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Abstract.  The paper deals with the problem of discovering fuzzy clusters with optimal 
number of elements in heuristic possibilistic clustering. The relational clustering procedure 
using a parameter that controls cluster sizes is considered and a technique for detecting the 
optimal number of elements in fuzzy clusters is proposed. The effectiveness of the proposed 
technique is illustrated through numerical examples. Experimental results are discussed and 
some preliminary conclusions are formulated. 
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1. Introduction

Fuzzy and possibilistic clustering and their necessary formalizations with objective 
functions are presented in the first subsection. The second subsection includes a brief 
review of existing algorithms of fuzzy clustering with a variable for controlling cluster size.  

1.1. Preliminary remarks 

Clustering is the most popular unsupervised machine learning approach in data mining. 
Clustering is a method which divides an initial set of objects into groups which are referred 
to as clusters. Elements in same cluster generated by clustering algorithm are considered 
similar, while elements in different cluster are considered dissimilar. Elements of clusters 
are objects in data sets. Various methods of cluster analysis were proposed by different 
researchers. Basic concepts of cluster analysis and a review of the methods are considered 
by Everitt, Landau, Leese and Stahl [6]. The presented paper develops a heuristic approach 
to possibilistic clustering which has been proposed in [22]. However, basic notions in fuzzy 
and possibilistic clustering should be considered in the first place. 
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There are two kinds of clustering algorithms: hierarchical algorithms versus partitioning 
algorithms. Hierarchical clustering generates a sequence of nested partitions from the 
proximity matrix. On the other hand, a single partition of the data is generated by 
partitioning algorithms.  

Clustering algorithms can also be divided into two types: hard versus fuzzy. Hard 
clustering assigns each input vector to exactly one cluster. On the other hand, in fuzzy 
clustering, a given element does not necessarily belong to only one cluster but can have 
varying degrees of memberships to all clusters. Heuristic methods of fuzzy clustering, 
hierarchical methods of fuzzy clustering and optimization methods of fuzzy clustering were 
proposed by different researchers.  

Fuzzy clustering is more valuable than hard clustering for two reasons. Firstly, the 
membership degrees give information about the uncertainty of the classification. Secondly, 
fuzzy clustering can adapt to noisy data and classes that are not well separated. 

The most widespread approach in fuzzy clustering is the optimization approach and the 
traditional optimization methods of fuzzy clustering are based on the concept of fuzzy c -
partition. The initial set },...,{ 1 nxxX =  of n  objects represented by the matrix of 
similarity coefficients, the matrix of dissimilarity coefficients or the matrix of object 
attributes, should be divided into c  fuzzy clusters. Namely, the grade ]1,0[∈liu , 

cl ≤≤1 , ni ≤≤1 , to which an object ix  belongs to the fuzzy cluster lA  should be 

determined. For each object ix , ni ≤≤1  the grades of membership should satisfy the 
conditions of a fuzzy c -partition: 
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liu , ni ≤≤1 , 10 ≤≤ liu , cl ≤≤1 . (1) 

In other words, the family of fuzzy sets },,1|{)( ncclAXP l ≤==  is the fuzzy c -

partition of the initial set of objects },...,{ 1 nxxX =  if condition (1) is met. Fuzzy c -

partition )(XP  may be described with the aid of a partition matrix ][ linc uP =× , 

cl ,,1= , ni ,,1= . The set of all fuzzy c -partitions will be denoted by Π . So, the 
fuzzy problem formulation in cluster analysis can be defined as the optimization task 

Π∈
→

)( XP
extrQ  under the constraints (1), where Q  is a fuzzy objective function. 

Objective function-based fuzzy clustering algorithms can in general be divided into two 
types: object versus relational. The object data clustering methods can be applied if the 
objects are represented as points in some multidimensional space. In the relational approach 
to fuzzy clustering, the problem of the data classification is solved by expressing a relation 
which quantifies either similarity, or dissimilarity, between pairs of objects. 

The best known optimization approach to fuzzy clustering is the method of fuzzy c -
means, developed by Bezdek [2]. The FCM-algorithm is based on an iterative optimization 
of the fuzzy objective function, which takes the form:  
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where liu , cl ≤≤1 , ni ≤≤1  is the membership degree, ix , },,1{ ni ∈  is the data 

point, },,{ 1 cττ =Τ  is the set of fuzzy clusters prototypes and 1>γ  is the weighting 
exponent. The FCM-algorithm is very good example of object fuzzy clustering algorithms 
and the algorithm is the basis of the family of fuzzy clustering algorithms. 

Relational clustering algorithms generate a fuzzy c -partition from relational data based 
on minimization of an objective function. The very popular example of fuzzy relational 
clustering is the ARCA-algorithm which was proposed by Corsini, Lazzerini, and 
Marcelloni [4]. The ARCA-algorithm is based on the fuzzy objective function, which takes 
the form:  
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where liu , cl ≤≤1 , ni ≤≤1  is the membership degree, ix , jx  },,1{, nji ∈  are 

the data points, 1>γ  is the weighting exponent and },,{ 1 cττ =Τ  is the set of fuzzy 
clusters prototypes. 

If, on the other hand, a condition 

1
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≥∑
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c

l
liu , ni ≤≤1 , 10 ≤≤ liu , cl ≤≤1 , (4) 

is met for each object ix , ni ≤≤1 , then the corresponding family of fuzzy sets 

},,1|{)( ncclAXC l ≤==  is the fuzzy coverage of the initial set of objects 

},...,{ 1 nxxX = . The concept of fuzzy coverage is used mainly in heuristic fuzzy 
clustering procedures. The FCC-algorithm which was proposed by Chiang, Yue, and Yin 
[3] is an example of such procedures. 

A possibilistic approach to clustering was proposed by Krishnapuram and Keller in [11] 
and their PCM-algorithm is very effective clustering procedure. The PCM-algorithm is the 
basis for other algorithms of possibilistic clustering [11]. A concept of possibilistic partition 
is a basis of possibilistic clustering methods and the membership values liµ , cl ≤≤1 , 

ni ≤≤1  can be interpreted as the values of typicality degree. For each object ix ,

ni ≤≤1  the grades of membership should satisfy the conditions of a possibilistic 
partition:  

0
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liµ , ni ≤≤1 , 10 ≤≤ liµ , cl ≤≤1 . (5) 
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So, the family of fuzzy sets },,1|{)( ncclAX l ≤==Υ  is the possibilistic partition 

of the initial set of objects },...,{ 1 nxxX =  if condition (5) is met. In particular, the PCM-
algorithm is based on an optimization of the objective function 
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under the constraint of possibilistic partition (5) where c  is the number of fuzzy clusters 
lA , cl ,,1=  in the possibilistic partition Υ , ]1,0[∈liµ  is the possibilistic 

memberships which are typicality degrees, ml ℜ⊆τ  is the prototype for fuzzy cluster lA , 

the parameter 1>ψ  is the analog of the weighting exponent and ),(2 l
ixd τ  is the 

squared Euclidean distance: 

22 ),( l
i

l
i xxd ττ −= . (7) 

The possibilistic approach to clustering was developed by different researchers. For 
example, the PCA-algorithm was proposed by Yang and Wu in [27]. Yang and Wu’s 
objective function takes the form:  
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distance. The parameter ζ  is the normalization term that measures the grade of separation 
of the data set and this parameter can always be fixed as the sample co-variance. The 
parameter c  is used in (8) to control the steepness degree of the membership functions. 
The role of the parameter ψ  is equal to the fuzzifier in the objective function (6). 

On the other hand, a possibilistic clustering method based on a robust approach using 
Vapnik’s [21] ε -intensive estimator, called as the εPCM-algorithm, has been proposed by 
Łęski [12]. The ε -intensive loss function is: 
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where t  denotes the value of error and ε  denotes the value of a intensivity parameter. 
Many robust loss functions are described in literature. However, due to its simplicity 
Vapnik’s ε -intensive loss function (9) is of special interest. For example, the well-known 
absolute error loss function is a special case of (9) for 0=ε . So, if the ε -intensive loss 
function (9) is put into the possibilstic c -means criterion (6) then the objective function 
takes the form [12]: 

48 D. A. Viattchenin



∑∑∑∑
=== =

−+−=ΤΥ
n

i
li

c

l
l

c

l

n

i

l
iliPCM xQ

111 1
)1(),( ψ

ε

ψ
ε µητµ , (10) 

where 

∑
=

−=−
m

t

ltt
i

l
i xx

1

)(

εε
ττ , (11) 

Therefore, the purpose of the classification task is to obtain the solutions )(XΥ  and 
cττ ,,1   which minimize (10) under the constraints (5). 

Some other possibilistic clustering procedures have also been developed. In particular, 
the relational RPCM-algorithm of possibilistic clustering has been proposed by De Cáceres, 
Oliva and Font [5], the PGCM-algorithm has been introduced by Ménard, Courboulay and 
Dardignac [14], and the EPCM-algorithm has been proposed by Xie, Wang and Chung [26]. 
Many fuzzy and possibilistic clustering algorithms could be found in the corresponding 
books [2], [8], [15], [18]. 

Heuristic algorithms of fuzzy clustering display high level of essential clarity and low 
level of a complexity. Some heuristic clustering algorithms are based on a definition of a 
cluster concept and the aim of these algorithms is cluster detection conform to a given 
definition. Mandel [13] note that such algorithms are called algorithms of direct 
classification or direct clustering algorithms. Direct heuristic algorithms of fuzzy clustering 
are simple and very effective in many cases. So, a heuristic approach to possibilistic 
clustering has been also proposed in [22]. 

1.2. Objective functions with variables for controlling cluster size 

There is a problem to separate a dense cluster and a sparse cluster for which density or 
cluster size has to be considered. For the purpose, some objective functions and 
corresponding algorithms are considered in [15]. Let us remind these objective functions 
with variables for controlling cluster size. 

Using an additional variable that controls cluster sizes, or, in other words, cluster 
volumes, is a natural idea. In the first place, the objective function 
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is considered in [15], where liu , cl ,,1= , ni ,,1=  is the membership degree, ix , 

},,1{ ni ∈  is the data point, },,{ 1 cττ =Τ  is the set fuzzy clusters prototypes, 

1>γ  is the weighting exponent, and ),(2 l
ixd τ  is the squared Euclidean distance 

between ix  and lτ  (7). The variable ),,(R 1 cRR =  controls cluster sizes. The 

constraint for R  is 
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In the second place, the objective function 
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is considered in [15], where ),(2 l
ixd τ  is the squared Mahalanobis distance 
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and lC  is a positive definite matrix with the constraint llC ϑ=)det( , where 0>lϑ  is a 
fixed parameter. 

In the third place, the method based on the Kullback-Leibler information is considered 
in [15]. The method uses the next objective function: 
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where 0>λ  and ),(2 l
ixd τ  is the squared Mahalanobis distance (15). 

Different aspects of controlling cluster sizes are discussed in the literature. In particular, 
the discussion of objective functions (12), (14), and (16) could be found in [7], [10], [16]. 

The most important problem of fuzzy clustering is neither the choice of the numerical 
procedure nor the distance to use but concerns the number c  of fuzzy clusters to look for. 
Really, lacking in a priori knowledge of the data structure, there is no reason to choose a 
particular value of c  and one must find a way to measure the acceptance with which cluster 
structure has been identified by a clustering procedure. This is the so-called cluster validity 
problem. 

The classical approach to cluster validity for fuzzy clustering is based on directly 
evaluating the fuzzy c -partition. Measures of cluster validity can be used for the purpose. 
Many authors have proposed several measures of cluster validity associated with fuzzy c -
partitions. These validity measures are considered in [2], [8], [15]. However, Pedrycz [17] 
note that the behavior of cluster validity indexes has not been theoretically justified, but 
simulation experiments confirmed their utility. It is should be note, that the relationship 
between the cluster validity problem and the problem of controlling cluster sizes is not 
considered in [15]. 

The main goal of this paper is a consideration of the relationship between the optimal 
maximal number of elements in each fuzzy cluster, and the number of fuzzy clusters in the 
framework of the heuristic approach to possibilistic clustering. For the purpose, a technique 
for detecting the optimal maximal number of elements in the a priori unknown number of 
fuzzy clusters of the sought clustering structure is proposed. The technique is based on the 
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direct relational D-AFC(u)-algorithm of possibilistic clustering and corresponding cluster 
validity measures.  

So, the content of this paper is as follows: in the second section basic definitions of the 
heuristic approach to possibilistic clustering are outlined, methods of the data preprocessing 
are considered, and validity measures for relational heuristic algorithms of possibilistic 
clustering are presented, in the third section a general plan of the relational heuristic D-
AFC(u)-algorithm of possibilistic clustering is given and a technique for detecting the 
optimal maximal number of elements in fuzzy clusters is provided, in the fourth section 
illustrative examples of the proposed technique application to well-known data sets are 
presented, in the fifth section results of numerical experiments are discussed and some 
preliminary conclusions are formulated. 

2. A heuristic approach to possibilistic clustering

Basic concepts of a heuristic approach to possibilistic clustering are considered in the first 
subsection. A brief review of heuristic possibilistic clustering procedures is presented in the 
second subsection of the section. The third subsection includes a brief review of methods of 
the data pre-processing. Methods for evaluating clustering results and validity measures for 
the basic heuristic algorithm of possibilistic clustering are described in the fourth 
subsection. 

2.1. Basic definitions 

Let us remind basic concepts of a heuristic method of possibilistic clustering which was 
proposed in [22]. The essence of the heuristic approach to possibilistic clustering is that the 
sought clustering structure of the set of objects is formed based directly on the formal 
definition of fuzzy cluster and possibilistic memberships are determined also directly from 
the values of the pair wise similarity of objects. 

Let },...,{ 1 nxxX =  be the initial set of objects. Let T  be a fuzzy tolerance on X
and α  be α -level value of T , ]1,0(∈α . Columns or lines of the fuzzy tolerance matrix 

are fuzzy sets },...,{ 1 nAA . Let },...,{ 1 nAA  be fuzzy sets on X , which are generated by 

a fuzzy tolerance T . The α -level fuzzy set })(|))(,{()( αµµα ≥= iAiAi
l xxxA ll , 

],1[ nl∈  is fuzzy α -cluster or, simply, fuzzy cluster. So ll AA ⊆)(α , ]1,0(∈α , 

},,{ 1 nl AAA ∈  and liµ  is the membership degree of the element Xxi ∈  for some 

fuzzy cluster lA )(α , ]1,0(∈α , ],1[ nl∈ . Value of α  is the tolerance threshold of fuzzy
clusters elements. 

The membership degree of the element Xxi ∈  for some fuzzy cluster lA )(α ,

]1,0(∈α , ],1[ nl∈  can be defined as a 
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where an α -level })(|{ αµα ≥∈= iAi
l xXxA l , ]1,0(∈α  of a fuzzy set lA  is the 

support of the fuzzy cluster lA )(α . So, condition )( )(
ll ASuppA αα =  is met for each fuzzy 

cluster lA )(α , ]1,0(∈α , ],1[ nl∈ . Membership degree can be interpreted as a degree of
typicality of n element to a fuzzy cluster. 

Let T  is a fuzzy tolerance on X , where X  is the set of objects, and },...,{ )(
1

)(
nAA αα  

is the family of fuzzy clusters for some ]1,0(∈α . The point ll
e Aατ ∈ , for which

lix
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µτ maxarg= , l
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is called a typical point of the fuzzy cluster lA )(α , ]1,0(∈α , ],1[ nl∈ . A fuzzy cluster
lA )(α  can have several typical points. That is why symbol e  is the index of the typical

point. 
Let ]}1,0(,2,,1|{)( )()( ∈≤≤== αα

α ncclAXR l
zc  be a family of fuzzy clusters 

for some value of tolerance threshold α , ]1,0(∈α , which are generated by some fuzzy 

tolerance T  on the initial set of elements },...,{ 1 nxxX = . If a condition 

0
1
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c

l
liµ , Xxi ∈∀ (19) 

is met for all fuzzy clusters )()()( XRA zc
l α
α ∈ , cl ,1= , nc ≤ , then the family is the 

allotment of elements of the set },...,{ 1 nxxX =  among fuzzy clusters 

}2,,1,{ )( ncclAl ≤≤=α  for some value of the tolerance threshold α . It should be 

noted that several allotments )()( XR zс
α  can exist for some tolerance threshold α . That is 

why symbol z  is the index of an allotment. 
The condition (19) requires that every object ix , ni ,,1=  must be assigned to at 

least one fuzzy cluster lA )(α , cl ,1= , nc ≤  with the membership degree higher than

zero. The condition nc ≤≤2  requires that the number of fuzzy clusters in each allotment 
)()( XR zc

α  must be equal or more than two. Otherwise, the unique fuzzy cluster will contain 
all objects, possibly with different positive membership degrees. 

The definition of the allotment among fuzzy clusters (19) is similar to the definition of 
the possibilistic partition (5). So, the allotment among fuzzy clusters can be considered as 
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the possibilistic partition, and fuzzy clusters in the sense of definition (17) are elements of 
the possibilistic partition. However, the concept of allotment will be used in further 
considerations. 

Allotment ]}1,0(,,1|{)( )( ∈== αα
α nlAXR l
I  of the set of objects among n  fuzzy 

clusters for some tolerance threshold ]1,0(∈α  is the initial allotment of the set 

},...,{ 1 nxxX = . In other words, if initial data are represented by a matrix of some fuzzy 

T  then lines or columns of the matrix are fuzzy sets XAl ⊆ , nl ,1=  and α -level fuzzy 

sets lA )(α , cl ,1= , ]1,0(∈α  are fuzzy clusters. These fuzzy clusters constitute an initial
allotment for some tolerance threshold α  and they can be considered as clustering 
components. 

If some allotment ]}1,0(,,,1|{)( )()( ∈≤== αα
α ncclAXR l

zс  corresponds to the 
formulation of a concrete problem, then this allotment is an adequate allotment. In 
particular, if a condition 
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and a condition 

0)( =∩ ml AAcard αα , ml AA )()( , αα∀ , ml ≠ , ]1,0(∈α  (21) 

are met for all fuzzy clusters lA )(α , cl ,1=  of some allotment

},,1|{)( )()( ncclAXR l
zс ≤== α

α  for a value ]1,0(∈α , then the allotment is the 
allotment among fully separate fuzzy clusters. 

Fuzzy clusters in the sense of definition (17) can have an intersection area. If the 
intersection area of any pair of different fuzzy clusters is an empty set, then conditions (20) 
and (21) are met and fuzzy clusters are called fully separate fuzzy clusters. Otherwise, fuzzy 
clusters are called particularly separate fuzzy clusters and },,0{ nw ∈  is the maximum 
number of elements in the intersection area of different fuzzy clusters. For 0=w  fuzzy 
clusters are fully separate fuzzy clusters. Thus, the conditions (20) and (21) can be 
generalized for a case of particularly separate fuzzy clusters. So, a condition 
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and a condition 

wAAcard ml ≤∩ )( αα , ml AA )()( , αα∀ , ml ≠ , ]1,0(∈α , (23) 
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are generalizations of conditions (20) and (21). Obviously, if 0=w  in conditions (22) and 
(23) then conditions (20) and (21) are met. The adequate allotment )()( XR zс

α  for some 

value of tolerance threshold ]1,0(∈α  is a family of fuzzy clusters which are elements of 

the initial allotment )(XRI
α  for the value of α  and the family of fuzzy clusters should 

satisfy the conditions (22) and (23). So, the construction of adequate allotments 
},,1|{)( )()( ncclAXR l

zс ≤== α
α  for every α  is a trivial problem of combinatorics. 

Allotment },1|{)( )( clAXR l
P == α
α  of the set of objects among the minimal number 

c , nc ≤≤2  of fully separate fuzzy clusters for some tolerance threshold ]1,0(∈α  is 

the principal allotment of the set },...,{ 1 nxxX = . 
Several adequate allotments can exist. Thus, the problem consists in the selection of the 

unique adequate allotment )(XRc
∗  from the set B  of adequate allotments, 

)}({ )( XRB zc
α= , which is the class of possible solutions of the concrete classification 

problem. The selection of the unique adequate allotment )(XRc
∗  from the set 

)}({ )( XRB zc
α=  of adequate allotments must be made on the basis of evaluation of 

allotments. In particular, the criterion 
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where c  is the number of fuzzy clusters in the allotment )()( XR zс
α  and )( l

l Acardn α= ,

)()()( XRA zc
l α
α ∈  is the number of elements in the support of the fuzzy cluster lA )(α , can

be used for evaluation of allotments. Maximum of criterion (24) corresponds to the best 
allotment of objects among c  fuzzy clusters. So, the classification problem can be 
characterized formally as determination of the solution )(XRc

∗  satisfying 

)),((maxarg)( )(
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αα
α

XRFXR zc
BXR

c
zc ∈

∗ = . (25) 

The problem of cluster analysis can be defined in general as the problem of discovering 
the unique allotment )(XRc

∗ , resulting from the classification process and detection of 
fixed or unknown number c  of fuzzy clusters can be considered as the aim of classification. 

2.2. A brief review of clustering procedures  

Direct heuristic algorithms of possibilistic clustering can be divided into two types: 
relational versus prototype-based. A fuzzy tolerance relation matrix is a matrix of the initial 
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data for the direct heuristic relational algorithms of possibilistic clustering and a matrix of 
attributes is a matrix for the prototype-based algorithms. 

In particular, the group of direct relational heuristic algorithms of possibilistic clustering 
includes 

• D-AFC(c)-algorithm: using the construction of the allotment among given number
c  of partially separate fuzzy clusters;

• D-PAFC-algorithm: using the construction of the principal allotment among an
unknown minimal number of at least c  fully separate fuzzy clusters;

• D-AFC-PS(c)-algorithm: using the partially supervised construction of the
allotment among given number c  of partially separate fuzzy clusters.

On the other hand, the family of direct prototype-based heuristic algorithms of 
possibilistic clustering includes 

• D-AFC-TC-algorithm: using the construction of the allotment among an unknown
number c  of fully separate fuzzy clusters;

• D-PAFC-TC-algorithm: using the construction of the principal allotment among an
unknown minimal number of at least c  fully separate fuzzy clusters;

• D-AFC-TC(α)-algorithm: using the construction of the allotment among an
unknown number c  of fully separate fuzzy clusters with respect to the minimal
value α  of the tolerance threshold.

It should be noted that these direct prototype-based heuristic possibilistic clustering 
algorithms are based on a transitive closure of an initial fuzzy tolerance relation. On the 
other hand, a family of direct prototype-based heuristic possibilistic clustering algorithms 
based on a transitive approximation of a fuzzy tolerance is proposed in [23]. So, direct 
prototype-based heuristic possibilistic clustering algorithms which based on a transitive 
closure of an initial fuzzy tolerance are a special case of corresponding clustering 
procedures which based on a transitive approximation of a fuzzy tolerance. 

2.3. A note on the data pre-processing 

In the relational approach to clustering, the problem of the data classification is solved by 
expressing a relation which quantifies either similarity, or dissimilarity, between pairs of 
objects. So, the data matrix taken a form 
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where a general notation ijρ̂  used for designation of pair wise dissimilarities ),( ji xxd  or 

the similarity coefficients ),( ji xxr . In general, the values ijρ̂  are not normalized. 
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On the other hand, the object data clustering methods can be applied if the objects are 
represented as points in some multidimensional space )(1 XI m . In other words, the data 

which is composed of n  objects and 1m  attributes is denoted as ]ˆ[ˆ 1

1

t
imn xX =× , 

ni ,,1= , 11 ,,1 mt =  and the data are called sometimes the two-way data [18]. Let 

},...,{ 1 nxxX =  is the set of objects. So, the two-way data matrix can be represented as 
follows: 
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, (27) 

Thus, the two-way data matrix can be represented as )ˆ,,ˆ(ˆ 11 mxxX =  using n -

dimensional column vectors 1ˆ tx , 11 ,,1 mt = , composed of the elements of the 1t -th 

column of X̂ .
The matrix of fuzzy tolerance )],([ jiT xxT µ= , nji ,,1, =  is the matrix of initial 

data for the relational heuristic algorithms of possibilistic clustering. However, the data can 
be presented as a matrix of attributes ]ˆ[ˆ 1

1

t
imn xX =× , ni ,,1= , 11 ,,1 mt = , where

the value 1ˆ t
ix  is the value of the 1t -th attribute for i -th object. Thus, the proposed approach 

to clustering can be used with the two-way data (27), by choosing a suitable metric to 
measure similarity. 

In the first place, the two-way data can be normalized as follows: 

1

1
1

ˆmax
ˆ

t
ii

t
it

i x
xx = . (28) 

The data normalization method (28) is appropriate in the case of non-negative values 1ˆ t
ix  in 

the two-way data matrix. 
In the second place, the two-way data can be normalized using a formula 

11

11

1

ˆminˆmax

ˆminˆ
t
ii

t
ii

t
ii

t
it

i xx

xx
x

−

−
= . (29) 

So, each object can be considered as a fuzzy set ix , ni ,,1=  and 

]1,0[)( 11 ∈= t
x

t
i xx

i
µ , ni ,,1= , 11 ,,1 mt =  are their membership functions. Of 

course, some other methods for the two-way data normalization are described in 
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bibliographical sources. Different methods for the data normalization are considered, for 
example, by Walesiak [25]. 

The matrix of coefficients of pair wise dissimilarity between objects )],([ jiI xxI µ= , 

nji ,,1, =  can be obtained after application of some distance function to the matrix of 

normalized data )]([ 1

1

t
xmn xX

i
µ=× , ni ,,1= , 11 ,,1 mt = . The most widely used 

distances for fuzzy sets ix , jx , nji ,,1, =  in },...,{ 1 nxxX =  are: 

• The normalized Hamming distance:
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xxl
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• The normalized Euclidean distance:
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• The squared normalized Euclidean distance:
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µµε , nji ,,1, = . (32) 

These distances are considered by Kaufmann [9] in detail. The matrix of fuzzy tolerance 
)],([ jiT xxT µ= , nji ,,1, =  can be obtained after application of complement 

operation 

),(1),( jiIjiT xxxx µµ −= , nji ,,1, = , (33) 

to the matrix of dissimilarity coefficients )],([ jiI xxI µ= , nji ,,1, =  obtained from 
previous operations. 

2.4. Evaluating the fuzzy clusters and validity measures 

The result of classification must be interpreted from essential positions. Some formal 
criteria can be useful for the aim. For example, most appropriate distance between fuzzy 
sets for the data preprocessing can be selected on a basis of the evaluation of the results of 
classification. A problem of the evaluation of fuzzy clusters was considered in [22]. 

The qualitative inspection of fuzzy clustering results can be done, e.g., with a linear 
index of fuzziness or a quadratic index of fuzziness, used for evaluation of fuzziness degree 
of fuzzy clusters. These two indexes are considered by Kaufmann [9]. So, a modification of 
the linear index of fuzziness is defined in [22] as 
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AI ααα ⋅= , (34) 

where )( l
l Acardn α= , )()( XRA c

l ∗∈α is the number of objects in the fuzzy cluster 
lA )(α  and ),( )()(

ll
H AAd αα  is the Hamming distance 
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between the fuzzy cluster lA )(α  and the crisp set lA )(α  nearest to the fuzzy cluster lA )(α .

The membership function of the crisp set lA )(α  can be defined as
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where ]1,0(∈α . 
The modified quadratic index of fuzziness is defined in [22] as 
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l
Q AAd

n
AI ααα ⋅= , (37) 

where )( l
l Acardn α= , )()( XRA c

l ∗∈α and ),( )()(
ll

E AAd αα  is the Euclidean distance 
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between the fuzzy cluster lA )(α  and the crisp set lA )(α  which is defined by formula (36).
Indexes (34) and (37) show the degree of fuzziness of fuzzy clusters which are elements 

of the allotment )(XRc
∗ . Obviously, that the condition 0)()( )()( == l

Q
l

L AIAI αα  is met 

for a crisp set )()( XRA c
l ∗∈α . Otherwise, if 5.0=liµ , l

i Ax α∈∀  then fuzzy cluster 

)()( XRA c
l ∗∈α  is a maximally fuzzy set and the condition 1)()( )()( == l

Q
l

L AIAI αα  is 
met. 

The density of fuzzy cluster was defined in [22] as follows: 

∑
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where )( l
l Acardn α= , )()( XRA c

l ∗∈α and membership degree liµ  is defined by 
formula (17). It is obvious that condition 

1)(0 )( ≤< lAD α , (40) 

is met for each fuzzy cluster lA )(α  in )(XRc
∗ . Moreover, 1)( )( =lAD α  for a crisp set 

)()( XRA c
l ∗∈α  for any tolerance threshold α , ]1,0(∈α . The density of fuzzy cluster 

shows an average membership degree of elements of a fuzzy cluster. 
Let us remind the cluster validity problem for relational heuristic algorithms of 

possibilistic clustering. The number c  of fuzzy clusters and their compactness are 
contradictory purposes of the classification of n  objects. If compact classes are searched, 
the most appropriate solution can be obtained with n  classes of one object. Obviously, that 
the solution is not useful. So, the number c  of fuzzy clusters must be determined under 
consideration of the conditions: firstly, the number of fuzzy clusters c  in the sought 
allotment )(XRc

∗  must be as possible as less, and, secondly, the membership function of 
fuzzy clusters of some allotment among c  fuzzy clusters must be sharper than the 
membership function of fuzzy clusters of allotments for other numbers of fuzzy clusters. 

Let )(XRc
∗  be the allotment which is corresponds to the result of classification for the 

given number c  of fuzzy clusters and the and cR  be the set of all allotments )(XRс
∗  

among c , },,2{ nc ∈  fuzzy clusters. A cluster validity measure can be defined as a 

mapping ℜcRV :  which can be used to rank the validity of various allotments 

)(XRc
∗ . Validity measures can be obtained from the indexes which are defined in previous 

considerations. 
The fuzziness of the allotment )(XRc

∗  among c  fuzzy clusters can be evaluated as the 

sum of indexes of fuzziness of fuzzy clusters of the allotment )(XRc
∗ . So, the linear 

measure of fuzziness of the allotment must be based on the formula (30), and the measure 
can be defined as follows: 
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where )( )(
l

L AI α  is the modified linear index of fuzziness (34).
On the other hand, the quadratic measure of fuzziness of the allotment can be defined on 

the analogy of the linear measure of fuzziness (41):  
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where )( )(
l

Q AI α  is the modified quadratic index of fuzziness (37).

Using ));(( cXRV сLMF
∗ or ( )cXRV сQMF );(∗ , the optimal number c  of fuzzy clusters 

can be obtained by maximizing the index value. 
The density of fuzzy cluster (39) can be considered as the basis for a validity measure 

[22]. So, the measure of separation and compactness of the allotment can be defined in the 
following way:  

αµα

α

−+= ∑
∑
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∈∗
∗
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x
lj
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сMSC n
c

c

AD
cXRV )(

)(
)(
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));(( , (43) 

where Θ  is a set of elements jx , },,1{ nj ∈  in all intersection areas of different fuzzy 
clusters. 

The measure of separation and compactness of the allotment ));(( cXRV сMSC
∗

increases when c  is closer to n . Thus, optimum value of c  is obtaining by minimizing 
));(( cXRV сMSC

∗  over maxmin ,, cсc =  where min2 c≤  and nc <max . 

3. A technique for detecting the optimal number of elements in fuzzy
clusters

The relational heuristic D-AFC(u)-algorithm of possibilistic clustering is described in the 
first subsection. The second subsection includes the detail consideration of a technique for 
detecting the optimal maximal number of elements in fuzzy clusters. 

3.1. The D-AFC(u)-algorithm  

Let us remind the D-AFC(u)-algorithm which was proposed in [24]. A new parameter for 
direct relational heuristic algorithms of possibilistic clustering is a basis for the relational 
clustering procedure. 

An analyst can determine the maximal number u  of elements in a fuzzy cluster. If 
nu <≤1  is a maximal number of elements in a fuzzy cluster, then unl ≤≤1 ,

cl ,1=∀ , where )( l
l Acardn α= , ( )ll ASuppA )(αα = for each fuzzy cluster lA )(α ,

cl ,1= , ]1,0(∈α . So, parameter u  can be considered as the parameter that controls 
cluster sizes. 

Thus, the classification problem can be formulated as follows: detection of an unknown 
number c  of partially separated fuzzy clusters with given maximal number of elements 

nu <≤1  in every class can be considered as the aim of classification. So, the 
corresponding D-AFC(u)-algorithm for detecting the allotment among fuzzy clusters with 
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given maximal number of elements u  in every class is an eleven-step procedure of 
classification. 

1. Calculate α -level values of the fuzzy tolerance T  and construct the ordered
sequence 10 10 ≤<<<<<< Zαααα    of α -levels; set ;0:=  

2. Construct the initial allotment },1|{)( )( nlAXR l
I == α
α , αα = ; 

3. The following condition is checked:
if for some fuzzy cluster )()( XRA I

l α
α ∈ , },,1{ nl ∈ , αα =  the 

condition nnl =  is met 

then set 1: +=   and go to step 2; 
4. Construct the set U  of possible clustering components as follows:

if for some fuzzy cluster )()( XRA I
l α
α ∈ , },,1{ nl ∈ , αα =  the 

condition unl ≤  is met 

then UAl ∈)(α

else UAl ∉)(α ; 
5. The following condition is checked:

if condition 2)( ≥Ucard  and condition )()(
1

XcardAcard
c

l

l ≥∑
=

α , 

UAl ∈∀ )(α , αα =  are not met 

then set 1: +=   and go to step 2 
else go to step 6; 

6. Set 0:=w ;
7. Check if it is possible to construct allotments }|{)( )()()( UAAXR ll

zc ∈= αα
α , 

nc ≤ , which satisfy conditions (18) and (19) for the value αα = ; 
8. The following condition is checked:

if allotments )()( XR zc
α  satisfying conditions (22) and (23) are not 

constructed 
then set 1: += ww  and go to step 7 
else go to step 9; 

9. Construct the class of possible solutions of the classification problem
{ })()( )( XRuB zс

α= , αα =  for all allotments )()( XR zc
α  which were obtained 

on the step 7; 
10. Calculate the value of the criterion (24) for every allotment )()()( uBXR zc ∈α ; 

11. The result )(XRc
∗  of classification is formed as follows: 
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if for some unique allotment )()()( uBXR zc ∈α  the condition (25) is met 

then the allotment is the result of classification )(XRc
∗  

else  if the condition 1>u  is met 
then set 1: −= uu  and go to step 7. 

The allotment )(XRc
∗  among unknown number с  partially separate fuzzy clusters with 

determined sizes and the corresponding value of tolerance threshold ]1,0(∈α  are results 
of classification obtained from the D-AFC(u)-algorithm. 

3.2. The proposed technique 

The D-AFC(u)-algorithm can be considered as an appropriate tool for detecting the optimal 
number of elements in fuzzy clusters of the constructed allotment. For the purpose, validity 
measures should be used because the number of fuzzy clusters in the sought allotment 
depends on the number of elements in each fuzzy cluster. In other words, if 1→ln , 

cl ,1=  then nc → . Let ));(( )( cXRV k
с
∗  be a general notation for validity measures 

(41) – (43). The value u can vary in the interval ],[ maxmin uu . 
Optimal number of elements in fuzzy clusters depends on next criteria: 
• Fuzzy clusters should be as possible as more separated in the constructed

allotment; 
• Fuzzy clusters must be homogeneous, that is the number of elements in fuzzy

clusters should be approximately equal, as possible. 
So, the proposed technique for detecting the optimal maximal number of elements in 

fuzzy clusters is a five-step procedure as given below. 

1. Set 1:=k  and min: uuk = ;
2. The D-AFC(u)-algorithm should be applied to the matrix of tolerance coefficients

)],([ jiT xxT µ= , nji ,,1, =  for the current value ku  and the corresponding 

allotment )()( XR k
c
∗  will be constructed; 

3. Calculate the value of some validity measure ));(( )( cXRV k
с
∗

4. The following condition is checked:
if the condition minuuk =  is met 

then set 1: += kk , 1:1 +=+ kk uu  and go to step 2 
else go to step 5; 

5. The following condition is checked:

if the condition 0));(());(( )()1( =− ∗+∗ cXRVcXRV k
с

k
с  is met 
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then the value ku  is the optimal number of elements in each fuzzy cluster 
lA )(α , cl ,,1=  of the constructed allotment )()( XR k

c
∗  and stop 

else set 1: += kk , 1:1 +=+ kk uu  and go to step 2; 

An application of the proposed technique to the classification problem will be illustrated 
on the well-known data examples in the next section. 

4. Illustrative examples

The first subsection includes the Tamura’s relational data description and results of their 
processing by the D-AFC(u)-algorithm using the proposed technique. In the second 
subsection the Sneath and Sokal’s two-dimensional data set is used for the testing of the 
proposed technique. An application of the proposed technique to the classification problem 
for the Anderson’s Iris data set is considered in the third subsection of the section. 

4.1. The Tamura’s portrait data set  

Let us consider an application of proposed technique to the classification problem for the 
following illustrative example. The problem of classification of family portraits coming 
from three families was considered by Tamura, Higuchi and Tanaka in [20]. The number of 
portraits was equal to 16 and the real portrait assignment among three classes is presented in 
Figure 1.  

Figure 1. Real portraits classification 

The data were originally analyzed in order to identify families with the technique of first 
transforming the matrix of a fuzzy tolerance into a matrix of a fuzzy similarity relation and 
then taking an appropriate α -level of the fuzzy similarity relation [20]. The best partition 
proved to be obtained with α -level equal to 6.0 . The partition identified the following 
three families },,,,{ 1613861

1 xxxxxA = , },,,,{ 1411752
2 xxxxxA =  and 

},,,,{ 15121094
3 xxxxxA = . However, person 3x  is not a member of any of the three 

families. 
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The subjective similarities assigned to the individual pairs of portraits collected in the 
tabular form are presented in Table 1. 

Table 1. The matrix of subjective similarities 

i  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1.0 

2 0.0 1.0 

3 0.0 0.0 1.0 

4 0.0 0.0 0.4 1.0 

5 0.0 0.8 0.0 0.0 1.0 

6 0.5 0.0 0.2 0.2 0.0 1.0 

7 0.0 0.8 0.0 0.0 0.4 0.0 1.0 

8 0.4 0.2 0.2 0.5 0.0 0.8 0.0 1.0 

9 0.0 0.4 0.0 0.8 0.4 0.2 0.4 0.0 1.0 

10 0.0 0.0 0.2 0.2 0.0 0.0 0.2 0.0 0.2 1.0 

11 0.0 0.5 0.2 0.2 0.0 0.0 0.8 0.0 0.4 0.2 1.0 

12 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.0 0.4 0.8 0.0 1.0 

13 0.8 0.0 0.2 0.4 0.0 0.4 0.0 0.4 0.0 0.0 0.0 0.0 1.0 

14 0.0 0.8 0.0 0.2 0.4 0.0 0.8 0.0 0.2 0.2 0.6 0.0 0.0 1.0 

15 0.0 0.0 0.4 0.8 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.2 0.0 1.0 

16 0.6 0.0 0.0 0.2 0.2 0.8 0.0 0.4 0.0 0.0 0.0 0.0 0.4 0.2 0.0 1.0 

The proposed technique for detecting the optimal number of elements in fuzzy clusters 
was applied to the matrix of fuzzy tolerance for ]8,3[ maxmin ==∈ uuu  using validity 
measures (41) – (43). The performance of validity measures is shown in Figures 2 – 4. 

Figure 2. Plot of the linear measure of fuzziness for Tamura’s data set 
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Figure 3. Plot of the quadratic measure of fuzziness for Tamura’s data set 

Figure 4. Plot of the measure of separation and compactness for Tamura’s data set 

So, the optimal number of elements in each fuzzy cluster is equal 6. The result 
corresponds to the allotment )(XRc

∗  among four fully separated fuzzy clusters. 
Membership functions of four fuzzy clusters obtained by using the D-AFC(u)-algorithm for 

6=u  are shown in Figure 5, where membership values of the first class are represented by 
○, membership values of the second class are represented by �, membership values of the
third class are represented by ■, and membership values of the fourth class are represented 
by ∇ . 
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Figure 5. Membership functions of four fully separated fuzzy clusters 

By executing the D-AFC(u)-algorithm for 6=u , the following result is obtained: the 
first class is composed of 5 elements, all belonging to Family 1; the second class contains 2 
elements, all from Family 3; the third class is formed by 6 elements, where five elements 
correspond to Family 2 and one element corresponds to Family 3, and the fourth class 
consists of 3 elements, all belonging to Family 3. So, the union of the third and fourth 
classes is the class, which corresponds to Family 3 and there is one mistake of classification. 
The ninth element of the set of objects is the misclassified object.  

The value of the membership function of the fuzzy cluster which corresponds to the first 
class is maximal for the sixth object and is equal one. That is why the sixth object is the 
typical point of the first fuzzy cluster. The membership value of the tenth object is equal one 
for the second fuzzy cluster and the tenth object is the typical point of the second fuzzy 
cluster. The membership value of the second object is equal one for the fuzzy cluster which 
corresponds to the third class. So, the second object is the typical point of the third fuzzy 
cluster. The membership value of the fifteenth object is equal one for the fourth fuzzy 
cluster. Thus, the fifteenth object is the typical point of the fuzzy cluster which corresponds 
to the fourth class. 

So, the results of the proposed technique for detecting the optimal maximal number of 
elements in fuzzy clusters seem to be appropriate. 

4.2. The Sneath and Sokal’s two-dimensional data set 

An application of the proposed technique to the data processing can be explained also by 
the second example. For the purpose, the Sneath and Sokal’s two-dimensional data set [19] 
was selected. The artificial data set is shown in Figure 6. 
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Figure 6. The Sneath and Sokal’s data set 

The initial data set was preprocessed by using formulae (28), (32), (33). So, the matrix 
of fuzzy tolerance )],([ jiT xxT µ= , 16,,1, =ji  was obtained. The proposed 
technique for detecting the optimal number of elements in fuzzy clusters was also applied to 
the matrix of fuzzy tolerance for ]8,3[ maxmin ==∈ uuu  using validity measures (41) – 
(43). The performance of validity measures is shown in Figures 7 – 9. 

Figure 7. Plot of the linear measure of fuzziness for Sneath and Sokal’s data set 
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Figure 8. Plot of the quadratic measure of fuzziness for Sneath and Sokal’s data set 

Figure 9. Plot of the measure of separation and compactness for Sneath and Sokal’s 
data set  

By executing the proposed technique, the allotment )(XRc
∗  among four fully separated 

fuzzy clusters, which corresponds to the result, is received for the value 5=u . 
Membership functions of four classes are presented in Figure 10, where membership 

values of the first class are represented by ○, membership values of the second class are 
represented by ■, membership values of the third class are represented by ▲, and 
membership values of the fourth class are represented by �. Values which equal zero are not 
shown in the Figure 10. 
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Figure 10. Membership functions of four fully separated fuzzy clusters 

The third object is the typical point of the first fuzzy cluster, the eighth object is the 
typical point of the second fuzzy cluster, the eleventh object is the typical point of the third 
fuzzy cluster, and the fifteenth object is the typical point of the corresponding cluster. Main 
characteristics of fuzzy clusters are presented in Table 2. 

Table 2. Main characteristics of fuzzy clusters 

Number of 
fuzzy clusters 

Characteristics of fuzzy clusters in the obtained allotment 
Value of the index 

(34) 
Value of the index 

(37) 
Value of the index 

(39) 
Class 1 0.07743056 0.09997046 0.96128472 
Class 2 0.05671297 0.07734306 0.97164352 
Class 3 0.04456019 0.05783274 0.97771991 
Class 4 0.06875000 0.08579271 0.96562500 

4.3. The Anderson’s Iris data set 

Let us consider an application of proposed technique to the classification problem for the 
Anderson’s Iris data set [1]. The Anderson's Iris data is the most known database to be 
found in the pattern recognition literature. The data set represents different categories of iris 
plants having four attribute values. The four attribute values represent the sepal length, 
sepal width, petal length and petal width measured for 150 irises. It has three classes Setosa, 
Versicolor and Virginica, with 50 samples per class.  

The problem is to classify the plants into three subspecies on the basis of this 
information. It is known that two classes Versicolor and Virginica have some amount of 
overlap while the class Setosa is linearly separable from the other two. The real assignments 
to the three classes are presented in Table 3. 
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Table 3. Real object assignments in the Anderson’s Iris data set 

Class Numbers of objects 
Number Name 

1 SETOSA 
1, 6, 10, 18, 26, 31, 36, 37, 40, 42, 44, 47, 50, 51, 53, 54, 
55, 58, 59, 60, 63, 64, 67, 68, 71, 72, 78, 79, 87, 88, 91, 
95, 96, 100, 101, 106, 107, 112, 115, 124, 125, 134, 135, 
136, 138, 139, 143, 144, 145, 149 

2 VERSICOLOR 
3, 8, 9, 11, 12, 14, 19, 22, 28, 29, 30, 33, 38, 43, 48, 61, 
65, 66, 69, 70, 76, 84, 85, 86, 92, 93, 94, 97, 98, 99, 103, 
105, 109, 113, 114, 116, 117, 118, 119, 120, 121, 128, 
129, 130, 133, 140, 141, 142, 147, 150 

3 VIRGINICA 
2, 4, 5, 7, 13, 15, 16, 17, 20, 21, 23, 24, 25, 27, 32, 34, 35, 
39, 41, 45, 46, 49, 52, 56, 57, 62, 73, 74, 75, 77, 80, 81, 
82, 83, 89, 90, 102, 104, 108, 110, 111, 122, 123, 126, 
127, 131, 132, 137, 146, 148 

Let us consider the effectiveness of the proposed technique by testing the Anderson’s 
Iris data set. The initial data set was preprocessed by using formulae (28), (32), (33) and the 
matrix of fuzzy tolerance )],([ jiT xxT µ= , 150,,1, =ji  was constructed. The 
technique for detecting the optimal number of elements in fuzzy clusters was also applied to 
the matrix of fuzzy tolerance for ]54,51[ maxmin ==∈ uuu  using validity measures (41) 
– (43). The performance of validity measures is shown in Figures 11 – 13.

Figure 11. Plot of the linear measure of fuzziness for the Anderson’s data set 
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Figure 12. Plot of the quadratic measure of fuzziness for the Anderson’s data set 

Figure 13. Plot of the measure of separation and compactness for the Anderson’s 
data set  

By executing the proposed technique, the allotment )(XRc
∗  among three fuzzy clusters, 

which corresponds to the result, is received for the value 52=u . The allotment was 
obtained for the tolerance threshold 0.964067=α . It is should be noted, that the actual 
number of classes equal 3 and this number corresponds to the number of fuzzy clusters in 
the obtained allotment )(XRc

∗ . 
Membership functions of three classes are presented in Figure 14, where membership 

values of the first class are represented by +, membership values of the second class are 
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represented by ■, and membership values of the third class are represented by ○. Values 
which equal zero are not shown in Figure 14. 

Figure 14. Membership functions of three fully separated fuzzy clusters 

Thus, we obtain the following: the first class is formed by 50 elements all being Iris 
Setosa; the second class is formed by 52 elements, 48 of them being Iris Versicolor and 4 
Iris Virginica; the third class by 48 elements, 46 of them being Iris Virginica and 2 Iris 
Versicolor. So, there are six mistakes of classifications. The object assignments resulting 
from the proposed technique application to the Anderson’s Iris data are presented in Table 
4. Misclassified objects are bolded in Table 4.

Table 4. The results of the proposed technique application: the object assignments 

Class Numbers of objects 
Number Name 

1 SETOSA 

1, 6, 10, 18, 26, 31, 36, 37, 40, 42, 44, 47, 50, 51, 53, 54, 
55, 58, 59, 60, 63, 64, 67, 68, 71, 72, 78, 79, 87, 88, 91, 
95, 96, 100, 101, 106, 107, 112, 115, 124, 125, 134, 135, 
136, 138, 139, 143, 144, 145, 149 

2 VERSICOLOR 

3, 5, 8, 11, 12, 14, 19, 22, 25, 28, 29, 30, 33, 38, 43, 48, 
56, 61, 65, 66, 69, 70, 76, 84, 85, 86, 90, 92, 93, 94, 97, 
98, 99, 103, 105, 109, 113, 114, 116, 117, 118, 119, 120, 
121, 128, 129, 130, 133, 140, 141, 142, 150 

3 VIRGINICA 

2, 4, 7, 9, 13, 15, 16, 17, 20, 21, 23, 24, 27, 32, 34, 35, 
39, 41, 45, 46, 49, 52, 57, 62, 73, 74, 75, 77, 80, 81, 82, 
83, 89, 102, 104, 108, 110, 111, 122, 123, 126, 127, 131, 
132, 137, 146, 147, 148 

The value of the membership function of the fuzzy cluster which corresponds to the first 
class is maximal for the ninety-fifth object and is equal one. That is why the ninety-fifth 
object is the typical point of the fuzzy cluster which corresponds to the Setosa class. The 
membership value of the ninety-eighth object is equal one for the fuzzy cluster which 
corresponds to the second class. Thus, the ninety-eighth object is the typical point of the 
fuzzy cluster which corresponds to the Versicolor class. The membership value of the 
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twenty-third object is equal one for the fuzzy cluster which corresponds to the third class. 
So, the twenty-third object is the typical point of the fuzzy cluster which corresponds to the 
Virginica class. 

In order to compare the proposed technique with other clustering procedures, the D-
AFC(c)-algorithm was applied to the matrix of fuzzy tolerance )],([ jiT xxT µ= , 

150,,1, =ji  with the number of classes 3=c . By executing the D-AFC(c)-algorithm, 

the allotment )(XRc
∗  among three fuzzy clusters, which corresponds to the result, is 

received for the tolerance threshold 0.964149=α . Membership functions of three 
classes are presented in Figure 15. 

Figure 15. Membership functions of three fully separated fuzzy clusters obtained 
from the D-AFC(c)-algorithm 

So, the object assignment obtained from the D-AFC(c)-algorithm is equal to the object 
assignment obtained from the proposed technique. However, membership functions of fuzzy 
clusters obtained from the D-AFC(c)-algorithm are differ from membership functions of 
fuzzy clusters obtained from the proposed technique. In particular, the ninety-fifth object is 
the typical point of the fuzzy cluster which corresponds to the Setosa class, the ninety-eighth 
object is the typical point of the fuzzy cluster which corresponds to the Versicolor class, and 
the seventy-third object is the typical point of the fuzzy cluster which corresponds to the 
Virginica class. 

5. Conclusions

Results of experiments are summarized and discussed in the first subsection of the section. 
The second subsection deals with the perspectives on future investigations.  

5.1. Discussion 

The technique for detecting the optimal maximal number of elements in fuzzy clusters is 
proposed in the paper. The direct relational D-AFC(u)-algorithm of possibilistic clustering 
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and some validity measure are the basis of the proposed technique. The essence of the 
proposed technique is setting the relationship between the optimal maximal number of 
elements in each fuzzy cluster, and the number of fuzzy clusters in the sought clustering 
structure. The allotment among a priori unknown number of fully separate fuzzy clusters 
with optimal maximal number of elements in the each fuzzy cluster is the result of the data 
processing.  

The results, obtained in the first two experiments by using the proposed technique, are 
equal to the results, obtained from the direct relational D-PAFC-algorithm of possibilistic 
clustering [22]. On the other hand, the result, obtained by using the proposed technique for 
the Anderson’s Iris data, is differing from the results, obtained from the D-PAFC-algorithm 
and D-AFC(c)-algorithm of possibilistic clustering. 

Thus, the results of application of the proposed technique to three well-known data sets 
show that the proposed technique is the effective tool for solving the classification problem 
under a priori uncertainty of the number of fuzzy clusters in the sought allotment, and the 
number of elements in fuzzy clusters.  

5.2. Perspectives 

Possibility degrees for values of the most possible number of fuzzy clusters in the sought 
allotment can be calculated [22]. So, the relationship between possibility degrees for values 
of the number of fuzzy clusters and values of the number of elements in fuzzy clusters 
should be investigated.  

The perspective for investigations is of great interest both from the theoretical point of 
view and from the practical one as well. 
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