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Abstract.  A good assignment of code reviewers can effectively utilize the intellectual 
resources, assure code quality and improve programmers’ skills in software development. 
However, little research on reviewer assignment of code review has been found. In this 
study, a code reviewer assignment model is created based on participants' preference to 
reviewing assignment. With a constraint of the smallest size of a review group, the model is 
optimized to maximize review outcomes and avoid the negative impact of "mutual 
admiration society". This study shows that the reviewer assignment strategies incorporating 
either the reviewers' preferences or the authors' preferences get much improvement than a 
random assignment. The strategy incorporating authors' preference makes higher 
improvement than that incorporating reviewers' preference. However, when the reviewers' 
and authors' preference matrixes are merged, the improvement becomes moderate. The 
study indicates that the majority of the participants have a strong wish to work with 
reviewers and authors having highest competence. If we want to satisfy the preference of 
both reviewers and authors at the same time, the overall improvement of learning outcomes 
may be not the best. 
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1. Introduction

Reviewer assignment problem (RAP) is a common task to people such as software 
developers, conference organizers, journal editors, grant administrators and educators [2, 
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24] because qualified reviewers, especially highly competent ones, are usually scarce
intellectual resources and play important roles in their fields. Sun, Ma, Fan, and Wang 
proposed that a good match between a reviewer’s knowledge and a project would make 
useful and professional judgments on the research project to be funded [14]. Chen and Fan 
built up a model to measure the match degree between a reviewer's research domain 
knowledge with a proposal [1]. The match fitness between reviewers with assigned proposal 
(or paper manuscript) determines the review quality greatly [24] and the fact of having a 
good match helps improve the overall productivity [6]. Therefore, the review assignment 
problem is an important research topic [17]. 

Many contributions on RAP can be found in literature. Tayal, Saxena, Sharma, Khanna, 
and Gupta put forward a new method for solving reviewer assignment problem in 
government funding agencies [15]. Li and Watanabe proposed an automatic paper-to-
reviewer assignment approach based on the matching degree of the reviewers [9]. Long, 
Wong, Peng, and Ye solved a conference paper assignment problem by maximizing the 
topic coverage of the paper-reviewer assignment [10]. Wang, Shi, and Chen did a 
comprehensive survey of the reviewer assignment problem [19]. However, the current 
researches on RAP mainly concentrate on the selection of conference paper, journal paper, 
or R&D projects. Not much work has been done in the area of code reviewer assignment. 

In the software industry, the concept of code review is developed from code inspection 
proposed by Fagan of IBM [5]. Many researchers have tested the reliability and 
effectiveness of code review in the field of software industry [3, 12] and programming 
education [7, 8, 18]. In addition, some contributions to code review were made in areas 
such as quality assurance [23], participants' behavior analysis [22], learning outcomes 
analysis [21], and assessment approach [20]. The RAP in peer code review has drawn 
attention of some researchers. Topping showed that peers may be matched in a variety of 
ways for a variety of reasons. They may be matched in groups or pairs by capability, 
friendships, or randomly [16]. Different configurations support different goals. Random 
assignment of reviewers for each assignment may expose students to a wider range of ideas. 
Matching students in pairs over a semester allows for a longer term social interaction. Li 
conducted two yearlong experiments in which two reviewers were assigned randomly for 
each student. The study found that an anonymous review can significantly reduce the 
“mutual admiration society” effect [8]. In a mutual admiration society, everyone respects 
each other though everyone does not necessarily agree with each other in everything. The 
reason that a mutual admiration society in code review practice is harmful is that 
participants in such a society avoid giving negative comments on others’ code. Wang et al. 
used an assessment method based on peer code review and measured the learning outcomes 
of the method. The study still used a random reviewer assignment strategy though they 
proposed a ranking-based reviewer assignment strategy as a future research topic [20].  

Matching between reviewers’ competence and review subjects such as research 
proposals and manuscripts significantly affects the review quality and productivity [24, 6]. 
Despite the similarities between a paper review and a code review, it is not easy to 
investigate the similar phenomena in a code review because a code review often happens 
within a small software development team and the level of competence of a reviewer or an 
author is hard to measure. Nonetheless, a programming class has some desired features to 
study the code review assignment strategies incorporating the participants’ levels of 
competence and their preferences. In a typical programming class, students have different 
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levels of competence and their assignment scores are good proxies of levels of competence. 
Students are asked to complete multiple programming projects and as in a typical real world 
project, a code review is a standard step in software development in a classroom setting. 
Because of the special requirements of the educational environment, we developed a code 
review system named EduPCR to manage the code review process. The EduPCR system 
follows the code review standards and best practices. The system records assignment scores 
and code review activity data during the process. Figure 1 is the activity diagram of 
EduPCR system. 

Teacher Web Server Student 
(Author/Reviewer 

/Reviser)

TA/Teacher

New assignment

Submit revision

Revise

Review

Assign reviewers

Submit manuscript

Write manuscript

Check marks

Inspect & Grade

Submit comments

Student as 
Author

Student as 
Reviewer

Student as
Reviser

Inform "New assignment"

Inform "New review"

Inform "New revision"

Figure 1. Activity diagram of peer code review process in EduPCR 

In Figure 1, author, reviewer and reviser are three roles that every student plays in 
different stages; manuscript stands for the first version of a program written by an author 
according to the task arranged by the teacher; comments indicate the suggestions to an 
author proposed by a reviewer; revision presents the revised version of an author's program. 
In a special case, a student without submitting the manuscript code is not eligible to be a 
reviewer so as to facilitate the course management. The code review process is driven by a 
web server that informs students of notifications such as "You have a new assignment", 
"You have an incoming review job" and so on by sending them short messages. The 
EduPCR system automates many tasks such as reviewer assignment, event notification and 
data collection. From the perspective of software development, the coding tasks and code 
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review activities are the same as typical real world projects. The grading is conducted 
manually and scores are typed into the system as measures of students’ levels of 
competence. 

EduPCR uses a random reviewer assignment strategy that treats all participants equally. 
However, as in a typical development team, students' programming competences are not at 
the same level. The assignments between two students with different competence levels may 
produce different results. Additionally, programmers care about who will review their code 
and whose code to be reviewed. We like to know whether high-level participants are willing 
to help low-level ones and the influences of such reviewer assignments. 

2. Methodology

Integer linear programming is a very successful and popular method being used to solve the 
RAP [2, 14, 6]. Based on these work, we recommend a new approach to study the code 
reviewer assignment problem with integer linear programming. The key issue is how to 
define the preference of each review pair in a format of {reviewer→author}. Without loss 
of generality, assuming that all students can be categorized into three levels of high, middle 
and low according to their programming competency, we believe that the review quality will 
be affected by a reviewer assignment strategy, i.e., how the assignments are made between 
the students of different competence levels. 

2.1. Ranking students' competence 

An assumption or precondition of solving the RAP in this study is to measure all students' 
programming competences. To measure the level of a student's competence more 
objectively and effectively, we take the cumulative average scores of the students as the 
measurement value. In our system, the score of a student in a task includes both a quality 
score (assessing students' programming ability) and a review score (assessing students' 
review ability). The latter is acquired by an extra step that an author needs to grade his/her 
reviewer’s review. After all students complete a programming task, they get scores 
according to the quality of their work and their average scores are updated. Because grading 
is conducted by the same teacher manually, the scores are good indicators of their 
programming competences. It is reliable because we only care about the relative 
competence levels (high, middle, low) in this research. The value of a student’s competence 
is a cumulative one. As a result, the more tasks a student has finished, the more accurate this 
value is. The detailed algorithm is described as follows: 

At the beginning, we initialize every student's competence with a middle level. When 
each program task is done, a student's average score is recalculated. Then we rank all 
students according to their programming competence using k-means clustering approach. 
For the convenience of this study, a student’s programming competence is ranked as one of 
three levels of high, middle, and low. 
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2.2. Defining preference matrix 

After ranking students' competences, we need to create a data structure representing the 
student’s reviewer assignment preference between each pair of levels. For the three levels of 
competences, we define a square matrix P3×3 and name it as preference matrix, as depicted 
in Equation (1).  

11 12 13

21 22 23

31 32 33

P=
p p p
p p p
p p p

 
 
 
  

 (1) 

In Equation (1), pij is the entry in row i, column j of P, which denotes a preference value 
by a reviewer level to an author level. The indexes i and j are in the range of 1 to 3, which 
represent the three levels high, middle, and low of reviewer and author respectively. A 
preference matrix depicts all combinations of different competence levels of students. For 
different assignment preferences, there are different element values for a preference matrix. 
The values in a preference matrix and a reviewer assignment strategy determine the result of 
an integer programming optimization problem. 

2.3. Forming match matrix 

In a RAP model, a match matrix is an instantiation or an expansion of a preference matrix. 
In other words, we can get the match value between two specific students as long as we 
know their competence levels. With knowledge of each student's competence, it is easy to 
construct a match matrix by checking the preference matrix just like consulting a dictionary. 

Let N = {1, ..., n} where n is the number of authors to be reviewed. Mm×n is used as a 
notation for a matrix with m rows (reviewers) and n columns (authors). Because in our 
research each student plays the roles of both reviewer and author exactly once in a coding 
assignment, the match matrix is a square matrix Mn×n. The element mij in M stands for the 
degree of match between a reviewer i and an author j (i, j∈N). 

It is easy to obtain the match matrix M by expanding the preference matrix P with 
knowledge of each student's competence level. For example, if the ranking of reviewer i is a 
middle level and that of author j is a high level, then the data element mij in M is equal to the 
element value of p21 (see E.1 for details). To avoid an author as a reviewer of his/her code, 
the elements on the diagonal line mii are all set to a very large negative value. 

2.4. A RAP model with a subtour-size constraint 

Because every student acts as an author and a reviewer exactly once in a task, the RAP in 
this study becomes a balanced assignment problem [11], in which the number of reviewers 
is equal to that of authors. Theoretically, the result of RAP forms one or more closed cycles. 
Similar to the term of closed cycle in a traditional asymmetric travelling salesman problem 
and in the literature by Drexl and Irnich [4], we name a closed cycle in our RAP study as a 
subtour. Actually, a subtour is a connected sub-graph with in-degree and out-degree of 1 at 
each node. 
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However, if we apply the model of traditional balanced assignment problem, we cannot 
control the size (number of edges) of a closed cycle. In some RAPs such as a code reviewer 
assignment problem, the control of the size of the shortest closed cycle is often required [7, 
8, 20]. For example, Li found that the "mutual admiration society" phenomenon was one of 
the typical pitfalls in code review process [7]. In our experience, though the reviewer 
assignment was performed by a web server automatically and anonymously, a student in a 
small-size review group may guess the names of other students more easily than in a big-
size review group. To reduce the negative impact of a "mutual admiration society", we 
improve the traditional balanced RAP model by introducing a size constraint of the smallest 
review group, i.e. a subtour-size constraint. As for the optimization objective, a reviewer 
assignment strategy should respect participants’ preferences and tries to maximize the total 
preference value. Thus, the reviewer assignment problem is formally defined as the 
following:  
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In the model defined in (2), the definitions of n, N, mij and M have the same meanings as 
in Section 2.3. The decision variable An×n is called an assignment matrix, in which aij will 
be 1 if a reviewer i is assigned to an author j or it will be 0 if not. The subtour-size 
constraint in the third line of the model is used to control the cycle size of the smallest 
review group c. S stands for any nonempty proper subset of N and |S| is the size of set S. 

Theoretically, as the minimum value of subtour size, the c could be an integer in the 
range of 2 to n according to the real application requirement. The smaller the given c is, the 
easier the negative impact of the "mutual admiration society" could be enhanced. In an 
extreme case when the c is 2, a student A reviews a student B's work and the student B 
reviews that of A. In this case, the chance is high for the two to build up a "mutual 
admiration society". 

3. Preference matrix calculation

According to the optimization model in Equation (2), we have to get the match matrix M 
before we utilize this optimization model. The preference matrix P is the abstract format of 
match matrix M, so the preference matrix P is our next focus. As mentioned in (1), given 
that all students are ranked into three levels, a preference matrix P is a 3x3 matrix, in which 
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the element pij denotes the preference degree of reviewers at level i to review the code of 
authors at level j. 

Unlike analytic hierarchy process [13], in which weights are obtained by pairwise 
comparison matrixes, we acquire the preference matrix P according to students' preferences 
to reviewer assignments. Our survey implied that the more satisfied the students are with the 
reviewer assignment strategy, the better review quality and the higher learning outcomes 
could be achieved. 

In order to discover each participant’s preference to a reviewer assignment, a 
questionnaire was handed out to all participants. They are undergraduate students from Year 
1 to Year 4 majoring in Information System in a public university in China. All respondents 
have experience of using EduPCR. In total, 104 copies were given out and 94 valid copies 
were collected. Each student was asked to answer the following two questions: 

Q1. As a reviewer, reviewing which degree’s work can help you more with your learning 
outcome? (Please sort them in DESCENDING order): 

A. a student two levels superior to me 
B. a student one level superior to me  
C. a student of the same level as me 
D. a student one level inferior to me 
E. a student two levels inferior to me 
Order:
Q2. As an author, reviewer of which degree can help you more with your learning 

outcome?  (Please sort them in DESCENDING order): 
A. a student two levels superior to me 
B. a student one level superior to me 
C. a student of the same level as me 
D. a student one level inferior to me 
E. a student two levels inferior to me 
Order:
The following steps constitute the algorithm of generating preference matrixes and 

applying changes to preference matrixes. 
(1) Initializing. Every value in the preference matrix is set to 0. 
(2) Determining weights for options. Different preference options affect different 

number of items in a preference matrix. For example, an option "A" to Q2 will affect item 
p13 alone while an option "C" to Q2 will affect p11, p22 and p33. To eliminate the influence of 
repeated computation, the weights to option "A" through "E" are set to 1, 1/2, 1/3, 1/2 and 1 
respectively. 

(3) Determining weights for preference position. The position of an option 
determines its preference level because options are sorted in descending order of 
preference. We adopt a common approach in statistics, the reciprocal of e, to set the weights 
for options in the first through the fifth position with 0 -1 -2 -3 -4, , ,e e e e e,  respectively. 

(4) Computing initial preference matrixes. We multiply option weight by position 
weight and sum the values in the preference matrix for all respondents. For example, if a 
student chooses "B" as the first option, two items are affected, i.e. p21=p21+(1/2)e0, 
p32=p32+(1/2)e0. Two preference matrixes P1 and P2 are obtained from the computation of 
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two questions independently, of which the P1 is from the preference view of reviewer (part 
(a) in Table 1) and the P2 is from the preference view of author (part (b) in Table 1). 

Table 1. Initial matrixes of students' preference to reviewer assignment 

author reviewer 
high middle low high middle low 

re
vi

ew
er

 high 8.75 5.26 2.10 

au
th

or
 high 6.75 2.42 2.28 

middle 24.66 8.75 5.26 middle 22.47 6.75 2.42 
low 35.92 24.66 8.75 low 50.25 22.47 6.75 

(a) P1 by reviewer's preference (b) P2 by author's preference 

From P1 and P2, we can find that the reviewer assignment preference by both reviewers 
and authors has similar pattern. For example, the values in the first line of P1 shows that 
high-level reviewers prefer to review the work of high-level authors rather than that of low-
level ones. Also, from the values in the first line of P2, it is obvious that high-level authors 
wish their work to be reviewed by high-level reviewers rather than low-level ones. 

(5) Normalizing and transposing. Normalization is achieved by dividing every item in 
a preference matrix by the smallest value in the matrix. Besides, P1 and P2 come from 
different points of view by reviewers and authors. So we transpose one of them to make 
them have the same meaning in the following optimization. The normalized matrix of P1 
and the transposed and normalized matrix of P2 are P3 and P4 correspondingly in Table 2.  

Table 2. Two adjusted matrixes of students' preference to reviewer assignment 

author author 
high middle low high middle low 

re
vi

ew
er

 high 4.17 2.51 1.00 

re
vi

ew
er

 high 2.96 9.86 22.04 

middle 11.74 4.17 2.51 middle 1.06 2.96 9.86 
low 17.11 11.74 4.17 low 1.00 1.06 2.96 

(a) P3 by reviewer's preference (b) P4 by author's preference 

(6) Merging. P1 and P2 denote the different preference of authors and reviewers. It 
would be interesting to see the effect of a merged preference after we study them separately. 
In Equation (3), P5 is the normalization of the merging of the initial preference matrix by 
reviewer (P1) and the transposed initial preference matrix by author (P2

T). M is the smallest 
value in the merged matrix. 

15 2

1.00 1.79 3.38 
( ) = 1.75 1.00 1.79 

2.46 1.75 1.00 

TP P P M
 
 = +  
  

     (3) 

From the merged preference matrix P5, it is found that the students' preference pairs of 
reviewer assignment are listed in descending order as follows: 
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 assigning high-level reviewer to low-level author
 assigning low-level reviewer to high-level author
 assigning adjacently higher-level reviewer to author
 assigning adjacently lower-level reviewer to author
 assigning same-level reviewer to author

4. Simulations and analysis

We used the EduPCR system and random reviewer assignment strategy in two introductory 
C Programming classes in 2010 and 2011. The first class has 10 programming assignments 
and 86 students. The second class has 12 programming assignments and 23 students. 

To investigate the effects of competence levels and review preferences, we used the 
adjusted preference matrix to optimize the reviewer assignment problem and compare it 
with the random reviewer assignment strategy. Both classes used the EduPCR system to 
collect baseline data of the random strategy. With the real score data, we did two 
simulations to optimize the RAP with the preference matrixes P3, P4, and P5. 

4.1. Random reviewer assignment algorithm 

We implemented a random code reviewer assignment algorithm with a minimum subtour 
size constraint in our current EduPCR system. The detailed algorithm is described as 
follows. In the following description, L is an element collection of all students' IDs, ranging 
from 0 to the total number of students minus one. 

L←{0..num-1} // Initialize arraylist L with 0..num-1 in ascending order 
i←0     // i is the index of subtours 
while L is not empty do 
 |   new a subtour si  
 |   k←random(|L|) // get a random position in the range of 0 to |L|-1 
 |   si,0←Lk // determine the head of a subtour 
 |   j←1 // j is the index of elements in one subtour 
 |   do 
 |    |  k←random(|L|)  
 |    |  if k≠si,0 then // there does not form a circle yet 
 |    |      si,j←Lk 
 |    |      j←j+1 
 |    |      remove Lk from L 
 |    |  end 
 |    |  else if |L|>2 then // when the next element is the head of a subtour, close it 
 |    |      remove Lk from L 
 |    |      i←i+1 // start the next subtour 
 |    |      break // go to the beginning of outer loop 
 |    |  end 
 |    |  else if |L|=2 then // do not leave two elements alone. 
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 |    |      si,j←L0 
 |    |      si,j+1←L1

 |    |      remove L0, L1 and Lk from L 
 |    |  end 
 |    |  else if |L|=1 then // do not leave one element alone. 
 |    |      si,j←L0

 |    |      remove L0 and Lk from L 

 |    |  end 
 |   while L is not empty 
end 

In the above random algorithm, we set the minimal size of a subtour to 3. When there 
are only one or two elements in a subtour, they will be merged into another subtour to meet 
the minimal subtour size constraint. For example, the 23 students in the second class are 
assigned randomly to four subtours as follows. The arrow mark "→" stands for the review 
relationship of a reviewer to an author.  

subtour 1 : 13→0→8→14→2→19→11→5→12→3→15→13 
subtour 2 : 18→1→21→20→9→4→6→18 
subtour 3 : 22→7→10→22 
subtour 4 : 16→17→16 

The subtour 4 {16, 17} only has two elements therefore they are merged to the subtour 
3 {22, 7, 10} to build up a new subtour 3' consisting of five elements as follows. 

subtour 3' : 22→7→10→16→17→22 

4.2. Code reviewer assignment procedure with optimization model 

Using the reviewer assignment optimization algorithm, the code reviewer assignment 
procedure has the following steps:  

(1) Ranking students' competence. The students' cumulative average scores were taken 
as input, and their programming competences were classified into three levels of high, 
middle and low using k-means clustering approach. The level of one particular student is 
dynamic because his/her average score may vary when a new programming assignment is 
completed. 

(2) Building up the match matrix. We built up the match matrix M by retrieving the 
values in preference matrix P. 

(3) Optimizing. The program was written in Java language using a software package 
named ILOG CPLEX. In order to make the following comparative study more accurate, the 
size of the shortest subtour was determined as 3 because the same number was utilized in 
the random assignment algorithm just mentioned. 

(4) Controlling the size of shortest subtour. During the integer programming process, 
the size of every subtour was checked after each iteration. When the size of each subtour 
was greater than or equal to three, the iteration was terminated and an optimal solution was 
obtained. Finally, the reviewer assignment result was acquired by parsing the decision 
variable matrix X86x86 and X23x23 in these two simulations. 
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4.3. Comparative study with random assignment 

By searching the data in the database of EduPCR system, the data of an actual reviewer 
assignment applying random assignment strategy were extracted. The study process 
includes: 

(1) Building up the random assignment matrix. Based on the actual random 
assignment data, we build up the random assignment matrix Ar (86x86 in simulation 1 and 
23×23 in simulation 2), which has an identical structure and meaning with decision variable 
X but has different values in it. 

(2) Summarizing the total preference values separately. Expanding three matrixes 
P3, P4 and P5, three match matrixes M1, M2, M3 were obtained. Using the match matrixes, 
we got six total preference values Tr1, Tr2, Tr3, To1, To2 and To3. Tr1, Tr2 and Tr3 is the total 
preference values by random assignment while To1, To2 and To3 stand for the total preference 
values after the optimization (See (4)). In Equation (4), A1, A2 and A3 are optimized 
assignment matrixes. 

1 1 2 2 3 3

1 1 1 2 2 2 3 3 3

( ,  ),    ( ,  ),    ( ,  )
( ,  ),    ( ,  ),   ( ,  )

r r r r r r

o o o

T sumproduct M A T sumproduct M A T sumproduct M A
T sumproduct M A T sumproduct M A T sumproduct M A

= = =
= = =

  (4) 

(3) Computing the improvement. We use equation C=(To-Tr)/Tr to evaluate the 
optimization performance. To and Tr are total preference values. The difference between 
them represents the degree of improvement. The improvement values of each task and 
average were acquired, as shown in Table 3 and Table 4. 

Table 3 and Table 4 show that in both simulations, all ranking-based optimization 
assignment strategies improve total preference values from 17.6% to 28.1% compared with 
the random assignment outcomes. That is to say, as long as we conduct the optimization 
using preference matrix P3, P4 or P5, we will achieve higher learning outcomes than we use 
random assignment strategy. 

Table 3. Comparison of optimization assignment to random assignment 
(Simulation 1) 

Task No. Tr1 To1 C1 Tr2 To2 C2 Tr3 To3 C3 
1 480.53 588.87 0.225 361.40 475.92 0.317 118.30 149.88 0.267 
2 491.06 598.64 0.219 406.06 493.04 0.214 126.29 153.72 0.217 
3 528.76 558.84 0.057 433.00 503.64 0.163 135.34 149.82 0.107 
4 515.00 533.39 0.036 457.48 464.40 0.015 137.10 140.60 0.026 
5 467.55 603.83 0.291 396.98 577.12 0.454 121.75 166.72 0.369 
6 529.21 613.60 0.159 448.84 594.24 0.324 137.74 170.56 0.238 
7 549.38 615.65 0.121 498.22 587.12 0.178 147.73 169.80 0.149 
8 529.15 652.92 0.234 453.64 636.36 0.403 138.42 182.10 0.316 
9 525.51 652.92 0.242 475.46 636.36 0.338 141.15 182.10 0.290 

10 507.75 666.12 0.312 444.10 636.36 0.433 134.15 182.34 0.359 
avg. 512.39 608.48 0.188 437.52 560.46 0.281 133.80 164.76 0.231 
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Table 4. Comparison of optimization assignment to random assignment 
(Simulation 2) 

Task No. Tr1 To1 C1 Tr2 To2 C2 Tr3 To3 C3 

1 127.27 139.09 0.093 112.32 122.32 0.089 33.76 36.84 0.091 
2 129.32 172.50 0.334 105.20 159.44 0.516 33.00 46.84 0.419 
3 152.96 173.34 0.133 125.20 161.56 0.290 39.16 46.22 0.180 
4 155.46 167.43 0.077 133.92 156.56 0.169 40.80 44.68 0.095 
5 145.00 173.34 0.195 127.32 161.56 0.269 38.38 46.22 0.204 
6 145.00 166.59 0.149 127.32 154.44 0.213 38.38 45.30 0.180 
7 142.95 174.70 0.222 134.44 159.44 0.186 39.14 46.88 0.198 
8 146.59 167.28 0.141 124.08 149.44 0.204 38.12 43.88 0.151 
9 131.37 152.96 0.164 98.08 125.20 0.277 32.24 39.16 0.215 

10 140.99 152.96 0.085 109.92 125.20 0.139 35.28 39.16 0.110 
11 138.94 170.84 0.230 117.04 147.32 0.259 36.04 44.58 0.237 
12 139.17 182.42 0.311 131.26 183.68 0.399 38.17 51.48 0.349 

avg. 141.25 166.12 0.176 120.51 150.51 0.249 36.87 44.27 0.201 

4.4. Result analysis 

Even though all three optimized matrixes achieve better performance than random strategy, 
the simulations indicate two similar phenomena: (1) the optimization by author's preference 
gives more improvement than that by reviewer’s preference; (2) the optimization by the 
merged preference gives the moderate improvement. Why do these phenomena happen? 

Phenomenon 1: After reanalyzing the values in P1 and P2 and interviewing some 
students, the reason is discovered. On the one hand, the number of students who regard 
themselves to be a "low" level is bigger than that of students who regards themselves to be a 
"high" level. On the other hand, the low-level students are much more eager to cooperate 
with high-level students than the high-level students are. The maximum value in P2 (50.25) 
is much bigger than the maximum value in P1 (35.92). This major difference demonstrates 
that as low-level students, their desire to have a high-level reviewer is much stronger than 
their desire to have a high-level author. It is a rational behavior because one can learn more 
when a high-level reviewer gives useful comments to one’s code. The optimization is to 
maximize the total preference value so that the strongest preference was met at the highest 
priority. Therefore, author’s preference gives more improvement than reviewer’ preference 
after optimization. 

Phenomenon 2: In the merged preference matrix P5, the top two preference pairs are 
{high→low} and {low→high}. It seems like a contradiction. Actually, with strong wish of 
"harmonious development", the low-level students are trying to get more help by persuading 
the teacher or the web server to assign them to the high-level authors and assign the high-
level reviewers to them as well. Therefore, considering both author’s preference and 
reviewer’s preference, the merged preference matrix P5 gives the moderate improvement. 
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5. Conclusion and future work

The RAP becomes a pressing concern because of the increasing trend of peer review 
practices by many people such as conference organizers, journal editors and grant 
administrators [6]. Similarly, in the field of peer code review, the research on reviewer 
assignment is needed urgently since it plays the roles of both assuring program's quality and 
enhancing learning outcomes [20]. A programming class provides a good context to study 
different assignment strategy because we know the skill levels of all students. 

We used the peer code review system EduPCR to study the student’s preferences in a 
code reviewer assignment. The contribution includes creating a preference matrix and 
constructing an improved RAP model with a subtour-size constraint. The subtour-size 
constraint is applied to minimize the negative impact of "mutual admiration society". The 
subsequent simulations show the practical value of the optimization approach and the 
performance of the assignment with students' preference matrix is better than that of the 
random assignment. 

However, the RAP is a quite challenging issue [24]. There are more interesting future 
research topics. For example, (1) "mutual admiration society" is a neutral phenomenon 
itself, but the correlation of review group size (closed circle) with the negative impact of 
"mutual admiration society" should be an interesting topic; (2) since a preference matrix can 
manipulate optimization results, can we construct it to achieve the goal of specialized 
settings? That is to say, can we design a preference matrix for the benefit of low-level 
programmers alone or high-level programmers alone? (3) if the preference matrix can be 
designed, the orientation effect of different preference matrixes on the competence 
improvement of programmers will be a good research topic. 
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