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Abstract. Transactional Memory (TM) is an alternative way of synchronizing
concurrent accesses to shared memory by adopting the abstraction of transactions in
place of low-level mechanisms like locks and barriers. TMs usually apply optimistic
concurrency control to provide a universal and easy-to-use method of maintaining cor-
rectness. However, this approach performs a high number of aborts in high contention
workloads, which can adversely affect performance. Optimistic TMs can cause prob-
lems when transactions contain irrevocable operations. Hence, pessimistic TMs were
proposed to solve some of these problems. However, an important way of achieving
efficiency in pessimistic TMs is to use early release. On the other hand, early release
is seemingly at odds with opacity, the gold standard of TM safety properties, which
does not allow transactions to make their state visible until they commit. In this
paper we propose a proof technique that makes it possible to demonstrate that a TM
with early release can be opaque as long as it prevents inconsistent views.

Keywords: Concurrency, Parallel Programming, Software Transactional Mem-
ory, Safety, Early Release

1 Introduction

Writing parallel programs using the low-level synchronization primitives is notoriously
difficult and error-prone. Over the past decade, there has been a growing interest in
alternatives to lock-based synchronization by turning to the idea of software transac-
tional memory (TM) [15, 22]. Basically, TM transplants the transaction abstraction
from database systems and uses it to hide the details of synchronization. In partic-
ular, TM uses speculative execution to ensure that transactions in danger of reading
inconsistent state abort and retry. This is a fairly universal solution and means that
the programmer must only specify where transactions begin and end, and TM man-
ages the execution so that the transactional code executes correctly and efficiently.
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Thus, the programmer avoids having to solve the problem of synchronization herself,
and can rely on any one of a plethora of TM systems (e.g., [5, 11, 14, 12, 18, 21]).

Since TM allows transactional code to be mixed with non-transactional code and to
contain virtually any operation, rather than just reads and writes like in its database
predecessors, a greater attention must be paid to the state of shared variables at any
given time. For instance, if a database transaction reads a stale value, it must simply
abort and retry, and no harm is done. Whereas, if a TM transaction reads a stale value
it may execute an unanticipated dangerous operation, like dividing by zero, accessing
an illegal memory address, or entering an infinite loop. Thus, it is insufficient for TMs
to use traditional database consistency conditions like serializability [19] or strictness
[3] to describe the guarantees it ensures. Instead, TMs must restrict or eliminate the
ability of transactions to view inconsistent state.

To that end, the safety property called opacity [9, 10] was introduced, which
includes the condition that transactions do not read values written by other live (not
completed) transactions alongside serializability and real-time order conditions. Even
though a number of properties then followed that tweaked its various aspects (e.g.,
virtual world consistency (VWC) [16], transactional memory specification (TMS1 and
TMS2) [6], and markability [17]), opacity remains the gold standard of TM safety
properties.

However opacity precludes early release, an important programming technique,
where two transactions technically conflict but nevertheless both commit correctly
[20], and still produce a history that is intuitively correct. This is particularly true
with pessimistic concurrency control, where transactions, as a rule, do not abort. If
they do not abort, then viewing the final state of a variable does not cause inconsisten-
cies, even if the value is read from a live transaction. On the other hand systems that
employ early release gain a significant improvement in performance (e.g. [23, 26]).

The contribution of this paper is to present a technique that can show that opacity
can be fulfilled by transforming the original history with early release to a different
form called a decomposed history. The transformation can be performed only under
stringent assumptions with respect to the original history, but the decomposed form
can then be proven to be opaque. Since we also show that the decomposed history
is a refinement of the original history, this suffices to acknowledge that the original
history provides the same safety guarantees as opacity. In this way, a TM system
with early release need not necessarily relax consistency in trade for efficiency.

Our paper is composed as follows. Section 2 presents the full definition of opacity
and various associated concepts. Then, Section 3 presents the intuition and formal def-
inition behind decomposition and demonstrates the opacity of decomposed histories,
and how they refine the original history. Section 4 describes an example pessimistic
algorithm with early release and shows that it is opaque using decomposition. Finally,
we discuss the related work in Section 5, and conclude in Section 6.
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2 Definitions

Further discussion requires that we provide a definition of opacity. We begin by defin-
ing all the ancillary concepts following their original definitions from [10]. However,
we adjust the wording and notation to better fit our goals in this paper. We also
define the concept of observational refinement in this section, which we use in our
definitions in Section 3.

2.1 Preliminaries

Let Π = {p1, p2, ..., pn} be a set of all processes that execute a program. Each process
executes a piece of deterministic code specified by the program. Process pk can
execute local computations whose effects are not visible to other processes as well as
operations on shared variables.

Variables Let V be a set of shared variables (or variables, in short). Each variable,
denoted as x, y, z etc., supports operations that allow to retrieve or modify its state.
We denote an operation on x as op(x)w , where value w is the argument of the
operation. If the operation takes no argument, we will omit it in the notation and
write op(x).

Every variable x supports the following operations, denoted o, that allow to retrieve
or modify its state:

a) write operation denoted w (x)v that sets the state of x to value v ; the operation’s
return value is the constant ok ,

b) read operation denoted r (x) that returns the current state of x.

In order to execute some operation o on variable x, process pk issues an invocation
event invk(o), and receives a response event denoted resk(u), where u is the return
value of o. The pair of these events is called a complete operation execution and it
is denoted ok → u, whereas an invocation event invk(o) without the corresponding
response event is called a pending operation execution. Specifically, an execution of
a read operation by process pk is denoted rk(x) → v and an execution of a write
operation is denoted wk(x)v → ok . We refer to complete and pending operation
executions as operation executions, denoted by op.

Each event is atomic and instantaneous, but the execution of the entire operation
composed of two events is not.

Transactions Transactional memory (TM) is a programming paradigm that uses
transactions to control concurrent execution of operations on shared variables by
parallel processes. A transaction Ti ∈ T is some piece of code executed by process
pk. Hence, we say that pk executes Ti. Process pk can execute local computations as
well as operations on shared variables as part of the transaction. In particular, the
processes can execute the following operations as part of transaction Ti:
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a) start i which initializes transaction Ti, and whose return value is the constant ok i,

b) wi(x)v and ri(x) which respectively write a value v to variable x and read x within
transaction Ti, and return either the operation’s return value or the constant Ai,

c) tryC i which attempts to commit Ti and returns either the constant Ci or the
constant Ai.

The constant Ai indicates that transaction Ti has been aborted, as opposed to the
constant Ci which signifies a successful commitment of the transaction.

By analogy to processes executing operations on shared variables, if process pk
executes some operation as part of transaction Ti, it issues an invocation event of the
form invk

i (start i), invk
i (opi(x)w) for some x, or invk

i (tryC i), and receives a response
of the form reski (ui). The superscript always denotes which process executes the
operation, and the subscript denotes of which transaction the operation is a part. We
denote operation executions by process pk within transaction Ti as:

a) startki → ok i,

b) rki (x)→ v or rki (x)→ Ai,

c) wk
i (x)v → ok i or wk

i (x)v → Ai,

d) tryC k
i → Ci or tryC k

i → Ai.

TM assumes that processes execute operations on shared variables only as part of
a transaction. Furthermore, we assume that any transaction Ti is executed by exactly
one process pk and that each process executes transactions sequentially.

Even though transactions are controlled by processes, it is convenient to talk about
them as separate and independent entities. Thus, rather than saying pk executes some
operation as part of transaction Ti, we will simply say that Ti performs some opera-
tion. Hence we will also forgo the distinction of processes in transactional operation
executions, and write simply: start i → ok i, ri(x) → v , wi(x)v → ok i, tryC i → Ci,
etc. By analogy, we also drop the superscript indicating processes in the notation of
invocation and response events, where the distinction is not needed.

Sequential Specification Given variable x, let sequential specification of x, de-
noted Seq(x), be a prefix-closed set of sequences containing invocation events and
response events which specify the semantics of shared variables. (A set Q of se-
quences is prefix-closed if, whenever a sequence S is in Q, every prefix of S is also in
Q.) Intuitively, a sequential specification enumerates all possible correct sequences of
operations that can be performed on a variable in a sequential execution. Specifically,
given D, the domain of variable x, and v0 (v0 ∈ D), an initial state of x, we denote by
Seq(x) the sequential specification of x s.t., Seq(x) is a set of sequences of the form
[α1 → v1, α2 → v2, ..., αm → vm], where each αj → vj (j = 1..m) is either:

a) wi(x)vj → ok i, where vj ∈ D, or

b) ri(x) → vj , and either the most recent preceding operation is wl(x)vj → ok l

(l < i) or there are no preceding writes and vj = v0.
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From this point on we assume that the domain D of all shared variables is the set
of natural numbers N0 and that the initial value v0 of each variable is 0.

Histories A TM history H is a sequence of invocation and response events issued
by the execution of transactions TH = {T1, T2, ..., Tt}. The occurrence and order of
events in H is dictated by a given (possibly partial) execution of a program, and we
treat it as if it were arbitrary. The sequence of events in history Hj can be denoted
as Hj = [e1, e2, ..., em]. For instance, some history H1 below is a history of a run of
some program that executes transactions T1 and T2:

H1 = [ inv1(start1), res1(ok1), inv2(start2), res2(ok2),

inv1(w1(x)v), inv2(r2(x)), res1(ok1), res2(v),

inv1(tryC 1), res1(C1), inv2(tryC 2), res2(C2) ].

Given any history H, let H|Ti be the longest subhistory (subsequence) of H that
only contains invocations and responses executed by transaction Ti. For example,
H1|T2 is defined as:

H1|T2 = [ inv2(start2), res2(ok2), inv2(r2(x)), res2(v),

inv2(tryC 2), res2(C2) ].

Let H|pk be a subhistory of H that only contains invocations and responses executed
by process pk. We say transaction Ti is in H, which we denote Ti ∈ H, if H|Ti 6= ∅.
Let H|x be the longest subhistory of H consisting only of invocations and responses
executed on variable x, but only those that form complete operation executions. A
history whose all operation executions are completed is a complete history.

Given complete operation execution op that consists of an invocation event e′ and
a response event e′′, we say op is in H (op ∈ H) if e′ ∈ H and e′′ ∈ H. Given
a pending operation execution op consisting of an invocation e′, we say op is in H
(op ∈ H) if e′ ∈ H and there is no other operation execution op′ consisting of an
invocation event e′ and a response event e′′ s.t. op′ ∈ H.

Given two complete operation executions op′ and op′′ in some history H, where
op′ contains the response event res ′ and op′′ contains the invocation event inv ′′, we
say op′ precedes op′′ in H if res ′ precedes inv ′′ in H.

Most of the time it will be convenient to denote any two adjoining events in a
history that represent the invocation and response of a complete execution of an
operation as that operation execution, using the syntax e→ e′. Then, an alternative
representation of H1|T2 is denoted as follows:

H1|T2 = [ start2 → ok2, r2(x)→ v , tryC 2 → C2 ].

History H is well-formed if for every transaction Ti in H, H|Ti is an alternating
sequence of invocations and responses s.t.,

a) starts with an invocation inv i(start i),

b) no events in H|Ti follow resi(Ci) or resi(Ai),
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c) no invocation event in H|Ti follows inv i(tryC i),

d) for any two transactions Ti and Tj s.t., Ti and Tj are executed by the same process
pk, the last event of H|Ti precedes the first event of H|Tj in H or vice versa.

In the remainder of the paper we assume that all histories are well-formed.

History Completion Given history H and transaction Ti, Ti is committed if H|Ti
contains operation execution tryC i → Ci. Transaction Ti is aborted if H|Ti contains
response resi(Ai) to any invocation. Transaction Ti is commit-pending if H|Ti con-
tains invocation tryC i but it does not contain resi(Ai) nor resi(Ci). Finally, Ti is live
if it is neither committed, aborted, nor commit-pending.

Given two histories H ′ = [e′1, e
′
2, ..., e

′
m] and H ′′ = [e′′1 , e

′′
2 , ..., e

′′
m], we define their

concatenation as H ′ · H ′′ = [e′1, e
′
2, ..., e

′
m, e

′′
1 , e
′′
2 , ..., e

′′
m]. We say P is a prefix of H

if H = P · H ′. Then, let a completion Compl(H) of history H be any complete
history s.t., H is a prefix of Compl(H) and for every transaction Ti ∈ H subhistory
Compl(H)|Ti equals one of the following:

a) H|Ti, if Ti finished committing or aborting,

b) H|Ti · [resi(Ci)], if Ti is live and contains a pending tryC i,

c) H|Ti · [resi(Ai)], if Ti is live and contains some pending operation,

d) H|Ti · [tryC i → Ai], if Ti is live and contains no pending operations.

Note that, if all transactions in H are committed or aborted then Compl(H) and H
are identical. We call any history H such that H = Compl(H) a determined history.

Two histories H ′ and H ′′ are equivalent (denoted H ′ ≡ H ′′) if for every Ti ∈ T it
is true that H ′|Ti = H ′′|Ti. When we write H ′ is equivalent to H ′′ we mean that H ′
and H ′′ are equivalent.

Sequential and Legal Histories A real-time order ≺H is an order over history
H s.t., given two transactions Ti, Tj ∈ H, if the last event in H|Ti precedes in H the
first event of H|Tj , then Ti precedes Tj in H, denoted Ti ≺H Tj . We say that two
transactions Ti, Tj ∈ H are concurrent if neither Ti ≺H Tj nor Tj ≺H Ti. We say
that history H ′ preserves the real-time order of H if ≺H⊆≺H′ . A sequential history
S is a history, s.t. no two transactions in S are concurrent in S.

We analogously define a real-time order ≺H of operation executions over history
H.

Let S′ be a sequential history that contains only committed transactions, with
the possible exception of the last transaction, which can be aborted. We say that
sequential history S′ is legal if for every x ∈ V, S′|x ∈ Seq(x).

Using the definitions above allows us to formulate the central concept that defines
consistency in opacity: transaction legality. Intuitively, we can say a transaction is
legal in a sequential history if it only reads values of variables that were written by
committed transactions or by itself. More formally, given a sequential history S and a
transaction Ti ∈ S, we then say that transaction Ti is legal in S if Vis(S, Ti) is legal,
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{
x = 0

}
T1

q
w (x)1

y

T2

q
r (x)1

y {
x = 1

}
Figure 1: Minimal example of early release representing Her.

where Vis(S, Ti) is the longest subhistory S′ of S s.t., for every transaction Tj ∈ S′,
either i = j or Tj is committed in S′ and Tj ≺S Ti.

Unique Writes HistoryH has unique writes if, given transactions Ti and Tj (where
i 6= j or i = j), for any two write operation executions wi(x)v ′ → ok i and wj(x)v ′′ →
ok j it is true that v ′ 6= v ′′ and neither v ′ = v0 nor v ′′ = v0. For the remainder of
the paper we focus on histories with unique writes. This assumption does not reduce
generality, in that any history without unique writes trivially can be transformed
into a history with unique writes (for instance, by appending a timestamp to each
written value), and, as shown in [10], such a transformation does not break (final-
state) opacity.

2.2 Definition of Opacity

Given the definitions presented above, opacity is defined by the following two defi-
nitions. The first definition specifies final state opacity that ensures the appropriate
guarantees for a transactional history. The second definition uses final state opacity
to define a safety property that is prefix closed. Both definitions follow those in [10].

Definition 1. A finite TM history H is final-state opaque if, and only if, there exists
a sequential history S equivalent to any completion of H s.t.,

(a) S preserves the real-time order of H,

(b) every transaction Ti in S is legal in S.

Definition 2. A TM history H is opaque if, and only if, every finite prefix of H is
final-state opaque.

2.3 Opacity and Early Release

Given the definition of opacity let us show how it does not support early release using
a minimal example. This was also presented using graph representation of opacity in
[25].

Formally, transaction Ti releases x early in H if, and only if, there is some prefix
H ′ of H, such that Ti is live in H ′ and there exists Tj in H ′ such that there is a
read operation execution opj ∈ H ′|Tj s.t. opj = rj(x) → v ′ and a preceding write
operation opi ∈ H ′|Ti s.t. opi = wi(x)v ′′ → ok and v ′ = v ′′. A minimal example of
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this is as follows:

Her = [ start1 → ok1, start2 → ok2,

w1(x)1→ ok1, r2(x)→ 1,

tryC 1 → C1, tryC 2 → C2 ].

In order to aid understanding, we illustrate history Her in Fig. 1 where each
transaction’s execution is represented in a separate line (identified as T1 and T2).
The operation executions are ordered on the time axis in accordance to the order
of operation executions in Her. For the sake of brevity, we abbreviate operation
execution start i → ok i to

q
, ri(x) → v to r (x)v , wi(x)v → ok i to w (x)v , and

tryC i → Ci to
y
. We also depict the initial and final state of variables, e.g. {x = 0}.

The example is simply a rendition of the definition of early release into a trans-
actional history. Note that if we demonstrate that this example does not satisfy
opacity, then opacity does not allow histories with early release. Below, we show that
the example does not satisfy opacity.

Final-state Opacity First, let us point out that the example is final-state opaque.
The completion Compl(Her) of Her is identical to Her, because Her contains only
committed transactions (that is: for any transaction Ti ∈ Her it is true that Her|Ti =
H ′i · [tryC i → Ci]).

Note that there exists a sequential history S = Her|T1 ·Her|T2 that is equivalent
to Her. Since all transactions are concurrent in Her, the real time order of Her is
empty (≺er= ∅). Then, trivially, ≺er⊆≺S . So S satisfies Def. 1a.

S contains operations of transactions T = {T1, T2} on objects V = {x}. Subhistory
Vis(S, T1) = S|T1 is legal since Vis(S, T1)|x = [w1(x)1→ ok1] ∈ Seq(x) and the value
1 is in the domain of x (N0). Hence T1 in S is legal in S. Subhistory Vis(S, T2) =
S|T1 · S|T2 is legal as well, since Vis(S, T2)|x = [w1(x)1→ ok1, r2(x)→ 1], since 1 is
in the domain of x and r2(x) → 1 is directly preceded by an operation writing 1 to
x. Hence T2 in S is legal in S.

Since every Ti in S is legal in S, then sequential history S satisfies Def. 1b. There-
fore, Her is final-state opaque.

Prefix-closedness Below, we show that history Her is nevertheless not opaque,
because, by Def. 2, opacity requires that all prefixes of a history must be final-state
opaque. To that end, let history P be a prefix of Her created by removing the last 4
events of Her, i.e.:

P = [ start1 → ok1, start2 → ok2,w1(x)1→ ok1, r2(x)→ 1 ].

Furthermore, let P ′ = Compl(P ) s.t., P ′|T1 = P |T1 · [tryC 1 → A1] and P ′|T2 =
P |T2 · [tryC 2 → A2]. Note that, from definition of completion, P ′ is the only possible
completion of P because only case (d) applies to both transactions in P .

There are two possible sequential histories equivalent to P ′. The first one is S′ =
P ′|T1 · P ′|T2. Since T1 is aborted in P ′, then Vis(S′, T2) = P ′|T2 (that is, operation
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executions from P ′|T1 are excluded from Vis(S′, T2)). However, Vis(S′, T2) is not
legal because it contains operation execution r2(x) → 1 that is not preceded by any
write and v0 6= 1. Hence T1 in S′ is not legal in S′. So S′ does not bear out Def. 1b.

The second sequential history equivalent to P ′ is S′′ = P ′|T2 · P ′|T1. Here,
Vis(S′′, T2) = P ′|T2 (because T2 is not preceded by any other transaction in S′′).
Since, Vis(S′′, T2) = Vis(S′, T2), then by analogy to the discussion above Vis(S′′, T2)
is not legal, so T2 in S′′ is not legal in S′′. Thus, S′′ does not satisfy Def. 1b either.

In effect, there is no sequential history equivalent to P ′ that satisfies Def. 1. There-
fore, P does not satisfy Def. 1, and, since P is a prefix of Her, then Her does not
satisfy Def. 2 and so it is not opaque.

2.4 Observational Refinement

Observational refinement [13, 2], intuitively, is a notion that given two programs
and an observer who only sees the results of executing these two programs, if both
programs always produce the same results, then, effectively, the programs are in-
distinguishable, and, therefore, interchangeable. The definition depends on what is
considered observable behavior, which we assume to be the state of all variables during
the execution of a program.

Given the set V of all variables V = {x1, x2, ..., xw}, let state S be a set of variables
paired with their values, i.e. S = {(x1, v1), (x2, v2), ..., (xw, vw)}. Let the initial state
S0 be a state s.t., for any xj ∈ V and (xj , vj) ∈ S0, vj = v0. Let P(S) be a
powerset of S and E be the set of all possible invocation and response events. Then
let eval : P(S)×E 7→ P(S) be a function representing the semantics of a TM system.
It is out of scope of this paper to define the complete semantics of TM, so we limit
ourselves to presenting the following assumptions about eval .

Intuitively, we expect operations to behave deterministically based on the initial
state, regardless of transaction. We also expect successful initialization and execution
of commitment operations not to modify the state. More formally, given some states
S and S ′, processes pk and pq variable x, value v , transactions Ti and Tj , we assume
the following:

Assumption 1. If (e1, e2) = rki (x)→ v and (e′1, e
′
2) = rqj (x)→ v then eval(S, e1) =

eval(S, e′1) and eval(S ′, e2) = eval(S ′, e′2).

Assumption 2. If (e1, e2) = wk
i (x)v → ok i and (e′1, e

′
2) = wq

j (x)v → ok j then
eval(S, e1) = eval(S, e′1) and eval(S ′, e2) = eval(S ′, e′2).

Assumption 3. If (e1, e2) = startki → ok i then eval(S, e1) = S and eval(S ′, e2) =
S ′.

Assumption 4. If (e1, e2) = tryC k
i → Ci then eval(S, e1) = S and eval(S ′, e2) = S ′.

We say that history H = [e1, e2, ..., em] is observed-state equivalent to history
H ′ = [e′1, e

′
2, ..., e

′
n], which we denote H / H ′, when there exists such an injection

f : H 7→ H ′, that for each el ∈ H there exists er ∈ H ′ s.t., if eval(Sl−1, el) = Sl and
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eval(Sr−1, er) = Sr, then Sl−1 = Sr−1 and Sl = Sr. Furthermore, it is necessary that
if f(el) = er and f(el−1) = eq, then q < r. The intuition behind this definition is
that if the events in both histories were evaluated side-by-side, they would cause the
same changes to the state of the system, although one of the histories would contain
some operations that were not present in the other history. However, these operations
would not modify the state.

We say that transactional memory systemM observationally refines transactional
memory system M ′ if for any history H allowed by M there exists some history H ′
allowed by M ′ s.t., H / H ′.

3 History Decomposition

In the previous section we showed that a history with an instance of early release
cannot be opaque. However, the history shown in Fig. 1 is an intuitively correct
execution. Indeed, we showed that it is final-state opaque and only its prefix is not.
This intuition would be especially true if history H1 were generated by a pessimistic
TM system, where aborts do not occur. In the particular case of these systems,
forming a completion by defaulting an execution of an uncommitted transaction to an
abort is too conservative and leads to perfectly legal histories being unable to satisfy
opacity. On the other hand, the assumption that all transactions will eventually
commit is not one that can be incorporated into the definition of opacity without
compromising its meaningfulness for optimistic TMs.

Therefore, rather than modifying the definition of opacity to allow for non-aborting
pessimistic TMs with early release, in this section we propose a simple technique called
decomposition. The technique allows to create a decomposed history by splitting
transactions with early release into sequences of atomic single-operation transactions
(given certain stringent assumptions about their execution). This history will prevent
transactions with early release from violating the consistency requirements of opac-
ity, but will nevertheless be commensurate with the original history on the basis of
observational refinement.

However, please note that this is a transformation done "on paper" rather than
a technique that is used during the actual execution of operations by a particular
TM system, i.e., the state changes are done by the system as if all transactions were
atomic.

3.1 Intuition

Intuitively, the idea behind decomposition is to redefine any non-aborting transaction
that releases early as a sequence of smaller transactions, each of which performs
a single complete operation (i.e., an invocation and a response) and immediately
commits. Such a decomposed transaction preserves the semantics and operations of
the original transaction, but, since it is executed peacemeal, it no longer meets the
definition of early release. This allows a transaction that originally had early release
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(a) History H2 with early release.{
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(b) History H ′2 that is a decomposition of history H2.

Figure 2: Decomposition example.

to satisfy opacity.
An example of this is given in Fig. 2 where Fig. 2b shows history H ′2 which de-

composes H2 from Fig. 2a. Here, T1 from H2 is emptied, and the original operations
comprising T1 are executed as separate sequential transactions T1,1, T1,2, T1,3, and
T1,4. This can be thought of essentially as nesting transactions T1,1, T1,2, T1,3, and
T1,4 within T1 and using them to execute code within T1.

The decomposed history may be considered interchangeable with the original his-
tory because decomposed histories behave exactly like the original histories from which
they were produced. That is, the decomposed history observationally refines the orig-
inal history.

3.2 Definition of Decomposition

Let H be a TM history with unique writes. Let Ter be a set of transactions s.t.,
Ter ⊆ T and Ti ∈ Ter if, and only if, Ti is guaranteed to eventually commit and Ti
releases some object early. We say a transaction eventually commits if the semantics
of the TM ensure that it never aborts.

Given two transactions Ti and Tj (Ti, Tj ∈ T) and some invocation or response
event ei executed by transaction Ti, let reassignj(ei) be an event executed by Tj and
defined as,

reassignj(ei) =

{
inv j(op(x)w) if ei = inv i(op(x)w),

resj(u) if ei = resi(u).

Intuitively, reassignj(ei) is the same event as ei, only executed by transaction Tj
rather than Ti.

Given some transaction Ti and an event e, let openi(e) and closei(e) denote se-
quences defined as follows:

openi(e) = [start i → ok i] · [e], and
closei(e) = [e] · [tryC i → Ci].
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Note that using open on the first event and close on the last event of some sequence
of events "envelops" them in a transaction.

Then, we define history decomposition as follows:

Definition 3. Given a history H, let its decomposition Hd = Decomp(H) be identical
to H except that every transaction Ti ∈ H s.t., Ti ∈ Ter is transformed as follows:

a) every complete operation execution in Ti that consists of an invocation event e′i
and a response event e′′i , e′i is replaced in Hd by openj(reassignj(e

′
i)) and e′′i is

replaced in Hd by closej(reassignj(e
′′
i )), where j is fresh, i.e. there is no Tj in H,

b) every pending operation execution in Ti that only consists of an invocation event
e′i, e′i is replaced in Hd by openj(reassignj(e

′
i)), where j is fresh, i.e. there is no

Tj in H.

Note that decomposition produces a set of new transactions for each transaction
Ti ∈ Ter. We call such a transaction Ti a decomposed transaction. The set of all trans-
actions produced by decomposition to execute the events of a decomposed transaction
Ti is denoted Ti

d. This set explicitly contains the decomposed transaction Ti. We will
refer to any transaction Tj ∈ Ti

d s.t. Tj 6= Ti as a product of decomposition.
Next, let us show the opacity of a decomposed history, as follows.

Lemma 1. Given H, a final-state opaque history, and Hd = Decomp(H ), Hd is
final-state opaque.

Proof sketch. Let S be a sequential history fulfilling Def. 1 for H. Since H is final-
state opaque then, by Def. 1, every transaction Ti in S is legal in S because Vis(S, Ti)
is legal.

Let Sd be a sequential history identical to S except that for every event ei in some
transaction Ti in S,

a) if ei in H was replaced in Hd by openj(reassignj(ei)) (given some Tj), then it is
also replaced in Sd by openj(reassignj(ei)),

b) if ei in H was replaced in Hd by closej(reassignj(ei)) (given some Tj), then it is
also replaced in Sd by closej(reassignj(ei)),

c) otherwise it remains ei.

In addition every decomposed transaction directly precedes all of its product trans-
actions.

For every transaction Tk in Sd exactly one of the following is true:

a) Tk is neither a decomposed transaction nor a product transaction. In that case,
if Vis(Sd, Tk) = Vis(S, Tk), then, since every transaction Tk in S is legal in S
because Vis(S, Ti) is legal, so, by extension, Tk in Sd is legal in Sd. Alternatively,
if Vis(Sd, Tk) 6= Vis(S, Tk), then Vis(Sd, Tk) contains operations executed by
product transactions of one or more decomposed transaction Ti, where Vis(S, Tk)
contains operations executed by Ti. The definition of Sd implies that Sd contains
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the same read and write operation executions as S, but some of the operations
are executed by product transactions. Since the sequential specification Seq(x)
of any variable x ignores which transaction executes the operation as long as the
written and read values are correct, then, if Vis(S, Tk) is legal, then Vis(Sd, Tk)
is also legal. Hence, Tk in Sd is legal in Sd.

b) Tk is a decomposed transaction in Sd. Then, from Def. 3, transaction Tk does
not contain any read or write operation executions. Therefore, Tk in Sd is le-
gal in Sd if there is no other transaction Ti s.t., Ti ≺Sd

Tk. This is because
Vis(Sd, Tk) contains no read or write operations, so it is in Seq(x) for any x,
and thus Vis(Sd, Tk) is legal. Otherwise, transaction Tk is preceded in Sd by any
transaction Tj (Tj ≺Sd

Tk). For the sake of simplicity, let Tj be such a transac-
tion that there is no other transaction Ti, s.t. Ti ≺Sd

Tk and Tj ≺Sd
Ti. Then,

Vis(Sd, Tk) contains the same read and write operation executions as Vis(Sd, Tj).
Hence, if Vis(Sd, Tj) is legal, then Vis(Sd, Tk) is also legal. Thus, if the preceed-
ing transaction Tj in Sd is legal in Sd, then Tk in Sd is legal in Sd. Since we show
in (a) and (c) that other types of transactions in Sd are legal in Sd and since Tk
in Sd is legal in Sd if no transaction preceeds Tk, then, trivially, Tk in Sd is legal
in Sd.

c) Tk is a product transaction such that Tk 6∈ S and Tk ∈ Td
j for some decom-

posed transaction Tj . In that case Vis(Sd, Tk) is the same as Vis(Sd, Tj) with
the exception that Vis(Sd, Tk) also contains the operations executed by product
transactions Ti ∈ Ti

d of the decomposed transaction Tj , but only if i = k or
Ti ≺Sd

Tk. Let Tr be a special case of a product transaction of Tj for which there
is no other product transaction Ti ∈ Ti

d s.t., Ti ≺Sd
Tk. Then, note that the

definition of Sd implies that Sd|Tr contains the same read and write operation ex-
ecutions as S|Tj , with the exception that some of the operations are executed by
product transactions. By analogy to (a), since the sequential specification Seq(x)
of any variable x ignores which transaction executes the operation as long as the
written and read values are correct, then, if Vis(S, Tj) is legal, then Vis(Sd, Tr)
is also legal. Hence, Tr in Sd is legal in Sd. Since Seq(x) is prefix closed, then if
Vis(Sd, Tr) is legal, then every prefix of Vis(Sd, Tr) is also legal. Since Tk pre-
cedes Tr in Sd then Vis(Sd, Tk) is a prefix of Vis(Sd, Tr). Therefore Vis(Sd, Tk)
is legal, and thus Tk in Sd is legal in Sd.

Thus, all transactions in Sd are legal in Sd.
Trivially, Sd preserves the real-time order of Hd and Sd ≡ Hd.
Since Sd preserves the real-time order of H and every Ti in Sd is legal in Sd, then,

by Def. 1, Hd is final-state opaque.

Theorem 1. Given H, a final-state opaque history, and Hd = Decomp(H ), Hd is
opaque.

Proof sketch. Since H is final-state opaque, then, from Lemma 1, Hd = Decomp(H)
is final-state opaque.
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Given Hd = Decomp(H), Def. 3 ensures that if any transaction Ti releases early in
H, then it is decomposed in Hd, so all of its write operation executions are reassigned
in Hd to a product transaction Tj , s.t. Tj ∈ Td

i and each write is directly followed in
Hd by a succesful commit operation executed by Tj . Consequently, if any transaction
Tj writes value v to variable x, and any transaction Tk reads v from x, then Tj always
commits in Hd before Tk reads v from x.

Let P be any finite prefix of Hd. The prefix potentially contains some transactions
which are not completed, and therefore are aborted in the completion Pc = Compl(P ).
Note, from the above, that if any transaction Tj is aborted in Pc, then there is no
transaction that reads from Tj , because either any read operation reading from Tj
execution would follow Tj ’s commit operation due to T ′js decomposition, or Tj would
not release early.

Hence, there can exist a sequential history Sc ≡ Pc wherein any Tk in Sc is legal
in Sc. Since Hd is final state opaque and P preserves the real time order of Hd, then
Sc also preserves the real time order of Pc. If any a completion of any Pc is final-state
opaque, then Hd is opaque. Thus, Hd is opaque.

3.3 Observational Refinement of Decomposed Histories

Finally, we can say that the decomposition is indistinguishable from the original
history, and can be used in its place for the purpose of establishing opacity, because
the decomposed history reflects exactly the operations, their order, and the effect
they have on the state of the system. As such, observing the execution of the original
history does not differ from observing the execution of the decomposed history.

Theorem 2. Given any complete final-state opaque history H with unique writes and
its decomposed counterpart Hd = Decomp(H ), H / Hd.

Proof sketch. From Def. 3, for every event ei in H (for any transaction Ti in H),
history Hd contains either the same event ei, or (for some Tj , s.t. H|Tj = ∅) either
the sequence openj(reassignj(ei)) = [startj → ok j ] · [reassignj(ei)], or the sequence
closej(reassignj(ei)) = [reassignj(ei)] · [tryC j → Cj ]. Note that from Assumption 3
and Assumption 4, evaluation of any event e′j in [startj → ok j ] or in [tryC j → Cj ] does
not impact state, i.e., eval(S, e′j) = S. Note also that Assumption 1 and Assumption 2
imply that eval(S, ei) = eval(S, reassignj(ei)). Hence we can derive from Decomp(H)
a function f : H 7→ Hd that for any event ei returns reassignj(ei) if Decomp(H)
transforms ei to either openj(reassignj(ei)) or closej(reassignj(ei)), or ei otherwise.

Note that this function is an injection fromH toHd, and that if some event ei is not
in the range of f , it is part of a transaction initialization or transaction commitment,
so eval(S, ei) = S. Furthermore, note that for any event ei in H|Ti function f returns
either the same event ei or some other event ej that represents the invocation of or
response to the same operation, just executed by a different transaction Tj which is a
product transaction of the decomposition of Ti. In that case, from Assumption 1 and
Assumption 2 given some state S, for any ei it is true that eval(S, ei) = eval(S, f(ei)).

Finally, since function Decomp preserves the order of events from H in Hd, then
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for two events e1 and e2 in H, s.t. e1 precedes e2 in H, f(e1) precedes f(e2) in Hd.
Thus, since f exists, then by definition of observed-state equivalency, H / Hd.

Corollary. Given a TM systemM and a (hypothetical) TM systemMd that for every
history H allowed by M produces a history Hd = Decomp(H), since H / Hd, then
M observationally refines Md.

4 Safety of Pessimistic TM

In this section, as an example, we provide a proof sketch showing by decomposition
that a pessimistic concurrency control algorithm that avoids conflicts and eliminates
aborts is opaque despite early release.

The Supremum Versioning Algorithm (SVA) [28, 27] is a fully-pessimistic concur-
rency control algorithm. When SVA transactions start, they get a consistent snapshot
composed of version numbers for each variable they will access (i.e. execute a read
or write operation on it). Versions can be seen as permissions to access variables:
they are used in conjunction with a local counter (also per variable) in the access
condition to defer accesses to a given variable until preceding transactions finish op-
erating on it. Broadly, a transaction can access a variable if it has a version number
one lower than the variable’s local counter. When a transaction is complete it com-
mits: releases all variables by setting their local counters to its version number for the
variable (this also requires meeting the access condition). To improve the parallelism
of execution, transactions can release any variable they will no longer access, even
before committing. This can be done automatically by the algorithm or manually by
the programmer. This former is possible if a transaction knows a priori the upper
bounds on the number of accesses to each variable (details on finding this out are
given further below).

Lemma 2. A determined finite SVA history is final-state opaque through decomposi-
tion.

Proof sketch. Since all SVA transactions Ti ∈ T access any variable x ∈ V only
when it is in the appropriate version (denoted Vp(x, Ti)), and since the versions of
variables increase monotonically, then they have exclusive access to x. That is, an
SVA transaction Ti can access x in history H only after a preceding transaction
Tj releases x after last use or commits. Then, for each x ∈ V, given set Tx that
contains all transactions which access x, there exists a total order ≺Tx

on Tx s.t.,
given transactions Ti, Tj ∈ Tx, Tj ≺Tx

Ti iff Vp(x, Tj) < Vp(x, Ti). By extension,
given any SVA history H, there exists a partial order �H on H that agrees with ≺Tx

for each x ∈ V (i.e. ≺Tx
⊆�H , for each x ∈ V).

LetH be any finite SVA history that is determined (i.e. one for which Compl(H) =
H). Let S be a sequential history equivalent to H s.t. transactions in S are ordered
in accordance to �H . Then, trivially, S follows the real-time order of H.

Note that given a determined SVA historyH, no transaction aborts inH. Note also
that given two transactions Ti, Tj ∈ H, s.t. Ti, Tj ∈ Tx, if Ti accesses x after Tj , then
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Ti accesses x after Tj releases x or commits. Since SVA transactions release objects
after last use, then any transaction always views a consistent state of the system and
is the only transaction that executes operations on a given variable between its first
and last access of that variable. Hence, each transaction in H behaves as if it were
executed sequentially. So each transaction in any sequential history S s.t. H ≡ S
conforms to a sequential specification of each variable. Therefore, every transaction
Ti in S is legal in S.

Since we can construct a sequential history S equivalent to H that preserves the
real time order of H and every transaction Ti in S is legal in S, therefore H is
final-state opaque.

Theorem 3. Every SVA history is opaque through decomposition.

Proof sketch. Let H be any finite determined SVA history. Let Hd = Decomp(H).
Since H is final-state opaque (Lemma 2), then, by Theorem 1, Hd is opaque. Then,
sinceHd observationally refinesH (Theorem 2), H is indistinguishable from an opaque
history Hd.

Let H ′ be any SVA history that is not determined. Trivially, there exists such a
determined SVA history H, that H ′ is a prefix for H. Since every every determined
history is final state opaque (Lemma 2), there exists a decomposed history Hd =
Decomp(H) that is opaque (Theorem 1). Then, there must exist a H ′d = Decomp(H ′)
that is a prefix of Hd. Since all prefixes of Hd are final-state opaque, then H ′d is final-
state opaque (Def. 2). Also, since all prefixes of Hd are final-state opaque, then all
prefixes of H ′d are final-state opaque, and in consequence H ′d is opaque. Then, since
H ′d observationally refines H ′ (Theorem 2), H ′ is indistinguishable from an opaque
history.

5 Related work

Opacity [9, 10] can be considered the standard TM safety property, but it does not
take into account the possibility of a completely abort-free TM which can release
early without violating consistency (as we describe in Section 2). To the best of our
knowledge we are the first to propose reconciling such TMs with opacity.

Other work has been done to weaken various aspect of opacity. Among these,
virtual world consistency [16] allows aborted transactions not to agree on the witness
history and virtual time opacity [16] relaxes the real-time order condition. View
transactions [1] only require that a transaction commits on any snapshot, that can be
different than the one the transaction operated on, but if the transaction did operate
on it, the results would be externally indistinguishable. Elastic opacity [8] allows
transactions to roll back partially in case of conflicts.

In addition some properties were introduced specifically to incorporate early release
for TM models with potentially aborting transactions. This includes our work on
last-use opacity [24] where transactions can only release early if the value of the
variable in question will remain constant after release. Another example are a family
of live properties, including recent work on live opacity [7], which allow transactions to
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release early given that the transaction is guaranteed to commit afterward (although
in general transactions can abort).

6 Conclusions

The paper presents a technique called decomposition that aids in proving opacity for
TM systems with guaranteed commitment where transactional histories can contain
early release. The technique splits transactions with early release into smaller atomic
units. We show that if the original history is final-state opaque, the decomposed
history is opaque. We also demonstrate that a final-state opaque history whose de-
composition is opaque may be considered opaque due to observational refinement.
In addition, we show an example of the application of the technique for SVA, a
pessimistic TM concurrency control algorithm with early release which completely
prevents aborts.

TM systems gain a significant performance boost from the application of early
release (see e.g. [14, 20, 8, 4, 23, 26]), but systems with early release cannot satisfy
the definition of opacity, even if they produce no histories with inconsistent views. Our
proposition to show that histories with early release can be seen as indistinguishable
from opaque histories via the application of decomposition means that safety is not
traded for efficiency in TM systems with early release if transactions that release early
never abort.

While the technique should allow to build proofs for pessimistic TM with guaran-
teed commitment, it would be interesting to devise methods or properties for demon-
strating the correctness guarantees of TMs with both early release and rollback ca-
pability.
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