v4}. After that, we add the new vertex x1 and the edges that
connect x1 and each vertex of {v1, v3, v4, x}. We add vertices x2, x3, and x4 by iter-
ating similar procedures. Then, the obtained graph is a 4-tree. By Definition 2, any
subgraph of this graph is a partial 4-tree.

v1 v2

v3 v4

x

x1

x2

x3

x4

Figure 1: An example of a 4-tree

Let G = (V,E) and H = (W,F ) be two graphs. For two partial mappings ϕ :
V → W and ψ : V → W , we say that ϕ does not contradict to ψ if for any v ∈
Dom(ϕ) ∩Dom(ψ), ϕ(v) = ψ(v). We say that ϕ extends ψ if ϕ does not contradict
to ψ and Dom(ϕ) ⊇ Dom(ψ). For ϕ and ψ that do not contradict to each other, we
define the partial mapping ϕ t ψ as follows.

ϕ t ψ(v) =
{
ϕ(v) if v ∈ Dom(ϕ)
ψ(v) if v ∈ Dom(ψ) (1)

In the following discussion, we consider partial mappings that avoid every pair of
a binary relation between V and W . This notion is defined precisely as follows.

Definition 3. For a binary relation R ⊆ V × W , we say that a partial mapping
ϕ : V 7→W is an R-mapping if for any v ∈ Dom(ϕ), (v, ϕ(v)) 6∈ R is satisfied.

Any partial mapping that does not contradict to another partial mapping is defined
by using the above notion. Precisely, for a partial mapping ϕ from V to W , we define
binary relation r(ϕ) ⊆ V ×W as follows.

r(ϕ) = {(v, w) : v ∈ Dom(ϕ) and w ∈W − {ϕ(v)}}
∪{(v, w) : v 6∈ Dom(ϕ) and w ∈ Im(ϕ)} (2)

Then, any r(ϕ)-mapping maps any vertex of Dom(ϕ) according to ϕ and maps
any vertex of V −Dom(ϕ) to a vertex other than vertices of Im(ϕ). Thus, we have
that a partial mapping ψ is an r(ϕ)-mapping if and only if ψ does not contradict to
ϕ.

Polynomial time algorithms for variants ... 165



In the remaining sections, we deal with a partial mapping that avoids every pair of
R and that does not contradict to ϕ. In other words, we consider a partial mapping
that is an R-mapping and also an r(ϕ)-mapping. Such a mapping can be represented
as an (R ∪ r(ϕ))-mapping by using the union of R and r(ϕ).

The followings are some basic facts about above defined notions.

Fact 1. Let R ⊆ V ×W be a binary relation and let ϕ and ψ be two partial mappings
from V to W . Then, we have the following facts.

1. If ϕ is an R-mapping then the mapping ϕ|C , the restriction of ϕ whose domain
is C ⊂ Dom(ϕ), is also an R-mapping.

2. If ϕ and ψ are R-mappings and do not contradict to each other, then ϕ t ψ is
also R-mapping.

We finish this section by state two problems that are dealt with in this paper.
For two graphs G = (V,E) and H = (W,F ) and a binary relation R ⊆ V ×W , a
bijection ϕ : V →W is an R-isomorphism if ϕ is an isomorphism from G to H and is
an R-mapping from V to W . We say that G is R-isomorphic to H if there exists an
R-isomorphism from G to H. We write G ∼=R H in this case. The graph isomorphism
with restriction (GIR for short) is a problem of determining whether given two graphs
are R-isomorphic or not. The prefix set of graph isomorphism (PrefixGI for short) is
a problem to decide whether given two graphs G and H and an isomorphism ϕ from
an induced subgraph of G to an induced subgraph of H, there exists an isomorphism
from G to H that extends ϕ, namely r(ϕ)-isomorphism from G to H.

The difference of these two problems is that GIR requires isomorphisms to avoid
the elements of R whereas PrefixGI requires isomorphisms to include the elements
of R. In general, this difference seems to be significant. As stated in introduction,
GIR is known to be NP-complete. However we have strong indications that GI is not
NP-complete. Thus, GIR seems to be more difficult than GI. On the other hand, it
is known that PrefixGI is polynomial time equivalent to GI. Therefore, it is expected
that GIR is more difficult than PrefixGI. If this expectation is correct, this difference
arises from the difference between avoidance or inclusion.

3 Algorithm for the graph isomorphism with restriction

Arnborg et al [1] designed O(nk+2) time algorithm for recognizing partial k-trees.
Their algorithm is based on the fact that a partial k-tree is decomposed into a col-
lection of pairs of a k-vertex separator and a connected component. Bodlaender [3]
proposed a polynomial time algorithm to solves GI on partial k-trees. The algorithm
is based on Arnborg et al’s result. In this section, we show that GIR on partial k-trees
can be solved in polynomial time by using these idea.

166 T. Nagoya



3.1 Bodlaender’s algorithm

We briefly describe Arnborg et al’s result and Bodlaender’s algorithm for GI on partial
k-trees. In the following, we let G = (V,E) and H = (W,F ) be connected graphs.

Arnborg et al’s recognition algorithm for partial k-trees is depend on two lemmas.
We state one of the lemmas as Lemma 1. Lemma 2 is obtained by slight modification
of another, and it can be proved in the same way as Arnborg et al’s proof. In
these lemmas, for a k-vertex separator C of G and a connected component X of
V −C, the graph G(C,X) is defined by vertex set C ∪X and the edge set {(v1, v2) :
v1, v2 ∈ C} ∪ {(v1, v2) : v1, v2 ∈ X and (v1, v2) ∈ E} ∪ {(v1, v2) : v1 ∈ C and v2 ∈
X and (v1, v2) ∈ E}.

Lemma 1. [1] Suppose n ≥ k + 2. G is a partial k-tree, if and only if there exists a
k-vertex separator Cr, such that for all connected components Xi of V −Cr, G(Cr, Xi)
is a partial k-tree.

Lemma 2. [1]Let Cp is a k-vertex separator of G and Xi is a connected component
of V −Cp. Then, the graph G(Cp, Xi) with at least k+2 vertices is a partial k-tree if
and only if there exists a vertex x ∈ Xi, such that for each connected component Xs

i

of the graph, obtained by removing x from Xi, there is a vertex us ∈ Cp such that

1. Cs
p = Cp − {us} ∪ {x} is a k-vertex separator of G.

2. No vertex in Xs
i is adjacent to the vertex us.

3. G(Cs
p , X

s
i ) is a partial k-tree.

v1 v2

v3 v4

x

x1

x2

x3

x4

Cr

Xi

Figure 2: An illustrative example of Lemma 1

The above two lemmas are based on the recursive definition of k-trees and on the
fact that a partial k-tree is a subgraph of a k-tree. Figure 2 shows an example of
a partial k-tree that is obtained by removing some edges from the k-tree in Figure
1．We can apply Lemma 1 to the graph as follows. Let Cr = {v1, · · · , v4} and let
Xi = {x, x1, · · ·x4} be a connected component of V − Cr. Since Cr is a clique in the
original k-tree, G(Cr, Xi) is a subgraph of the original k-tree. Therefore, G(Cr, Xi)

Polynomial time algorithms for variants ... 167



v1 v2

v3 v4

x

x1

x2

x3

x4

Cp
1

v1 v2

v3 v4

x

x1

x2

x3

x4
Xi
1

Cp
2

Xi
2

Figure 3: An illustrative example of Lemma 2

is a partial k-tree. Figure 3 is an illustrative example of Lemma 2 with p = r.
X1

i = {x1, x2} and X2
i = {x3, x4} are connected components that are obtained by

removing x from Xi. For s = 1, we let u1 = v2. Then, C1
p = {v1, v3, v4, x} and

X1
i = {x1, x2}. Since C1

p is a k-vertex separator in the original k-tree, it is also a
k-vertex separator in the graph of Figure 3. According to recursive construction of
the k-tree of Figure 1, no vertex of X1

i is adjacent to u1. In addition, since G[C1
p ∪X1

i ]
is a subgraph of the original k-tree and C1

p is a clique of the original k-tree, G(C1
p , X

1
i )

is a partial k-tree. We have that the conditions 1, 2, and 3 are satisfied for s = 1. For
s = 2, we let u2 = v1. Then we can verify that the conditions 1, 2, and 3 are satisfied
in the same manner.

According to Lemma 1 and Lemma 2, a partial k-tree can be decomposed to
a collection of pairs of k-vertex separator and connected component. Bodlaender
designed O(nk+4.5) time algorithm for GI on partial k-trees by using this fact. In
the algorithm, we first store information of the decomposition of G by executing
Arnborg et al’s algorithm for G. By using the stored information, we can decide
whether the given two partial k-trees are isomorphic or not. He called the information
“representation of G as partial k-tree”.

3.2 Polynomial time algorithm for GIR on partial k-trees

In this section, we propose a polynomial time algorithm for GIR on partial k-trees. We
let G, H, and R be inputs for GIR, where G = (V,E) and H = (W,F ) are connected
partial k-trees with |V | = |W | = n and R ⊆ V ×W . In the our algorithm, we first
computes “representation of G as partial k-tree”. Then, we decide whether G and H
are R-isomorphic or not by using dynamic programming. In the following discussion,
we assume that “representation of G as partial k-tree” is already computed.

Let Cr be the k-vertex separator of G in the representation of G as partial k-
tree that satisfies Lemma 1. Let also X1, · · · , Xm be all of connected components of
V − Cr. Then, we have the next lemma.

Lemma 3. G ∼=R H if and only if there exists a k-vertex separator Dq of H and

168 T. Nagoya



R-isomorphism ϕ from Cr to Dq such that the following conditions hold:

1. Let Y1, · · · , Ym′ be all of connected components of W −Dq. Then m = m′.

2. There exists a bijection τ on {1, · · · ,m} such that for any i ∈ {1, · · · ,m},
G[Cr ∪Xi] ∼=R∪r(ϕ) H[Dq ∪ Yτ(i)].

Proof. ⇒) Suppose that ξ is an R-isomorphism from G to H. Let Dq = ξ(Cr) and let
ϕ be the restriction of ξ whose domain is Cr. Then, since Cr is a k-vertex separator
of G and ξ is an isomorphism, Dq is also a k-vertex separator of H. In addition, since
ϕ is a restriction of R-mapping ξ, ϕ is also an R-mapping from Cr to Dq (1 of Fact 1).
Furthermore, since ϕ is a restriction of an isomorphism ξ, ϕ is also an isomorphism
from Cr to Dq. Thus, ϕ is an R-isomorphism from Cr to Dq. Then, we can show
that the condition 1 and 2 of Lemma 3 are satisfied as follows.

1. Since ξ is an isomorphism, the number of connected components of V − Cr is
equal to the number of connected components of W − ξ(Cr). Since Dq = ξ(Cr),
the condition 1 holds.

2. Since ξ is an isomorphism and Xi’s and Yj ’s are connected components of V −Cr

and W −Dq respectively, there exists a bijection τ on {1, · · · ,m} such that for
each i ∈ {1, · · · ,m}, ξ(Xi) = Yτ(i). We below show that for each i ∈ {1, · · · ,m},
ξ|Cr∪Xi is an (R ∪ r(ϕ))-isomorphism from G[Cr ∪Xi] to H[Dq ∪ Yτ(i)]. Since
ξ|Cr∪Xi is a restriction of R-mapping ξ, ξ|Cr∪Xi is also an R-mapping (1 of Fact
1). In addition, ξ|Cr∪Xi does not contradict to ϕ, because both ξ|Cr∪Xi and
ϕ are restrictions of ξ. Thus, ξ|Cr∪Xi is an r(ϕ)-mapping. Furthermore, since
ξ|Cr∪Xi is a restriction of an isomorphism ξ, ξ|Cr∪Xi is also an isomorphism.
As a result, we have that ξ|Cr∪Xi is an (R∪ r(ϕ))-isomorphism form G[Cr ∪Xi]
to H[Dq ∪ Yτ(i)], the condition 2 holds.

⇐) Suppose that there existsDq, ϕ, and τ that satisfy the condition 1 and 2. We below
show that there is an R-isomorphism from G to H. Suppose that ξi, i ∈ {1, · · · ,m}
is an (R ∪ r(ϕ))-isomorphism from G[Cr ∪ Xi] to H[Dq ∪ Yτ(i)] that satisfies the
condition 2. For any two mappings ξi and ξj , the intersection of domains of them is
Cr. Furthermore, since any ξi is an r(ϕ)-mapping, ξi(v) = ϕ(v) is satisfied for each
v ∈ Cr = Dom(ϕ). Thus, these mappings do not contradict to each other. Therefore,
we can define the mapping ξ = ξ1 t · · · t ξm. Since each ξi is an R-mapping, ξ is
also an R-mapping (2 of Fact 1). Furthermore, since any Xi and Yj are connected
components of V − Cr and W −Dq respectively and any ξi is an isomorphism, ξ is
an isomorphism from G to H. We conclude that ξ is an R-isomorphism from G to
H, and the lemma holds.

According to Lemma 3, we can solve GIR by deciding whether there exist a k-
vertex separator Dq of H, an R-isomorphism ϕ from Cr to Dq, and a bijection τ on
{1, · · · ,m} such that for each i ∈ {1, · · · ,m}, G[Cr ∪Xi] is an (R∪ r(ϕ))-isomorphic
to H[Dq ∪ Yτ(i)]. This can be done as follows. For each k-vertex separator Dq

and each R-isomorphism ϕ, we construct a bipartite graph B = (V 1
B , V

2
B , EB) where

Polynomial time algorithms for variants ... 169



V 1
B = {X1, . . . , Xm}, V 2

B = {Y1, . . . , Ym}, and (Xi, Yj) ∈ EB if and only if G[Cr∪Xi] is
(R∪r(ϕ))-isomorphic toH[Dq∪Yj ]. Then, we easily see that B has a perfect matching
if and only if a bijection τ that satisfies the condition 2 exists. Furthermore, if there
exists Dq and ϕ such that the condition 1 of Lemma 3 holds and B has a perfect
matching, then G is R-isomorphic to H.

The next lemma shows that we can recursively decide whether G[Cr ∪ Xi] is
(R ∪ r(ϕ))-isomorphic to H[Dq ∪ Yj ]. In the lemma, (Cp, Xi) is any pair of k-vertex
separator Cp and connected component Xi that are in “representation of G as partial
k-tree”. Also, a vertex x ∈ Xi, connected components X1

i , · · · , Xm
i of Xi − {x}, a

vertex us for each s, and Cs
p = Cp − {us} ∪ {x} for each s are recursive information

about (Cp, Xi) in the representation of G as partial k-tree that satisfy Lemma 2. In
addition, we let (Dq, Yj) be any pair of a k-vertex separator Dq of H and a connected
component Yj of W −Dq and let ϕ be any R-isomorphism from Cp to Dq.

Lemma 4. G[Cp ∪ Xi] ∼=R∪r(ϕ) H[Dq ∪ Yj ] is satisfied if and only if there exists a
vertex y ∈ Yj such that the following conditions hold.

1. Yj − {y} has m connected components Y 1
j , · · · , Y m

j .

2. For each s ∈ {1, · · · ,m}, (us, x) ∈ E ⇔ (ϕ(us), y) ∈ F

3. There exists a bijection τ on {1, · · · ,m} such that for each s ∈ {1, · · · ,m}, the
following conditions hold.

(a) There is no vertex in Y
τ(s)
j that adjacent to ϕ(us).

(b) We denote a mapping ϕ|Cp−{us} t {x → y} by ϕs. Then, ϕs is an (R ∪
r(ϕ))-isomorphism from Cs

p to Ds
q = Dq − {ϕ(us)} ∪ {y}, and G[Cs

p ∪
Xs

i ] ∼=R∪r(ϕs) H[Ds
q ∪ Y

τ(s)
j ] holds.

Proof. ⇒) Suppose that there exists an (R ∪ r(ϕ))-isomorphism ξ from G[Cp ∪ Xi]
to H[Dq ∪ Yj ]. Let y = ξ(x). Then, we below prove that the conditions 1, 2, and 3
hold. The top of Figure 4 is an illustrative example when y = ξ(x).

1. Since ξ is an r(ϕ)-mapping, ξ maps Cp to Dq. Thus, ξ maps Xi to Yj . Fur-
thermore, since ξ is an isomorphism, the number of connected components of
Xi−{x} is equal to the number of connected components of Yj−{ξ(x)}. Because
of y = ξ(x), the condition 1 holds.

2. Since ξ is an isomorphism, (us, x) ∈ E ⇔ (ξ(us), ξ(x)) ∈ F is satisfied (see
Figure 4 below). Where, ξ(us) = ϕ(us) is satisfied, because ξ is a ϕ-mapping
and us ∈ Dom(ϕ). Since ξ(x) = y, (us, x) ∈ E ⇔ (ϕ(us), y) ∈ F is satisfied.
We have that the condition 2 holds.

3. Since ξ is an isomorphism and {X1
i , · · · , Xm

i } and {Y 1
j · · · , Y m

j } are connected
components of Xi − {x} and Yj − {ξ(x)} respectively, there exists a bijection
τ on {1, · · · ,m} such that for each s ∈ {1, · · · ,m}, ξ(Xs

i ) = Y
τ(s)
j . We below

show that such τ satisfies the conditions (a) and (b).

170 T. Nagoya



Cp

Xi

Dq

Yj

φ

x

φ s
us

x

φ(us)=ξ(us)

y=ξ(x)

Cp
s

Dq
s

Xi
s

Yj
τ(s)

y=ξ(x)

Figure 4: An illustrative example of Lemma 4

(a) By Lemma 2, there is no vertex in Xs
i that adjacent to us (see Figure 4

below). Since Y τ(s)
j and ξ(us) are images of Xs

i and us by the isomorphism

ξ, there is no vertex in Y
τ(s)
j that adjacent to ξ(us). Because of ξ(us) =

ϕ(us), ϕ(us) does not adjacent to any vertex of Y τ(s)
j , the condition (a)

holds.

(b) We first show that ϕs is an (R ∪ r(ϕ))-isomorphism. By the definition of
ϕs, ϕs maps each vertex of Cp − {us} according to ϕ. In addition, since
ξ is an r(ϕ)-isomorphism, ξ also maps each vertex of Cp − {us} according
to ϕ. Thus, we have that for each vertex v ∈ Cp − {us}, ϕs(v) = ξ(v).
In addition, we know that ϕs(x) = y = ξ(x). Thus, ϕs maps each vertex
of Cs

p = Cp − {us} ∪ {x} according to ξ. Therefore, ϕs is a restriction of
ξ whose domain is Cs

p . Since ξ is an (R ∪ r(ϕ))-isomorphism, ϕs is also
(R ∪ r(ϕ))-isomorphism (1 of Fact 1).

We next show that G[Cs
p ∪Xs

i ] ∼=R∪r(ϕs) H[Ds
q ∪ Y

τ(s)
j ] holds. We denote

ξ|Cs
p∪Xs

i
by ξs. We below show that ξs is an R-mapping, r(ϕs)-mapping,

and an isomorphism from Cs
p ∪Xs

i to Ds
q ∪ Y

τ(s)
j . Since ξs is a restriction

of R-mapping ξ, ξs is also R-mapping (1 of Fact 1). Both ϕs and ξs are
restrictions of ξ. Thus, ξs does not contradict to ϕs. In other words, ξs is
an r(ϕs)-mapping. Since ξs is a restriction of an isomorphism ξ, ξs is also
an isomorphism. We conclude that ξs is an (R ∪ r(ϕs))-isomorphism, the
condition (b) holds.

Polynomial time algorithms for variants ... 171



⇐) Suppose that there exists a vertex y ∈ Yj that satisfies the condition 1, 2, and
3. By the condition 3-(b), for each s ∈ {1, · · · ,m}, there exists an (R ∪ r(ϕs))-
isomorphism ξs that maps G[Cs

p∪Xs
i ] to H[Ds

q∪Y
τ(s)
j ]. We denote ξst{us → ϕ(us)}

by ξ′s.
We first show that ξ′s is an (R ∪ r(ϕ))-isomorphism that maps G[Cp ∪ {x} ∪Xs

i ]
to H[Dq ∪ {y} ∪ Y τ(s)

j ]. Since {us → ϕ(us)} is a restriction of an R-mapping ϕ,
{us → ϕ(us)} is also an R-mapping (1 of Fact 1). Since ξ′s is a composition of two
R-mappings ξs and {us → ϕ(us)}, ξ′s is also an R-mapping (2 of Fact 1). Since ξs is
an r(ϕs)-mapping and ϕs is an r(ϕ)-mapping, ξs is an r(ϕ)-mapping. Therefore, since
ξ′s is a composition of two r(ϕ)-mappings ξs and {us → ϕ(us)}, ξ′s is also an r(ϕ)-
mapping (2 of Fact 1). Now, we have that ξ′s is an (R∪r(ϕ))-mapping. We below show
that ξ′s is an isomorphism. Since ξs is an isomorphism, ξ′s preserves adjacency relation
between v1 and v2 for any two vertices v1, v2 ∈ Dom(ξs) = Cs

p ∪Xs
i . In other words,

(v1, v2) ∈ E ⇔ (ξ′s(v1), ξ
′
s(v2)) ∈ F holds for any two vertices v1, v2 ∈ Dom(ξs) =

Cs
p ∪Xs

i . Thus, in order to show that ξ′s is an isomorphism, it is enough to verify that
ξ′s preserves adjacency relation between (1) us and any vertex of Cp − {us}, (2) us

and x, and (3) us and any vertex of Xs
i . We below prove that these three conditions

hold.

(1) Since us and Cp − {us} are in the domain of the isomorphism ϕ, adjacency
relation between us and any vertex of Cp − {us} is preserved by ϕ. By the
above, we know that ξ′s is an r(ϕ)-mapping. Thus, adjacency relation between
us and any vertex of Cp − {us} is also preserved by ξ′s.

(2) By the condition 2, (us, x) ∈ E ⇔ (ϕ(us), y) ∈ F holds. Where, by the defini-
tion of ξ′s, ϕ(us) = ξ′s(us). Furthermore, since ξs is an r(ϕs)-mapping and ϕs

maps x to y, ξs maps x to y. Thus, ξ′s also maps x to y. Therefore, we have
that (us, x) ∈ E ⇔ (ϕ(us), y) ∈ F ⇔ (ξ′s(us), ξ′s(x)) ∈ F holds. We conclude
that ξ′s preserves adjacency relation between us and x.

(3) By Lemma 2, us is not adjacent to any vertex of Xs
i . Thus, in order to show that

ξ′i preserves adjacency relation between us and any vertex of Xs
i , it is enough

to show that ξ′i(u
s) does not adjacent to any vertex of ξ′i(X

s
i ). Since ξ′s is an

r(ϕ)-mapping, ξ′s(u
s) = ϕ(us). By the definition of ξ′s, ξ

′
s(X

s
i ) = Y

τ(s)
j . In

addition, by the condition 3-(a), ϕ(us) does not adjacent to any vertex of Y τ(s)
j .

Therefore, we have that ξ′i(u
s) does not adjacent to any vertex of ξ′i(X

s
i ).

By the above argument, we have that ξ′s is an isomorphism. Since we already
know that ξ′s is an (R∪r(ϕ))-mapping, we have that ξ′s is an (R∪r(ϕ))-isomorphism.

Finally, we show that we can define a mapping ξ = ξ′1 t · · · t ξ′m and ξ is an
(R ∪ r(ϕ))-isomorphism from G[Cp ∪ Xi] to H[Dq ∪ Yj ]. Since the domain of ξ′s is
Cp∪{x}∪Xs

i for every s, the intersection of domains of any two ξ′s’s is Cp∪{x}. Thus,
since any ξ′s is r(ϕ)-mapping and that maps x to y, any two ξ′s’s do not contradict
to each other. Therefore, we can define the mapping ξ = ξ′1 t · · · t ξ′m that maps the
vertices of Cp ∪Xi to the vertices of Cq ∪ Yj . Since any ξ′s is an (R ∪ r(ϕ))-mapping,
ξ is also an (R ∪ r(ϕ))-mapping (2 of Fact 1). The intersection of domains of these

172 T. Nagoya



mappings, namely Cp∪{x}, is a separator, andX1
i , · · · , Xm

i are connected components
that are obtained by removing Cp ∪ {x}. Thus, since any ξ′s is an isomorphism, ξ
is also an isomorphism. We conclude that ξ is an (R ∪ r(ϕ))-isomorphism, and the
lemma holds.

According to Lemma 4, we can decide whether G[Cp∪Xi] is (R∪r(ϕ))-isomorphic
to H[Dq ∪Yj ] or not with the dynamic programming. The computation is proceed in
ascending order of the size of Yj . For each vertex y ∈ Yj that satisfies the condition
1 and 2 of Lemma 4, we decide whether there exists a bijection τ on {1, · · · ,m}
that satisfies the conditions 3-(a) and 3-(b) of Lemma 4. This can be done by
constructing a bipartite graph By with two vertex sets V 1

By
= {X1

i , . . . , X
m
i } and

V 2
By

= {Y 1
j , . . . , Y

m
j } and an edge set EBy . Where, we create an edge (Xs

i , Y
t
j ) if

the vertex ϕ(us) does not adjacent to any vertex of Y t
j and there is an (R ∪ r(ϕs))-

isomorphism from G[Cs
p ∪Xs

i ] to H[Ds
q ∪ Y t

j ]. We can easily decide whether the first
condition is satisfied. In addition, since |Yj | > |Y t

j |, we can decide whether the second
condition is satisfied by looking up the table of dynamic programming. Thus, we
can construct the bipartite graph By efficiently. Furthermore, we can decide whether
there exists a bijection τ that satisfies the condition 3-(a) and 3-(b) by solving the
perfect matching problem for By. Therefore, we can conclude that G[Cp ∪ Xi] is
(R ∪ r(ϕ))-isomorphic to H[Dq ∪ Yj ] if there exists a vertex y ∈ Yj such that the
condition 1 and condition 2 is satisfied and By has a perfect matching.

Algorithm 1 is the pseudo-code of the algorithm. By the next theorem, the worst-
case time complexity of the Algorithm is polynomial for any partial k-tree with fixed
k.

Theorem 1. There is an O(k!k2nk+2.5 + k!nk+4.5)-time algorithm to solve the graph
isomorphism with restriction on partial k-trees.

Proof. In the first of the algorithm, we create a table R(v, w), v ∈ V,w ∈ W such
that R(v, w) = 1 if (v, w) ∈ R, R(v, w) = 0 otherwise. This enable us to decide
whether (v, w) ∈ R holds or not in constant time. The table can be created in
O(n2) time. A representation of G can be computed in O(nk+2) time [1]. The
computation of the line 3 takes O(

(
n
k

)
nlog(

(
n
k

)
n)) = O(nk+1lognk+1) = O(nk+2)

time. GIR(Cp, Xi, Dq, Yj , ϕ) is a table of dynamic programming. Initial values of
each element of the table is 0. We will set the value of GIR(Cp, Xi, Dq, Yj , ϕ) to
be 1 if G[Cp ∪Xi] ∼=R∪r(ϕ) H[Dq ∪ Yj ] is satisfied. Since the numbers of (Cp, Xi)′s,
(Dq, Yj)′s, and ϕ′s are O(n), O(nk+1), and O(k!) respectively, The size of the talbe
is O(k!nk+2). Thus, the lines 1-4 take O(k!nk+2) time.

In the line 6 to 10, we decide whether, for each (Dq, Yj), |Yj | = 1, (Cr, Xi), |Xi| = 1,
and R-isomorphism ϕ : Cp 7→ Dq, G[Cp ∪ Xi] ∼=R∪r(ϕ) H[Dq ∪ Yj ] is satisfied. We
can decide whether ϕ is an R-mapping in O(|Dom(ϕ)|) = O(k) time. We can also
decide whether ϕ is an isomorphism in O(k2) time. Since |Xi| = |Yj | = 1, only
ϕ t {v 7→ w}, v ∈ Xi, w ∈ Yj could be an (R ∪ r(ϕ))-isomorphism. It takes O(k)
time to decide this mapping is an (R ∪ r(ϕ))-isomorphism. Since the numbers of
(Dq, Yj)’s with |Yj | = 1, (Cr, Xi)’s with |Xi| = 1, and ϕ’s are O(nk+1), O(n), and
O(k!) respectively, the complexity of the lines 6-10 is O(k2k!nk+2).

Polynomial time algorithms for variants ... 173



Algorithm 1 : Graph Isomorphism with Restriction
Require: two partial k-trees G and H and a binary relation R ⊆ V ×W
Ensure: answer G ∼=R H or G 6∼=R H
1: create a table R(v, w), v ∈ V,w ∈W
2: compute a representation of G as partial k-tree
3: compute all pairs (Dq, Yj) and sort them to increasing size
4: create a table GIR(Cp, Xi, Dq, Yj , ϕ), and set value of each element to 0
5: . initial step of dynamic programming
6: for all (Dq, Yj) and (Cp, Xi) with |Yj | = |Xi| = 1 and bijection ϕ : Cp → Dq do
7: if ϕ is an R-isomorphism and G[Cp ∪Xi] ∼=R∪r(ϕ) H[Dq ∪ Yj ] then
8: GIR(Cp, Xi, Dq, Yj , ϕ)← 1
9: end if

10: end for
11: . decide whether G[Cp ∪Xi] ∼=R∪r(ϕ) H[Dq ∪ Yj ] according to Lemma 4
12: for all (Dq, Yj) and (Cp, Xi) with |Yj | = |Xj | ≥ 2 in order of increasing size do
13: for all R-isomorphism ϕ from Cp to Dq and y ∈ Yj do
14: if conditions 1 and 2 of Lemma 4 are satisfied then
15: constructs a bipartite graph By

16: if B has a perfect matching then
17: GIR(Cp, Xi, Dq, Yj , ϕ)← 1
18: end if
19: end if
20: end for
21: end for
22: . decide whether G ∼=R H according to Lemma 3
23: for all k-vertex separator Dq of H and R-isomorphism ϕ from Cr to Dq do
24: constructs a bipartite graph B
25: if B has a perfect matching then
26: return G ∼=R H
27: end if
28: end for
29: return G 6∼=R H

In the lines 12-21, we decide whether, for each (Dq, Yj), (Cp, Xi), and bijection
ϕ : Cp 7→ Dq, G[Cp ∪Xi] ∼=R∪r(ϕ) H[Dq ∪ Yj ] is satisfied according to Lemma 4.

In the lines 14-19, we construct bipartite graph By and compute a perfect matching
of By for each y ∈ Yj . We can check whether the conditions 1 and 2 of Lemma 4 are
satisfied in O(|Yj |2 +m) = O(|Yj |2) time because m ≤ |Yj |. By can be constructed in
O(

∑
Y t

j

∑
Xs

j
|Y t

j |) = O(
∑

Xs
j
|Yj |) = O(|Yj |2) time. A perfect matching of By can be

computed in O(m2.5) = O(|Yj |2.5) time (see e.g. [7]). We have that the complexity
of the lines 14-19 is O

(
|Yj |2.5

)
. Thus, the complexity of the lines 12-21 is as follows.

174 T. Nagoya



O

∑
Dq

∑
Yj

∑
(Cp,Xi)

∑
ϕ

∑
y∈Yj

|Yj |2.5

 = O

k! ∑
Dq

∑
(Cp,Xi)

∑
Yj

|Yj |3.5

 (3)

Because of
∑

Yj
|Yj | = O(n) for each Dq, we have the following.

O

k! ∑
Dq

∑
(Cp,Xi)

n3.5

 = O
(
k!nk+4.5

)
(4)

Since the complexity of the computation of the lines 23-28 is O(
∑

Dq

∑
ϕ k

2(n2 +

n2.5)) = O(k!k2nk+2.5), we conclude that the complexity of Algorithm 1 is

O(k!k2nk+2.5+ k!nk+4.5).

4 Faster implementation for some binary relations

In the algorithm 1, we compute a perfect matching of a bipartite graph. This takes
O(m2.5) time. However, if a given binary relation R has the following property, we
can compute a perfect matching more efficiently.

Property 1. Let G1 and G2 be any induced subgraphs of G and let H1 and H2

be any induced subgraphs of H. For any R-isomorphism ξ11 from G1 to H1, any
R-isomorphism ξ21 from G2 to H1, and any R-isomorphism ξ22 from G2 to H2,
the mapping ξ from G1 to H2 that is denoted by ξ(v) = ξ22(ξ−1

21 (ξ11(v))) is an R-
isomorphism.

If the property holds then any connected component of a bipartite graph is a
complete bipartite graph. In such case, we have that the bipartite graph has a perfect
matching if and only if cardinality of two vertex sets of any connected component
are equal. Thus, we can compute a perfect matching in O(m2) time by using a basic
graph search algorithm.

If R is empty, any isomorphism is an R-isomorphism and vice versa. Thus, the
property clearly holds because of the transitivity of isomorphisms. On the other hand,
it is not always true that the property holds. Figure 5 is an example in which the
property does not hold. In the figure, let R = {(v1, w3), (v1, w4)}. Then, ξ is not an
R-isomorphism for any R-isomorphisms ξ11, ξ21, and ξ22.

The next lemma shows an example of binary relations that satisfy the property.

Lemma 5. Let ϕ be an isomorphism from an induced subgraph of G to an induced
subgraph of H. Then the binary relation r(ϕ) satisfies Property 1.

Proof. Since ξ11, ξ21, and ξ22 are isomorphism, ξ is also an isomorphism by the tran-
sitivity of isomorphisms. Thus, we below show ξ is an r(ϕ)-mapping.

We first consider the case where there is a vertex v ∈ Dom(ϕ) ∩ G1. In this
case, since G1

∼=r(ϕ) H1, G2
∼=r(ϕ) H1, and G2

∼=r(ϕ) H2, v is also a vertex of G2

and ϕ(v) is a vertex of H1 ∩ H2. Since ξ11, ξ21, and ξ22 are r(ϕ)-mapping and

Polynomial time algorithms for variants ... 175



v1 v2
v3 v4

w1 w2
w3 w4

G1 G2

H1 H2

Figure 5: An example of an R that does not satisfy Property 1

v ∈ Dom(ϕ), ξ(v) = ξ22(ξ−1
21 (ξ11(v))) = ξ22(ξ−1

21 (ϕ(v))) = ξ22(v) = ϕ(v). Thus, ξ is
an r(ϕ)-mapping.

We next consider the case whereDom(ϕ)∩G1 = ∅. In this case, since G1
∼=r(ϕ) H1,

G2
∼=r(ϕ) H1, and G2

∼=r(ϕ) H2, we have that Dom(ϕ)∩G2 = ∅, Im(ϕ)∩H1 = ∅ and
Im(ϕ)∩H2 = ∅. In such case, any mapping between G1 and H2 is an r(ϕ)-mapping.
Thus, ξ is an R-mapping.

We conclude that ξ is an R-isomorphism, and Property 1 holds.

The next lemma is derived from Lemma 5. By the lemma, for any binary relation
R that satisfies Property 1, we can solve GIR on partial k-trees more efficiently.

Corollary 1. Algorithm 1 can be implemented in O(k!k2nk+2 + k!nk+4) time if an
input binary relation satisfies Property 1.

Proof. Any mapping that is used to constructs bipartite graphs in Algorithm 1 is an
isomorphism from an induced subgraph of G to an induced subgraph of H. According
to Lemma 5, binary relations that correspond to such mappings have Property 1.
In addition, a binary relation that is a combination of such binary relations also
have Property 1. Thus, all binary relations that are used in the algorithm (i.e.,
an input binary relation, binary relations that correspond to isomorphisms between
induced subgraphs, and combinations of them) satisfies Property 1. Therefore any
computation of perfect matching in Algorithm 1 is implemented in O(m2). We have
that |Yj |2.5 of the equation 3 can be replaced by |Yj |2, and the total complexity of
the algorithm is O(k!k2nk+2 + k!nk+4).

5 Algorithm for the prefix set of graph isomorphism

By Corollary 1, we can solve PrefixGI for partial k-trees in O(k!k2nk+2 + k!nk+4)
time, because PrefixGI with inputs G,H, and ϕ is reduced to GIR with inputs G,H,
and r(ϕ). However, an execution of the algorithm spends as much time as the case
where the size of domain of ϕ is small whenever |Dom(ϕ)| is close to the size of the
given graphs.

In this section, we propose more efficient algorithm to solve PrefixGI. If |Dom(ϕ)|
is large, this algorithm runs faster than Algorithm 1. The algorithm is based on

176 T. Nagoya



a reduction to GIR on disconnected partial k-trees. Given inputs G, H, and ϕ of
PrefixGI, we construct inputs G′, H ′, and R′ of GIR as follows. Let G′ = (V ′, E′)
be a subgraph of G that is induced by V −Dom(ϕ). Please remind that this graph
could be disconnected (i.e., a set of connected graphs). Also, let H ′ = (W ′, F ′) be a
subgraph of H that is induced by W−Im(ϕ). Since any induced subgraph of a partial
k-tree is also partial k-tree, each of these connected components is a partial k-tree. We
assume that, without loss of generality, G′ and H ′ are sets of m connected components
{G′

1, · · · , G′
m} and {H ′

1, · · · ,H ′
m} respectively. We also define R′(v) ⊆ W ′ for each

v ∈ V ′ and define binary relation R′ ⊆ V ′ ×W ′ as follows.

R′(v) = {w : w ∈W ′ and ∀z ∈ Dom(ϕ)[(v, z) ∈ E ⇔ (w,ϕ(z)) ∈ F ]} (5)

R′ = {(v, w) : v ∈ V ′ and w ∈W ′ and w 6∈ R′(v)} (6)

We easily see that G is r(ϕ)-isomorphic to H if and only if G′ is R′-isomorphic to
H ′. We can decide whether G′ is R′-isomorphic to H ′ as follows.

We construct a bipartite graph B = (V 1
B , V

2
B, EB) where V 1

B = {G′
1, . . . , G

′
m},

V 2
B = {H ′

1, . . . ,H
′
m}, and (G′

i,H
′
j) ∈ EB if and only if G′

i is R′-isomorphic to H ′
j .

Then, G′ is R′-isomorphic to H ′ if and only if there is a perfect matching of B.
The bipartite graph B can be constructed by using Algorithm 1 iteratively. Fur-

thermore, we can decide whether a perfect matching exists in O(m2) time by using
the next lemma.

Lemma 6. R′ satisfies Property 1.

Proof. Let G′
1 and G′

2 be any two connected components of G′ and let H ′
1 and H ′

2

be any two connected components of H ′. Let ξ11, ξ21, and ξ22 be R′-isomorphisms
from G′

1 to H ′
1, from G′

2 to H ′
1, and from G′

2 to H ′
2 respectively. Then, the mapping

ξ from G1 to H2 that is defined by ξ(v) = ξ22(ξ−1
21 (ξ11(v))) is an isomorphism by the

transitivity of isomorphism. We below prove ξ is an R′-mapping.
Let v be any vertex of G′

1. Since ξ11 is an R′-mapping, (v, ξ11(v)) 6∈ R′ holds.
Therefore, we have that ξ11(v) ∈ R′(v). According to the definitions of R′(v), we
have the following.

∀z ∈ Dom(ϕ)[(v, z) ∈ E ⇔ (ξ11(v), ϕ(z)) ∈ F ] (7)

Since the same statement holds for any vertex of G′
2 and ξ21, we have the following

fact.

∀z ∈ Dom(ϕ)[(v, z) ∈ E ⇔ (ξ11(v), ϕ(z)) ∈ F ⇔ (ξ−1
21 (ξ11(v)), z) ∈ E] (8)

In addition, since the same statement holds for any vertex of G′
2 and ξ22, we have

the following fact.

∀z ∈ Dom(ϕ)[(v, z) ∈ E ⇔ (ξ−1
21 (ξ11(v)), z) ∈ E ⇔ (ξ22(ξ−1

21 (ξ11(v))), ϕ(z) ∈ F ] (9)

Polynomial time algorithms for variants ... 177



According to the equation (7), (8), and (9), we have the following fact.

∀z ∈ Dom(ϕ)[(v, z) ∈ E ⇔ (ξ(v), ϕ(z)) ∈ F ] (10)

Therefore, ξ(v) ∈ R′(v) is satisfied. As a result, we have that (v, ξ(v)) 6∈ R′. This
indicates that ξ is an R′-mapping, and we complete the proof of the lemma.

Now, we have the main theorem in this section.

Theorem 2. There is an O(n2 + d(n− d)2 + nf(n− d)) time algorithm to solve the
prefix set of graph isomorphism on partial k-trees, where d is the size of the domain
of ϕ and f(n) is the function of the time complexity of Corollary 1.

Proof. We can construct G′ and H ′ in O(n2) time by using ordinary graph search
algorithm. R′(v) for every v ∈ G′ can be computed by, for any w ∈ H ′ and z ∈
Dom(ϕ), checking adjacency relation between (v, z) and (w,ϕ(z)). This takesO(d(n−
d)2) time. R′ can be computed by using R′(v) in O((n−d)2) time. Since |G′

1|+ · · ·+
|G′

m| = n−d, a bipartite graph B can be computed inO(mf(|G′
1|)+· · ·+mf(|G′

m|)) =
O(mf(n − d)) time. According to Lemma 6, we can decide whether there exists a
perfect matching of a bipartite graph in O(m2) time. Because of m ≤ n, the total
complexity is O(n2 + d(n− d)2 + nf(n− d)) time.

6 Conclusions and future works

In this paper, we designed polynomial time exact algorithms for extensions of GI (e.g.,
GIR and PrefixGI) on partial k-trees with bounded k. Since we can control image of
isomorphisms, these problems have more wide application than GI. We below discuss
some observation and future works.

As stated earlier, k-trees is a class of graphs with tree structure. Chordal graphs
also are graphs with tree structure. These two graph classes are known to be kinds of
intersection graphs. GI for some intersection graph classes are known to be solved in
polynomial time, e.g., trees[12], Interval Graphs[11], rooted directed path graphs[2],
permutation graphs[6] and ptolemaic graphs[17]. See [5] for a good survey on these
graph classes. The inclusion relation between trees, k-trees and chordal graphs is as
follows.

Trees ⊂ k-trees ⊂ Chordal graphs

The definition of chordal graphs is similar to that of k-trees, except that any clique
of chordal graphs has arbitrary size. Precisely, chrdal graphs are defined as follows.

1. A clique is a chordal graph.

2. If G = (V,E) is a chordal graph, and x 6∈ V , and C ⊆ V is a clique in G, then
H = (V ∪ {x}, E ∪ {(x, v) : v ∈ C}) is a chordal graph

3. All chordal graph can be formed with rules 1 and 2.

178 T. Nagoya



By the definition, although its width is not bounded, chordal graphs also have a
tree structure. For example, Figure 6 is a chordal graph and its tree structure.

v1v2v4v5 v2v3v4v5 v2v4v5v6

v1 v2 v3

v4 v5

v6

Figure 6: An example of a chordal graph and its tree structure

It is well known that GI for labeled or unlabeled trees are solved in polynomial
time. GI for chordal graphs seems to be solvable by using the algorithm for the tree
isomorphism problem by collapsing each clique to a node of a tree. However, this
approach fails. The chordal graph of Figure 7 has the same tree structure with the
graph of Figure 6, but these graphs are not isomorphic. We can attach a label for each
node of tree structure as shown in the figures. However, in order to decide whether or
not given two chordal graphs are isomorphic, we have to decide not only one-to-one
correspondence between nodes of tree structures but also one-to-one correspondence
between alphabets of labels (i.e. vertex names of given chordal graphs). It seems that
the structure of labeled trees is insufficient to represents chordal graphs. Actually, it is
unlikely that GI for chordal graphs is reducible to GI for trees because GI for chordal
graphs is known to be GI-complete [11]. A good survey on GI-complete problems
appears in [4].

v1 v2 v3

v4 v5

v6

v1v2v3v4 v2v3v4v5 v2v4v5v6

Figure 7: Another example of a chordal graph and its tree structure

Partial k-trees is a class of graphs that are subgraphs of a k-trees. Thus, the
class of partial k-trees includes the class of k-trees, whereas it is incomparable with
the class of chordal graphs. In contrast with the case of chordal graph, vertex sets
of nodes of tree structure of partial k-trees could be arbitrary graphs. Therefore, it
seems more difficult to reduce GI for partial k-trees to GI for labeled trees.

The time complexity of algorithms that we proposed in this paper are polynomial
for bounded k, but it has large degree. Thus, it is interesting to design more efficient
algorithm for GI, GIR, and PrefixGI for partial k-trees.

Polynomial time algorithms for variants ... 179



Acknowledgment

This work was supported by JSPS KAKENHI Grant Number 26330018.

References

[1] Arnborg S., Corneil D., and Proskurowski A., Complexity of finding embeddings
in a k-tree, SIAM J. Alg. Disc. Meth., 8, 1987, 277–284.

[2] Babel L., Ponomarenko I. N. and Tinhofer G., The Isomorphism Problems for
directed Path Graphs and for Rooted Directed Path Graphs, J. Algorithms, 21,
1996, 542–564.

[3] Bodlaender H. L., Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees, J. Algorithms, 11, 1990, 631–643.

[4] Booth K. S. and Colbourn C. J., Problems polynomially equivalent to graph iso-
morphism, Technical Report CS-77-04, Computer Science Department, University
of Waterloo, 1979

[5] Brandstädt A., Le V. B. and Spinrad J. P., Graph Classeses: A Survey, SIAM,
1999.

[6] Colbourn G.J., On testing isomorphism of permutation graphs, Networks, 11,
1981, 13–21.

[7] Hopcroft J. and Karp R. M., An n5/2 algorithm for maximum matching in bipar-
tite graphs, SIAM J. Comput., 4, 1975, 225–231.

[8] Köbler J. and Schöning U. and ToranJ., The Graph Isomorphism Problem: Its
Structural Complexity, Birkhauser, 1993.

[9] Lee J., Han W. S., Kasperovics R., and Lee J. H., An indepth comparison of
subgraph isomorphism algorithms in graph databases, Proceedings of the 39th
international conference on Very Large Data Bases. VLDB Endowment, 2012,
133–144.

[10] Lubiw A., Some NP-complete problems similar to graph isomorphism, SIAM J.
Comput., 10(1), 1981, 11–21.

[11] Lueker G. S. and Booth K. S., A Linear Time Algorithm for deciding interval
graph isomorphism, J. ACM, 26, 1979, 183–195.

[12] Matura D., Subtree isomorphism in O(n5/2), Annals of Discrete Mathematics, 2,
1978, 91–106.

[13] Nagoya T., Algorithms for Graph Isomorphism with Restriction on Chordal
Graphs with Bounded Clique Size, IEICE Trans. Inf. & Sys., J95-D(11), 2012,
1889–1896.

180 T. Nagoya



[14] Nagoya T. and Toda S., Computational Complexity of Computing a Partial
Solution for the Graph Automorphism Problems, Theor. Comput. Sci., 410, 2009,
2064–2071.

[15] Saltz M., Jain A., Kothari A., Fard A., Miller J. A., Ramaswamy L., An Al-
gorithm for Subgraph Pattern Matching on Very Large Labeled Graphs, IEEE
International Congress on Big Data, 2014.

[16] Toda S., Computing Automorphism Groups of Chordal Graphs Whose Simplicial
Components Are of Small Size, IEICE Trans. Inf. & Sys., E89-D(8), 2006, 2388–
2401.

[17] Uehara R. and Uno Y., Laminar Structure of Ptolemaic Graphs with Applica-
tions. Disc. Appl. Math., 157, 2009, 1533–1543.

This is an extended version of the paper presented at the International Conference on
Big Data Intelligence and Computing (DataCom 2015), Chengdu, China, December
19-21, 2015

Polynomial time algorithms for variants ... 181




