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Abstract. The problem of reads mapping to a reference genome is one of the
most essential problems in modern computational biology. The most popular algo-
rithms used to solve this problem are based on the Burrows-Wheeler transform and
the FM-index. However, this causes some issues with highly mutated sequences due
to a limited number of mutations allowed. G-MAPSEQ is a novel, hybrid algorithm
combining two interesting methods: alignment-free sequence comparison and an ultra
fast sequence alignment. The former is a fast heuristic algorithm which uses k-mer
characteristics of nucleotide sequences to find potential mapping places. The latter
is a very fast GPU implementation of sequence alignment used to verify the correct-
ness of these mapping positions. The source code of G-MAPSEQ along with other
bioinformatic software is available at: http://gpualign.cs.put.poznan.pl.
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1 Introduction

Methods for reads mapping to a reference genome were developed at the beginning
of NGS data era as a necessary step of data processing pipelines. A formal definition
of the mapping problem is described in [8]. The input data for this problem are: a
reference sequence (genome) S = s1, s2, ..., sn and a set of reads R. Let us assume
that all reads ri ∈ R are substrings of S, ri = S[t, t + li − 1], where li is the length of
read i (|ri| = li). The result of mapping of a given read ri to genome S is a position t
within sequence S where ri begins its course. Unfortunately, such a definition is not
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sufficient, because sequence S is in practice only a reference genome, which means it
is a representation of a typical DNA for a given species. As a consequence there may
be differences between ri and S[t, t + l − 1]. These differences result from variations
among individuals of the same species which come from the process of DNA evolution,
e.g. from events like substitutions, insertions or deletions. Therefore, in the problem
of reads mapping a specialized algorithm searches for a substring of S which is the
most similar to ri, usually using alignment algorithms.

The results may vary with respect to the strategy of finding mapping positions. In
the rest of the paper we will refer to these strategies as to mapping modes. According
to [8] we may distinguish the following mapping modes:

1. finding all possible mapping positions with the quality above some defined
threshold,

2. finding all the best mapping positions,

3. finding up to a defined number of the best mapping positions,

4. finding up to a defined number of the best scored mapping positions.

where the best mapping positions are understood as a set of positions in sequence
S with the highest quality of mapping (e.g. calculated as alignment score). As a
consequence, all possible results obtained in mode 2 are indistinguishable. The type
of applied mapping mode depends mainly on the purpose one wants to achieve and
the type of processing method. Additionally, depending on the type of analysis, the
reads for which the mapping positions are not unique may be excluded from results.

1.1 Other methods

There are many established methods for reads mapping. However, a detailed descrip-
tion of individual algorithms is beyond the scope of this paper. A more inquiring
reader can read detailed surveys comparing different mapping tools, e.g. [5]. Never-
theless, to give the reader a basic idea how these algorithms work, a brief description
of one of the most popular method – bowtie2 [11] is given below. Likewise many other
methods, bowtie2 uses FM-index which was proposed by Ferragina and Manzini [3].
This type of index is based on the Burrows-Wheeler transform, and is a compressed
full-text substring index. Hence, it can be used to find the number and locations of
a pattern within the compressed text. The method itself is very efficient, in terms of
both memory and time. Bowtie2 takes advantage of the above-mentioned properties
and performs the following steps:

1. several constant length substrings (called seeds) are extracted from the original
read and its reverse-complementary (RC) version; seeds are separated from each
other by a specified shift,

2. each seed is mapped to the reference genome using the FM-index (without any
gaps or mismatches),
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3. a priority is assigned to each mapping position of a seed depending on the
distance between its neighboring seeds. Next, the method tries to extend a
randomly chosen seed (with the probability depending on its priority) to a
whole read using again the FM-index,

4. reads are aligned to the reference genome around the mapping positions found
in the previous step; the alignment is done by a dynamic programming method
parallelized with SIMD CPU instructions.

1.2 The use of k-mer in biological sequence comparison

A k-mer can be defined as a substring of length k extracted from a longer sequence.
K-mers are often used in comparison of biological sequences. Such techniques were
proposed as a fast alternative to much more time-consuming alignment methods, but
at the expense of accuracy. Some detailed reviews of k-mer algorithms for sequence
comparison (as well as others approaches based on information theory) were presented
by Vinga et al. [17], Reinert et al. [16] and Wan et al. [18]. The main idea of using
k-mers in sequences comparison usually boils down to two stages. In the first phase
each original sequence is transformed into a set of shorter substrings – k-mers. In
the second step these sets are compared in order to evaluate the similarity of selected
sequences. Such methods allow also the calculation of the distance between sequences.
Furthermore, they were used to support the classification procedure [15, 21]. It is also
worth noting that k-mer based methods are widely used in NGS-related research. For
example, in [22] the authors show a highly accurate method for NGS reads comparison.
Another example may be [13] where a method eliminating outlier reads during the
data filtration stage of the processing pipeline was presented. To be more precise, the
reads containing unique k-mers are treated by the method as invalid and are either
corrected or discarded. Summing up, the k-mer based algorithms are widely exploited
in the computational biology.

2 Methodology

G-MAPSEQ is an algorithm combining two interesting methods: ultra fast sequence
alignment and alignment-free sequence comparison. Although the sequence alignment
is very fast, mainly due to its efficient implementation on a graphics processing unit
(GPU), still it would be impossible to align every single read to the whole genome.
This is because of the size of real data sets. In order to save memory, one could try to
align every read to every possible position within a given genome, but this would be
highly intractable due to computation time. This is where the second module comes
in – alignment-free heuristic for selection of so-called promising pairs. A promising
pair is a pair of sequences that are supposed to be highly similar, or overlap each
other. In our case, a promising pair is always a pair consisting of one read and one
substring extracted from a reference genome. In order to find such promising pairs
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our method computes so-called k-mer characteristics for all the sequences. The main
assumption is that two similar sequences share similar characteristics. Therefore,
the actual alignment, which is more precise but also much more computationally
intensive, is applied only on a set of previously preselected pairs of sequences. With
the alignment process the algorithm is able to precisely determine the similarity of a
read and a given genome region, without any assumptions regarding seeds (which is
typical for traditional mapping algorithms like bowtie2).

It should be stressed that the original idea of this method comes from an algorithm
for graph construction in the DNA de novo assembly problem [9]. However, in this
paper we propose a completely new application for this scheme. The steps of the
proposed method are described below (see also Figure 1).

Figure 1. G-MAPSEQ - a block diagram of the method. Steps within the frame can
be performed in a preprocessing stage and then load form a file.
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Reference genome

In Next Generation Sequencing data reads come form both strands of the DNA double
helix and no information is provided from which one.

Therefore, in order to find the correct mapping position, one of the following steps
needs to be applied:

1. both versions of each read (forward and reverse complement) are be mapped
to the reference genome, or

2. the genome itself is represented as two-stranded sequence.

The second option is more beneficial because the set of reads is usually much larger
than the reference genome and therefore less time spent on conversion or memory is
required.

The G-MAPSEQ uses the second strategy so the reference sequence is kept in two
variants, forward and reverse complement. In order to save computational time, our
method features genome preprocessing, the results of which, so-called indexes, can be
saved to a file and reused in the future.

Input data

The standard input file format for NGS data is fastq. It contains DNA reads and cor-
responding quality scores calculated for every single nucleotide. The latter describes
the level of certainty of sequencing method while reading a given nucleotide. One of
the first standard steps in NGS data analysis is reads filtering. The goal of this task
is to remove low quality reads (or their parts) and artifact sequences coming from
biochemical experiments, i.e. adapter sequences added during sample preparation.
Moreover, due to the quality loss at the end on reads, tail cutting is considered indi-
vidually for each read. Likewise in the case of other mapping tools, the reads filtering
is considered as a separate problem and therefore reads should be preprocessed be-
forehand. In order to highlight this, our method accepts input sequences, both reads
and the reference genome, in the fasta format, i.e. without quality scores.

2.1 Preparation of k-mers characteristics

In the next step the algorithm computes the k-mer characteristics of reads. Without
loss of generality, let us assume that a given set of reads R consist of n reads ri,
where i = 1, ..., n, all of the same length. In turn, the reference genome is a sequence
S of length m. Read ri of length l consist of l − k + 1 k-mers each beginning at the
positions j, where j = 1, ..., l−k+1. Within each individual read the k-mers are sorted
according to their frequency of occurrence. Such an ordered list of k-mers is called
k-mer characteristic of a read. Preparation of such characteristics for the reference
genome is slightly different. First of all, the algorithm creates the reverse complement
representation of sequence S. Then, both sequences are cut into fragments of length
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s with offset o, where s and o are parameters of the method. Next, such subsequences
are processed in the same way as reads. As a result of this step two lists of k-mer
characteristics are prepared: one for reads and one for reference genome and its reverse
complement version.

2.2 Sorting k-mer characteristics

In this phase, both lists of k-mer characteristics are sorted lexicographically. This
resembles words sorted in a dictionary. In our case k-mer characteristics may be
compared to words and individual k-mers – to letters. For further consideration let
LR be a sorted list of k-mers for a set of reads R and LS a sorted list of k-mers for
the reference genome. |L| is the number of elements on list L and Li denotes i-th
element of list L, where i = 0, ..., |L− 1|.

2.3 Determination of promising pairs

In order to determine the set of promising pairs P , both list are traversed simulta-
neously. Let LR

cr and LS
cs denote the currently visited elements of list LR and LS ,

respectively. One of the G-MAPSEQ parameters is window size w, which defines the
number of promising pairs generated for each read. Every iteration, LR

cr is compared
to LS

cs and depending of the result, the following computations are performed:

• LR
cr > LS

cs – all pairs (LR
cr;LS

i ), where i = cs − w
2 , ..., cs + w

2 , are added to
list P . LS

i is called neighborhood of read LR
cr. The following requirements need

to be satisfied: |LS
i | = w, cs − w

2 ≥ 0 and cs + w
2 < |LS |. For real-life data

sets w � |LS |, so it is easy to manipulate the borders of neighborhood (index
i) to satisfy these requirements, i.e. ∀cs : cs ∈ (0, w

2 〉 =⇒ i = 0, ..., w and
∀cs : cs ∈ 〈|LS | − w

2 , |L
S |) =⇒ i = |LS | − w, ..., |LS |.

Next, if cr = |LR|, which means that the last element of list LR was processed,
the procedure is finished. Otherwise, the current element of list LR i.e. LR

cr is
moved to the next element: cr = cr + 1.

• LR
cr <= LS

cs – if cs < |LS |, the current element LR
cs of list LS is switched to the

next one cs = cs + 1. Otherwise, if cs = |LS | (which means that it was the last
element of the genome list), for all remaining elements of LR i.e. LR

l , where l =
cr, ..., |LR|, the following pairs are added to P : (LR

l , L
S
b ), b = |LS | −w, ..., |LS |.

It may happen that a read and a fragment of the reference genome do not belong
to the same neighborhood, even though they overlap on a relatively long distance.
This may be the case especially if two sequences are shifted relative to each other by
a number of nucleotides. In order to avoid such a situation, so-called partial charac-
teristics were introduced [9]. A partial characteristic is a regular k-mer characteristic
only computed for a selected subsequence of a read or a genome fragment. The
subsequences are usually extracted from the beginning, center and the end of a given
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sequence. If two sequences have similar partial characteristics, they are likely to share
the same region. As a consequence, additional promising pairs are generated based
on sorted lists of partial characteristics – the principles are the same like in the case
of original k-mer characteristics.

Additionally, the set of promising pairs P is enriched by a method called greatest
lexicographical index. This method extracts, as the name suggest, lexicographically
greatest substring of a fixed length from each sequence. Those sequences that share
identical indexes become a promising pair. The main purpose of the method is to be
able to detect those pairs of sequences that share a specific pattern regardless of its
position within a given sequence. The length of the index is a trade-off between speed
of the algorithm and accuracy, and in our case is usually 13.

Once all the promising pairs are determined, there are at least |LR| ∗ w pairs
of sequences in set P . The next section explains how this information is further
processed.

Promising pairs alignment and filtration procedure

The main goal of this step is to determine which promising pairs represent correct
mapping positions. Often times, a promising pair connects two sequences that are
not similar enough to constitute a correct mapping, and therefore all preselected pairs
need to go through a strict verification process. In order to eliminate low-scored pairs
a special version of semi-global alignment is applied here, i.e. modified algorithm of
Needleman-Wunsch [14]. The main difference is that while the original semi-global
alignment does not take into account terminal gaps when calculating score, in our
algorithm terminal gaps associated with the read do contribute to the score. This
does not apply to the terminal gaps on the reference genome side. This is because
the whole read needs to be aligned. Otherwise, it would mean that most probably
the next (or previous) fragment of the genome sequence should be checked.

The regular semi-global alignment algorithm fills matrix H according to equation 1,
where i = 1, ..., n, j = 1, ...,m, n,m are the lengths of sequences, sx(k) is the k − th
nucleotide of sequence x, SM is a substitution matrix, and g is a gap cost. The first
row and the first column are in this case initialized according to equations 2 and 3.

Hi,j = max

 Hi,j−1 − g
Hi−1,j − g

Hi−1,j−1 + SM(s1(i), s2(j))

 (1)

Hi,0 = 0 (2)

H0,i = 0 (3)

The score of the final semi-global alignment is the maximum value from the last
column or the last row of matrix H. It is worth noting that the model presented here
uses linear gap cost function instead of affine gap penalty function. The latter is more
popular in the context of proteins.
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The modified version of semi-global alignment implemented in G-MAPSEQ com-
putes matrix H in the same way, i.e. according to equation 1. However, the first row
is initialized according to equation 4. Moreover, the final score is the maximum value
from the last column of matrix H, while the last row is not considered.

Hi,0 = −i ∗ g (4)

In order to speed up the filtration step, calculations are performed on graphics
processing unit (GPU). G-MAPSEQ is able to utilize multiple GPUs installed in a
single system. Moreover, a load balancer takes care of on-line work distribution among
all available devices. More details of this implementation can be found in [6].

Once the alignment is computed, the similarity score between a read and a refer-
ence genome fragment is compared to a predefined threshold t, which is a parameter
of the method. Threshold t can be expressed as a minimal alignment score or as a
percentage of the maximum score between two identical sequences, each of length l.

It should be stressed that contrary to intuition the alignment itself is not calculated
here – the result consists only of the score and the corresponding overlap value for
individual pairs of sequences. This information is sufficient to determine whether
a pair of sequences is similar enough to constitute a correct mapping position or
not. Moreover, this way the method saves a lot of computational time. The whole
alignment, i.e. with a backtracking step, is calculated afterwards, but only for those
pairs of sequences that have already passed the quality verification. This is described
in more detail later on.

The next problem comes from the way the reference genome is cut into fragments.
At the beginning of the algorithm, the reference genome is fragmented according to
the above-described parameters o and s. The lower value of o, the greater chance that
one of the genome fragments will be identical with a given read. On the other hand,
it causes many genome fragments to partially overlap with the read sequence, and
hence, there is an increased chance that their k-mer characteristics will be adjacent to
the k-mer characteristic of a given read on list LS . As a result, in the set of promising
pairs there are many pairs pointing to the same mapping position (often with very
high scores because the length of genome fragments is usually 10-20% greater than the
length of individual reads). Such duplicates need to be filtered. This idea is depicted
in Figure 2.

The filtration procedure is slightly different for pair-end reads. In this case, each
paired-end read is treated as an ordered pair of reads (they are ordered at the prepro-
cessing stage). The mapping position is evaluated for every pair, not for individual
reads. The mapping candidates must satisfy additional conditions, which are de-
scribed by two parameters: insert size and the standard deviation of the insert size.
The meaning of these parameters is as follows. The distance between mapping posi-
tions of the paired reads must be equal to the insert size with the permissible deviation
from the reference value. In our algorithm the choice of mapping positions for paired-
end reads is based on the sum of alignment scores of both reads which satisfy the
distance requirements. If this condition can not be satisfied, the reads are marked as
unpaired and are further processed as regular, non paired-end reads.

130 P. Wojciechowski, W. Frohmberg, M. Kierzynka, P. Zurkowski, J.  Blazewicz



TGGTTATACACCATTTAGGGATCATCGACTAATGAGTACCTATGACAACTTAAGGCGCCTGGAAACAA

TTTAGGGATCATCGACTAATGAGTACCTATGA

TGGTTATACACCATTTAGGGATCATCGACTAA
TTATACACCATTTAGGGATCATCGACTAATGA

TACACCATTTAGGGATCATCGACTAATGAGTA
ACCATTTAGGGATCATCGACTAATGAGTACCT

ATTTAGGGATCATCGACTAATGAGTACCTATG
TAGGGATCATCGACTAATGAGTACCTATGACA

GGATCATCGACTAATGAGTACCTATGACAACT
TCATCGACTAATGAGTACCTATGACAACTTAA

TCGACTAATGAGTACCTATGACAACTTAAGGC
ACTAATGAGTACCTATGACAACTTAAGGCGCC

AATGAGTACCTATGACAACTTAAGGCGCCTGG
GAGTACCTATGACAACTTAAGGCGCCTGGAAA

TACCTATGACAACTTAAGGCGCCTGGAAACAA
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mapping position

S

Figure 2. An example of filtration problem. Read rj is a subsequence of the reference
genome S. Multiple fragments cut from the genome with offset o = 3 overlap with
a given read. At the filtration phase the algorithm selects the best scoring variant.
Note that due to offset o and the length of fragments s there is no fragment identical
to read rj .

Calculation of the final alignments and results saving

The last step of the algorithm involves mainly saving the mapping positions to the
file. The standard file format for such an analysis is SAM (or its binary version –
BAM). This format contains many information about the mappings, some of them
are optional. One of the optional information is the so-called CIGAR string, which
is a condensed form of the alignment. However, in order to compute the CIGAR
string the whole alignment with the backtracking step needs to be performed. For
this task G-MAPSEQ uses a well-known implementation of the Needleman-Wunsch
algorithm from the SeqAn 1 library. Although this is a quite time-consuming task,
CIGAR string is very useful, especially for evaluation of mapping quality [8].

3 Results

In order to evaluate the quality of the presented method we performed several com-
putational tests. The tests were designed in a way to examine different values of
individual parameters. All the parameters were already described in Section 2, but
for clarity are also listed below:

• s – length of the genome fragments,

• o – offset used to extract successive fragments of a reference genome,

• k – length of a k-mer,

• w – window/neighborhood size,

1SeqAn library: https://www.seqan.de/
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• t – threshold – the percentage of the maximum possible score a promising pair
needs to obtain to become a valid mapping position (depends also on the map-
ping mode, see Section 1, and the alignment scores of other pairs).

In order to perform reliable tests, unless stated otherwise, a real genomic data set
was used (Saccharomyces cerevisiae). It consists of 17 chromosomes with total length
of 12 million of base pairs. Because it would be very hard to evaluate the quality of
method for reads coming from a biochemical experiment, an application for realistic
reads extraction was used – mason [7]. The prepared test cases were finally assessed
with a well-known Rabema software tool [8].

All tests were performed on the following hardware platform:

• CPU: Intel Core i7-3820, 3.6 GHz,

• GPU: 2 x NVIDIA GeForce GTX 680 with 2 GB of RAM,

• RAM: 64 GB,

• OS: CentOS release 7.1.1503.

The first part of tests concerns parameter tuning whereas the later part represents
comparison of G-MAPSEQ with bowtie [12] – one the most popular mapping methods.

3.1 Window size

The value of window size parameter w defines how large is the neighborhood of each
read. In other words, it determines the number of promising pairs verified by the
GPU alignment algorithm for each read. The maximum window size is approximately
equal to (g− s)/o, where g is the length of a genome. However, such a window would
result in comparing every single read to all generated fragments and despite the high
performance of the GPU alignment algorithm it would be very time-consuming.

The goal of the fist test was to estimate a reasonable value of window size. For this
purpose, sorted lists of full k-mers characteristics were searched, and for each read
its distance to the closest fragment (comprising it entirely) was computed. In other
words, we computed the minimum window size that guarantees all reads to find the
correct mapping position. It should be stressed that the number of fragments that
contain a given read depends on: the difference between the lengths of a fragment and
a read, and the offset o. The distance to the closest fragment was taken into account.

The tests were performed for 1 million of generated reads, each of length 100
nucleotides. Note that because the reads were extracted by mason toolkit, the correct
mapping positions were known. The genome was cut into fragments of length s = 120
with offset o = 20. Therefore, the number of fragments comprising each read was 2 or
3 depending on the actual mapping position of a given read. The k-mer length was
set to k = 3, 4, 5, 6.

The number of correctly aligned pairs in a given window vs. the window size is
presented in Figure 3, whereas a closer look at the small windows is presented in
Figure 4. If there are more fragments containing the entire read, chances of finding
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one of the correct mappings increase. Results for the same experiment parameters
but with the offset equal to 5 are shown in Figures 5 and 6.

Figure 3. The number of correct pairs found depending on the window size for reads
of length 100 bp, fragments – 120 bp and the offset value – 10.

From the performed test we may draw three main conclusions concerning the
window size. First of all, the size of the k-mer has substantial influence on the quality
of results. Longer k-mers are more informative and distinguishing and therefore more
precise. The next conclusion is that there is no point in extending the window to
an enormous size. The number of pairs found grows rapidly for a very small window
size and then its further increase is rather small (see Figures 4 and 6). The last
conclusion is that full k-mer characteristics are insufficient, because results which are
comparable to other known methods would only be achieved for a window of a large
size (see Figures 3 and 5). As a result, the window size for all further test was set to
2000.

3.2 K-mer size, offset and fragments lengths

For testing purposes, five data sets were generated, each with 10,000 paired-end
reads of lengths l = 36, 72, 100, 400, 800 bp, respectively. Each read contained up
to 3, 3, 5, 12, 23 sequencing errors (substitutions, insertions or deletions). The number
of reads considered here differs significantly from that of the real biological experi-
ments, but the main goal of this test was to find out how changes in parameters affect
the quality of mappings. The results for G-MAPSEQ are compared with bowtie and
bowtie2. Tests were performed for paired-end as well as for single-end reads mapping.
In the latter case each paired-end read was treated as two independent reads. It is
worth noting that paired-end mappings are computed in the same way as single-end,
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Figure 4. The number of correct pairs found depending on the window size – chart
enlarged for small windows. Reads were of length 100 bp, fragments – 120 bp and
the offset value – 10.

Figure 5. The number of correct pairs found depending on the window size for reads
of length 100 bp, fragments – 120 bp and the offset value – 5.
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Figure 6. The number of correct pairs found depending on the window size – chart
enlarged for small windows for reads of length 100 bp, fragments – 120 bp and the
offset value – 5.

with an exception in the filtration procedure where additional restrictions are imposed.
Therefore, some high-score mapping positions may be discarded, because the maxi-
mum distance between paired-end reads is exceeded. As a consequence, G-MAPSEQ
cannot map more paired-end reads compared to their regular counterparts.

Table 1. Percentage of reads mapped to the Saccharomyces cerevisiae genome. All
10,000 reads were of length 36 bp. The length of partial subsequences was set to p = 15
and k refers to k-mer size. PE indicates that reads were mapped as paired-end.

k o
G-MAPSEQ bowtie bowtie2

s = 40
PE PE PE

3
2 89.04 87.63

92.29 84.18 94.37 96.28

5 83.79 82.68
10 69.72 68.48

4
2 91.30 89.72
5 87.77 86.34

10 77.88 76.17

5
2 93.12 91.40
5 90.51 88.76

10 83.32 80.99

6
2 93.90 91.81
5 91.66 89.61

10 85.94 82.98
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Table 2. Percentage of reads mapped to the Saccharomyces cerevisiae genome. All
10,000 reads were of length 72 bp. The length of partial subsequences was set to p = 25
and k refers to k-mer size. PE indicates that reads were mapped as paired-end.

k o
G-MAPSEQ bowtie bowtie2

s = 85
PE PE PE

3

2 92.85 89.77

87.71 81.37 97.1 97.22

5 92.23 89.19
10 90.63 87.65
20 81.73 78.88

4

2 94.40 91.02
5 93.89 90.57

10 92.45 89.24
20 85.76 82.52

5

2 95.50 92.19
5 95.02 91.68

10 93.83 90.60
20 88.58 84.71

6

2 96.41 92.67
5 96.08 92.27

10 95.38 91.64
20 90.79 86.54

For all but one test set (i.e. with l = 100) constant fragment lengths were set. The
tests were performed with different k-mer sizes (from 3 to 6) and different fragment
offsets (adjusted to the read length). The quality of results for read lengths l =
36, 72, 100, 400, 800 bp are presented in Tables 1, 2, 3, 4 and 5, respectively.

The performed test shows that in general longer k-mers lead to better quality of
mapping, which was expected. However, a significant improvement, i.e. from 4%
up to 10%, which can be achieved for longer k-mers in the case of short reads (36
- 72 bp) cannot be observed for longer sequences (400 or 800 bp). This is a very
meaningful observation as the computational time grows with increasing k-mer size.
Therefore, the conclusion is that for longer reads small k-mers can be used with very
little reduction of mapping quality.

The influence of the fragment length and the offset size was tested for reads of
length 100 bp and is presented in Table 3. It is worth noting that for some com-
binations of parameters the method is unable to find correct mapping positions,
because there is no fragment containing the entire read. For these parameters a
significant decrease of the quality of mapping is observed. These combinations are:
(105, 20); (105, 50); (110; 50); (120; 50) (denoted as pairs (s, o)).
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The computation time was not taken into account during this part of tests. How-
ever, it grows significantly for longer reads which is caused by the final alignment
procedure. This is because of the size of the dynamic programming matrix which in-
creases quadratically with growing sequence lengths. An improvement implemented
in G-MAPSEQ minimizes the number of cells that need to be computed by dynamic
programming procedure. This was possible as the score of the alignment is calculated
beforehand, during the procedure of promising pairs verification. This value is used
to precisely limit the number of cells calculated in the final alignment. Even though
it substantially speeds up the whole process, it still is quite time consuming.

Table 4. Percentage of reads mapped to the Saccharomyces cerevisiae genome. All
10,000 reads were of length 400 bp. The length of partial subsequences was set to
p = 100 and k refers to k-mer size. PE indicates that reads were mapped as paired-
end.

k o
G-MAPSEQ bowtie bowtie2

s = 420
PE PE PE

3

5 96.96 88.73

71.91 66.30 98.18 98.25

20 97.01 88.65
50 94.34 84.91

100 84.42 76.85

4

5 97.06 88.82
20 97.07 88.72
50 94.84 85.32

100 85.44 77.73

5

5 96.98 88.66
20 97.27 88.83
50 95.18 85.26

100 86.72 78.33

6

20 97.52 89.12
50 95.65 85.63

100 87.54 78.88

3.3 Comparison to bowtie and bowtie2

A test was also performed for reads obtained from real biochemical experiment for
Caenorhabditis elegans genome (accession number SRR065390). In order to evaluate
the quality of mapping algorithms a special test case was prepared with the rabema
software [8]. This software computes a special reference index with all possible map-
ping positions up to a defined number of errors (here 8). For this purpose rasers3 [19]
tool was used. Unfortunately, the preparation of such a reference index is very com-
putationally heavy. Therefore, the input set originally containing over 60 millions of
paired-end reads of length 2 × 100, was limited to 100,000 single-end reads. Addi-
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Table 5. Percentage of reads mapped to the Saccharomyces cerevisiae genome. All
10,000 reads were of length 800 bp. The length of partial subsequences was set to
p = 280 and k refers to k-mer size. PE indicates that reads were mapped as paired-
end.

k o
G-MAPSEQ bowtie bowtie2

s = 850
PE PE PE

3
50 97.24 90.54

73.77 66.94 98.64 98.69

100 94.71 87.80

4
50 97.38 90.53

100 95.43 87.82

5
50 97.42 90.64

100 95.53 87.63

6
50 97.65 90.81

100 95.86 87.87

tionally, the considered input data set contains a lot of low quality reads with many
unrecognizable nucleotides (N’s) which are not filtered. The preprocessing stage of
this test case showed that from 100k reads, only 92k can be mapped with up to 8
errors.

The quality measure for this test was the number of reads mapped correctly.
G-MAPSEQ was able to align 97.4% of reads (out of 92k), whereas the results for the
other methods were 96.72%, 99.848% and 99.865% for bowtie, bowtie2 and bowtie2
with very-sensitive option enabled, respectively. We can conclude that the quality of
G-MAPSEQ is slightly better as compared to bowtie, whereas bowtie2 outperforms
both methods.

The computation time for G-MAPSEQ was less than 6 minutes. The same prob-
lem was solved by bowtie and bowtie2 within 50s and 8s, respectively. Unfortunately,
G-MAPSEQ was significantly slower than the other methods. However, its com-
putation time is still acceptable. Additional tests were performed to measure the
processing time for G-MAPSEQ for 1M and 2M of reads. The results show that the
computation time increases slower than linearly with the size of the input data.

To give the reader a better overview of the G-MAPSEQ performance, we measured
the run time of each computational step of the algorithm. We tested the version with
indexed genome, as it is more likely to be used in real-life scenarios. The results were
collected for several test cases, but the main trends are the same regardless of the size
of the input data. All the measurements were performed for k-mer length equal to 6.
The preparation of k-mer characteristics takes around 25% of the entire computational
time. Then 38% of the run time is consumed by the selection of promising pairs,
including the alignment and filtration procedures. The greatest lexicographical index
procedure takes around 12%. Calculation of the final alignment and results saving –
around 23%. The rest of the time is spend on the remaining steps. It is worth noting
that the genome index loading (including preparation of all necessary data structures)
is quite quick (it takes less than 1% of the computational time) and independent of
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the number of reads. Moreover, the smaller the offset size o, the more time is needed
for genome index loading. Additionally, with small o the time needed for computation
of the greatest lexicographical index grows (due to potentially much higher number
of pairs to compare) but less than linearly.

The influence of extending the k-mer size on the computational time was also
investigated. This parameter has a direct connection only with k-mer characteristics
preparation stage. The greater k the more time is consumed. This can be estimated
by the following formula: tk = k∗ tk−1, where tk is the computational time for a given
k.

4 Conclusions

The main goal of this work was to design and implement a new version of reads
mapping algorithm which would be able to deal with noisy input data. We decided to
use our ultra fast alignment algorithm designed for GPUs. However, it was clear that
performing alignment of all reads with all possible mapping positions in a genome
is not tractable. Even though there are some GPU-based tools that support similar
scenarios [1], they were designed to deal with other problems, e.g. MSA [2]. Our brief
estimation of the computational time of such an algorithm applied for real-life reads
mapping scanario was that this would take a few years. Therefore, our method needed
a rough, but fast indication where individual reads can be mapped. We have employed
k-mer characteristics which represent information contained in the sequences but in a
compressed form. With this information we were able to quickly compare sequences
without even performing the actual alignment. Based on this, the algorithm computes
a set of possible mapping positions which are then verified by the above-mentioned
sequence alignment algorithm on GPU.

In order to evaluate the quality of the proposed solution we have conducted a
number of tests. The results show that G-MAPSEQ produces reasonable mappings
and is to some extent robust to sequencing errors. Unfortunately, it was outperformed
by a leading tool available on the market – bowtie2. One of the current minor limi-
tations of our method is that it can be used only for reads which are of similar size,
i.e. for most of the currently available data sets. However, with small modifications
G-MAPSEQ could be used for input data sets containing sequences with substantially
different lengths, like in the case of emerging Pacific Bioscience technology. Impor-
tantly, we perceive it could be very useful for longer reads which tend to contain
multiple reading errors. Such technologies are entering the market and are likely to
become popular in the near future. Finally, we believe that the presented algorithm
is the first working implementation of a completely new approach to the problem of
reads mapping which may further stimulate development of algorithms in this area.
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