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Abstract. Computerized texture analysis characterizes spatial patterns of image 
intensity, which originate in the structure of tissues. However, a number of texture 
descriptors also depend on local average image intensity and/or contrast. This variations, 
known as image nonuniformity (inhomogeneity) artefacts often occur, e.g. in MRI. Their 
presence may lead to errors in tissue description. This unwanted effect is explained in this 
paper using statistical texture descriptors applied for MRI slices of a normal and fibrotic 
liver. To reduce the errors, correction of image spatial nonuniformity prior to texture 
analysis is performed. The issue of sensitivity of popular texture parameters to image 
nonuniformities is discussed. It is illustrated by classification examples of natural Brodatz 
textures, digitally modified to account for inhomogeneities – modeled as smooth variations 
of image intensity and contrast. A set of texture features is identified which represent 
certain immunity to image inhomogeneities.  

Keywords: texture analysis, magnetic resonance imaging, image normalization, gray 
level nonuniformity correction, texture features sensitivity 

1. Introduction

1.1. Problem definition 

Interest in texture analysis and its applications to magnetic resonance images (MRI) is 
constantly growing in the recent years [23]. The texture descriptors provide a rich source of 
information, computed to characterize spatial patterns of the image intensity that originate in 
the structure of tissues. Computerized texture analysis is becoming a significant aid to image 
quantification - for more accurate, reliable and objective medical diagnosis. Although the 
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notion of "texture" does not have any general intuitive definition, humans easily perceive 
image regions of different surface-like appearance. The recognized texture attributes such as 
"smoothness", "roughness", "granularity", "directionality", etc. [4] have their origin in the 
physical microstructure of tissues and organs that are visualized in the image [2], [1]. 

As an extension of the traditional quantitative image analysis based on voxel intensity, 
texture analysis (TA) deals with intensity patterns. For example, it is known that there are 
two main symptoms of osteoporosis – reduced bone mass density (BMD) and changes in 
bone microarchitecture. The latter can be quantified by calculation of texture parameters – 
local image statistics that reflect the presence of image patterns made by the mesh of bone 
trabeculae. Combination of the BMD and appropriate texture parameter values is a better 
predictor of the fracture risk than the BMD value alone [23]. The average thickness, number 
or orientation (anisotropy) of bone trabeculae can be evaluated based on image region. Their 
values can indicate osteoporotic changes in the bone. 

Numerical analysis of image texture has been a topic of active research since the sixties 
of the past century [26]. A whole-body MR scanner can now produce sub-millimeter 
resolution images that simultaneously contain information about the external shape of large 
organs and details of the internal tissues, at a sufficient signal-to-noise ratio (SNR). This 
makes texture analysis feasible and contributes to increasing interest in clinical applications 
of MRI TA methods [8], [26]. A "renaissance" of this methodology is now observed [6]. 

The main issue in TA is calculation of numerical descriptors that uniquely characterize 
intensity patterns, present in 2D or 3D images. The accepted hypothesis for TA is that by 
examining values of texture descriptors one can draw conclusions about a pathology or 
disease process. It is assumed that such processes involve changes in tissue structure that 
result in measurable change of the image texture, e.g. [3].  

The texture descriptors (parameters, features) are statistics computed for voxels inside a 
region of interest (ROI). Thus ROI should be of a large volume, to contain a statistically 
significant number of elementary texture patterns. Moreover, the image statistics should be 
stationary – the ROI should be homogeneous in terms of all the relevant image statistics. 

Hundreds of different-definition texture parameters can be computed for a given ROI 
[26]. Since it is not known in advance which parameters will be the best to describe 
properties of given texture patterns, most of them are usually computed and their subset is 
then selected based on their best performance for classification [26] or prediction [3]. 

It was demonstrated that some of the popular texture descriptors depend not only on 
texture, but also on some other ROI properties, in particular the intensity mean and variance 
[20]. This is an undesired property, obscuring the actual effect of texture on the descriptor 
values. As a consequence, ROI normalization in terms of the intensity mean and variance is 
one of the recommended preprocessing steps, prior to texture descriptor computation. 
Relevant procedures are available in TA software packages [26]. 

Still, the ROI normalization does not eliminate yet another residual (but serious) effect, 
which is the descriptor dependence on locally varying mean intensity. As an example, it is 
known that MR images are spatially not homogeneous – for many reasons, such as static 
magnetic field inhomogeneity, imperfections of gradient and RF coils, etc. [23]. Reviews of 
methods of MRI inhomogeneity correction are available in [23], [2], in the context of image 
segmentation through intensity thresholding, usually under the assumption of a Gaussian 
mixture image model. However, to the Authors knowledge, the significance of image 
uniformity assumption to texture analysis has not been discussed in the literature, although 
its correction prior to TA has been done in some studies [16]. (Somewhat related, but of 
different physical origin, the issue of background-independent texture analysis of X-ray 
mammograms is discussed in [15].) Thus the aim of this paper is to demonstrate that results 
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of TA can be very sensitive to image uniformity inside ROI and that without correction, TA 
may bring "convincing" but, in fact, false results. 

Another objective of this work is to perform more detailed discussion of the influence of 
image inhomegeneities on commonly used texture parameters. This is rather difficult task 
since these parameters are not defined directly in the image intensity domain.  Instead, they 
are derived from two-dimensional probability distributions (co-occurrence matrix), image 
transform (energy of wavelet coefficients in subbands), et cetera. Therefore, we adopted 
some simplified models of the most commonly used texture descriptors to find out the 
origins of their possible dependency on image local intensity variations. 

The discussion carried out in this paper was illustrated by classification examples of 2D 
visual image textures. This provided an intuitive support originated from wide experience in 
dealing with various natural textures, which surround us in daily life. 

1.2. Texture features and ROI normalization 

It is pointed out in the seminal paper [9] that “texture” and “tone” are the most important 
properties of a region of interest in a monochrome image processed by a computer. These 
properties are not independent concepts. The tone relates to varying shades of gray of image 
voxels. The texture, in turn, is linked to information about spatial distribution of those tonal 
variations. Tone and texture are always present in the image; however, one property can 
dominate over the other. When a small-area ROI has little spatial variation of voxels 
intensity, the dominant property is the tone. If the variation is large, the dominant property is 
the texture. The concept of texture analysis suggested in [7] is related to average spatial 
relationship that the gray tones have to one another. In particular, it is assumed that texture 
information is adequately specified by a set of gray-tone-spatial-dependence matrices, which 
are computed for various angular relationships and distances between voxels-in-pair in the 
image. Many other descriptors are used to characterize the texture [10], [20].  

The assumed model of the image for texture analysis is a stationary random field. Its 
statistical parameters do not change with voxel location. This assumption is usually satisfied 
by small-area ROIs extracted from MRIs. If, however, the images of the same tissue are 
measured by different scanners, taken from different parts of an organ, etc., the ROI intensity 
mean and variance may be, respectively, different between ROIs. Then, one can show that 
this “first order” (or tone-related variability) may significantly affect many “second-order” 
texture parameters [20]. Namely, a variety of texture descriptors do indeed describe the 
texture in quantity, but they also depend on mean ROI tone and variance. To reduce this 
effect, the normalization is usually done prior to texture parameter computation. One of the 
frequently used methods, implemented in the popular MaZda TA package [26] makes all 
ROIs intensity mean equal to 128 and the intensity variance to 30, in an 8-bit gray-level 
scale. 

1.3. Image model 

Assume now, the region of interest in an image is of relatively large area which contains a 
homogeneous texture of a slowly varying local first-order statistics of the intensity (tone). 
Thus the texture itself is considered stationary within ROI – it may represent the structure of 
an anatomically defined organ or a uniform part of it (either pathological or healthy). 
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However, the background intensity or local image contrast change within the region, and the 
changes can be represented by smooth functions of the voxel coordinates in space. 

Such a model represents a typical image measured by a clinical MR scanner in which 
anatomically/physiologically irrelevant intensity variations exist. These variations may be 
induced by the nonuniformity of gradient coils, spatially dependent sensitivity of the radio-
frequency coils, the image acquisition measurement sequence properties and other factors. 
The nonuniformities can be corrected prospectively (using phantoms) and/or retrospectively 
[23], [4]. The image intensity inhomogeneity in MRI is an adverse phenomenon that affects 
qualitative and quantitative analysis of images. It may significantly affect texture analysis 
also, as will be demonstrated later.  

Consider a class of statistical texture descriptors based on gray-level co-occurrence 
matrix (GLCM) [9], [10] which are considered effective in many MRI TA tasks. These 
descriptors are computed as scalars derived from the GLCMs, in turn computed for all pairs 
of voxels located at a given distance and direction from each other, within ROI. 

As the probability entries of the GLCMs are estimated on the basis of the frequency of 
the gray level transitions, one cannot distinguish whether a particular entry has its origin in 
texture or in slowly varying tone. Making this distinction is especially difficult in the case of 
structural tissue changes caused by a disease in an initial stage of its development, where the 
texture and tone properties are comparable and balanced. One can show other texture 
descriptors [20] are also sensitive to smooth variations of image intensity (tone). 
Comprehensive, general analysis of this property is, however, beyond the scope of this 
paper. 

Following the above, it is postulated that in the cases where the model of slowly varying 
local intensity is applicable, e.g. for relatively large ROI of uniform texture, the intensity 
variations should be corrected for (either prospectively or retrospectively), to suppress the 
effect of inhomogeneity artifacts on TA. Magnetic resonance images of healthy and fibrotic 
liver were chosen to support this recommendation. Results of their texture classification are 
presented and discussed in the following Sections to illustrate the main points of the issue. 

2. Materials and methods

2.1. MR liver images 

Analysed MR liver images represent healthy volunteer and patient with liver fibrosis. They 
were imaged with breath-hold respiration motion artifact reduction technique, using a 3T 
MRI device (Philips Achieva) and a T1 weighted pulse sequence (THRIVE iso: ultra-fast 
gradient echo, TR/TE= 2.76/1.36 ms, a = 10°, FOV = 400x400 mm2, matrix size = 192x192, 
isotropic voxel = 2.08x2.08x2.08 mm3). For analysis, 13 cross-sections of each case 
representing middle part of the liver were considered. Sample cross-sections are presented in 
Fig. 1. The liver disease was diagnosed based on liver biopsy. The images of each type were 
acquired for a patient and a healthy volunteer with their informed consent, approved by a 
local ethics committee (courtesy of Dr Jacques de Certaines, within the framework of EU 
COST B21 action). 
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 a)   b) 

Figure 1.   Sample slices of 192x135-pixel MR liver images. White lines delimit ROIs of, 
respectively, (a) healthy and (b) fibrotic liver 

The steps of liver image analysis include ROI definition, feature extraction, feature 
selection and classification, Fig. 2. Before analysis each ROI was normalized, by calculating 
mean value (m) and standard deviation (σ) of its gray levels. Normalization involved the 
mean value subtraction and division of the difference by the standard deviation. 
Subsequently, the ROI gray levels were quantized in the range of m ± 3σ [26]. Next, for each 
ROI the texture features were estimated. They were based on the following approaches: co-
occurrence matrix, run-length matrix, gradient matrix, autoregressive model, and Haar 
wavelet transform (WT). A detailed definition of these features is described in [20]. To 
reduce the number of texture features to most significant ones, the Fisher criterion [22] was 
applied. Classification based on 1-nearest neighbor classifier (1-NN) was performed using 
b11 – a part of MaZda software package [26]. 

A closer look at the liver cross-sections, e.g. those shown in Fig.1, reveals that the 
average local image intensity is not the same inside different parts of a ROI. In particular, the 
lower left part of the fibrotic liver image is darker than its upper part. To investigate this 
effect in quantity, the local average intensity was approximated by a smooth function of 
image coordinates x, y.  

In the case of MRI, the average intensity variations are of multiplicative nature, as their 
source is in spatial variation of the measured RF signal power (e.g. related to B0 magnetic 
field or RF receiver coils nonuniformities). Other modalities, e.g. visual light camera [7] or 
computed tomography images [1] may feature additive variations as well. To keep the 
discussion more general, we investigated and compared both cases – additive and 
multiplicative nonuniformity artifacts and their effects on texture analysis in the presented 
example.  
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Figure 2.   Block diagram of image processing steps 

Before correcting the nonuniformity of an image, its local average intensity fn(xn, yn) was 
estimated within square windows centered at nodes of a regular grid inside ROI, n=1,2,…,N. 
The size of the window was compromised between smoothing the texture details inside it 
and providing a large number of independent windows covering the ROI area. In the 
considered example, the windows size was set to 5x5 pixels and their centers were separated 
by 5 pixels in both, horizontal (x) and vertical (y) directions. Their total number N was 
varying from about 40 to 80, depending on a ROI size.  

In the case of additive artifacts, the background image intensity inside ROI was modeled 
by a 3rd order polynomial [19] 
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such that the local average image intensity inside ROI is estimated as the product of its 
intensity mean value m and fs, as follows 
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For the multiplicative model artifacts, the image background intensity inside ROI is 
estimated as the ratio 
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m
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The symbols )(aa  in (2) and )(ma in (3) denote the parameter vector a=[a0, a1, …, a9] of the 
surface (1) used to represent the additive and multiplicative artifacts, respectively. They were 
estimated for each ROI through minimization of a sum-of-squared error ε between the local 
intensity average fn(xn, yn) and the modeled average, with the use of fsn(a) = fs(xn, yn; a), for 
all center coordinates (xn, yn) of the averaging windows, n=1,2,…,N. For additive artifacts, 
the error function was computed as 
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where a =[a0, a1, …, a9] is the vector of unknown parameters. 
In the case of multiplicative artifacts model, the error function was defined as 
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Minimization of (4) can be converted to solving a system of linear equations, while 
minimization of (5) is a nonlinear problem. In both cases, however, a universal 
unconstrained Powell minimization routine available in Scipy Python library [11] was used 
to find the respective parameters opta  of the model (1) for each ROI. 

Finally, for additive artifacts, the intensity of each pixel inside ROI was corrected using 
the following formula 

]1);,([),(),( )()( −−= a
opts

a ayxfmyxfyxf  (6) 

where )(a
opta  is computed through minimization of (4). For the multiplicative model, the 

corrected image was obtained through 

);,(),(),( )()( m
opts

m ayxfyxfyxf = (7) 

where )(m
opta  is the argument of minimized (5). As one can notice, if image background 

intensity is constant within ROI, all the elements of the parameter vector a in (1) are zero. 
Then, for each image point (x, y) inside ROI, fs(x, y; 0)=1 and, consequently, the images 
computed with (6) or (7) are simply not corrected – they are equal to original ones in such 
cases.  

2.2. Brodatz textures 

To illustrate the discussion presented in Section 3, four images representing Brodatz album 
[5] textures were considered. These 8-bit encoded images with size 256x256 are presented in 
Fig. 3. Two types of image nonuniformity were considered. First, corresponding to variable 
intensity, was modeled by additive function shown in Fig. 4a. Second type reflects variable 
contrast and is represented by function from Fig. 4b. Both functions were defined using a 
linear function [23] 

𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 𝑐𝑐1𝑥𝑥 + 𝑐𝑐2𝑦𝑦 + 𝑐𝑐3                                                         (8) 

where c1, c2, c3 are constants – respective model parameters. The degraded texture images 
are shown in Fig. 5. 
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a) b) c) d) 

Figure 3. Sample Brodatz textures used for analysis: grass (a), raffia (b), water (c), 
and wool (d) 

Figure 4. Variable image intensity (a) and contrast (b) models 

  a) 

  b) 

Figure 5. Textures from Fig. 3 degraded by additive (a) 
and multiplicative (b) nonuniformities 

The original and modified Brodatz-album images were analyzed using the same 
methodology as in the case of liver images, except for ROI definition. Namely, each Brodatz 
image was split into 16 square-shaped non-overlapping ROIs.  

3. Sensitivity of selected texture parameters to image nonuniformities

This Section presents a discussion on how commonly used texture features are influenced by 
variable image intensity mean and contrast. These variations are modeled by additive or 

a) b) x y x y 

g(x,y) g(x,y) 
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multiplicative function respectively that modify gray level distribution of the original 
texture. In most practical situations, the size of the region of interest (ROI), which contains 
the texture under analysis, is small. This especially happens in cases where the change in 
texture corresponds to an early stage of a disease affecting the tissue structure. If ROI is 
small, one can assume the variations of its local average intensity and contrast can be 
described by a smooth, close-to-linear functions. Examples of such functions  (see eqn. (8) in 
Section 2) are shown in Fig. 4. 

Let us consider a linear model of slowly varying local intensity (Fig. 4a) and assume the 
intensity characterized by this model is quantized using a small number K of quantization 
intervals. Now, to simplify the discussion, the quantized intensity variation is added to an 
image of otherwise uniform texture. As an example, Fig. 6a illustrates the image filled with 
uniform texture whose additive linearly varying local intensity is quantized to four intervals. 
This simplification does not impose any lack of generality – in the limit the number K can be 
increased to a value adequate for the local intensity representation. 

3.1. GLCM 

The probability entries of the GLCMs are estimated on the basis of the frequency of the gray 
level i and j transitions, assuming given interpixel distance and analysis direction [26]. 
Additive nonuniformity is modeled by a smooth (but stepwise, see above) function that 
consists of K regions with means mk. Adding the stepwise intensity component will cause 
transformation of an original texture GLCM element a[i,j] into a set of elements 
a[i+mk,j+mk], a[i+mk,j+m(k+1)], a[i+m(k+1),j+mk], k=1…K. Their values are proportional to 
respective region area and border length between regions. Sample case is illustrated in Fig. 
6. It presents uniform texture degraded by intensity variation that includes four regions with
means 0<m1<m2<m3<m4 respectively (Fig. 6a). Thus the GLCM entry a[i,j] will be 
transformed into a number of entries, as shown in Fig. 6b. These elements will be located in 
the matrix diagonal (gray circles) within mk from a[i,j] (the same concerns off-diagonal 
GLCM elements). Additionally, new elements will appear that represent pixels located in the 
region borders: a[i+mk,j+mk+1] and a[i+mk+1,j+mk], (white circles in Fig. 6b),  distributed on 
both sides of a[i+mk,j+mk] The discussed transformation of GLCM can be described as 

𝑎𝑎[𝑖𝑖, 𝑗𝑗] →  �𝑆𝑆𝑘𝑘�𝑎𝑎[𝑖𝑖 + 𝑚𝑚𝑘𝑘, 𝑗𝑗 + 𝑚𝑚𝑘𝑘] + 2𝐿𝐿𝑘𝑘,𝑘𝑘+1𝑎𝑎[𝑖𝑖 + 𝑚𝑚𝑘𝑘, 𝑗𝑗 + 𝑚𝑚𝑘𝑘+1]� 
K

k=1

 � �𝑆𝑆𝑘𝑘 + 2𝐿𝐿𝑘𝑘,𝑘𝑘+1�
𝐾𝐾

𝑘𝑘=1
= 1  (9) 

where Sk and Lk,k+1=Lk+1,k represent the contribution of corresponding region areas and 
border lengths in relation to the whole image size respectively, K denotes the number of 
different regions. For slowly varying intensities one can assume that mk≈mk+1,for every 
region k. This means that translated GLCM elements will create close groups in parallel to 
matrix diagonal (‘tails’, as shown in Fig. 6b). Further illustration of these effects will be 
shown in Section 4. 

GLC matrices are constructed for assumed direction (0°, 90°, 45° and 135°) and distance 
between pixels in pairs. For such matrices, a number of texture features can be computed [7]. 
Let (dx, dy) be a vector whose elements are respectively the x and y co-ordinate differences 
between pixels, pairwise. The interpixel distance is defined as max(d1, d2), while the 
direction is generally specified by the vector (dx, dy). The two numbers (dx, dy) in brackets 
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precede a feature name. For example, “(1,0)Entropy” means that this particular feature was 
estimated for a GLCM computed on the basis of pixels separated by unit distance in the 
horizontal direction.  

a) b) c) 

Figure 6.   Sample texture with local intensity variation represented by four constant 
regions with means m1 – m4 (a). Distribution of GLCM elements: a[i,j] for original 

texture and after additive (b) and multiplicative (c) distortion. 

Some texture parameters defined for the GLCM directly depend on difference between 
indexes (i,j) of matrix elements. For example, the Contrast feature is defined as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = � 𝑛𝑛2
𝐺𝐺−1

𝑛𝑛=0
�� � 𝑎𝑎[𝑖𝑖, 𝑗𝑗]

𝐺𝐺−1

𝑗𝑗=0

𝐺𝐺−1

𝑖𝑖=0
� , 𝑛𝑛 = |𝑖𝑖 − 𝑗𝑗|  (10) 

where G is a number of image gray levels. For K-region additive intensity the Contrast 
descriptor is defined by (11): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐾𝐾 = � 𝑛𝑛𝑘𝑘2
𝐾𝐾

𝑘𝑘=1
� � 𝑆𝑆𝑘𝑘𝑎𝑎[𝑖𝑖, 𝑗𝑗]

𝐺𝐺−1

𝑗𝑗=0

𝐺𝐺−1

𝑖𝑖=0
+ 2� 𝑛𝑛𝑘𝑘,𝑘𝑘+1

2
𝐾𝐾

𝑘𝑘=1
� � 𝐿𝐿𝑘𝑘,𝑘𝑘+1𝑎𝑎[𝑖𝑖, 𝑗𝑗]

𝐺𝐺−1

𝑗𝑗=0

𝐺𝐺−1

𝑖𝑖=0

≈ 𝑛𝑛2� � � 𝑆𝑆𝑘𝑘𝑎𝑎[𝑖𝑖, 𝑗𝑗]
𝐾𝐾

𝑘𝑘=1

𝐺𝐺−1

𝑗𝑗=0

𝐺𝐺−1

𝑖𝑖=0

+ 𝑛𝑛2� � � 2𝐿𝐿𝑘𝑘,𝑘𝑘+1𝑎𝑎[𝑖𝑖, 𝑗𝑗]
𝐾𝐾

𝑘𝑘=1

𝐺𝐺−1

𝑗𝑗=0

𝐺𝐺−1

𝑖𝑖=0

= 𝑛𝑛2� � � �𝑆𝑆𝑘𝑘 + 2𝐿𝐿𝑘𝑘,𝑘𝑘+1�𝑎𝑎[𝑖𝑖, 𝑗𝑗]
𝐾𝐾

𝑘𝑘=1
= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝐺𝐺−1

𝑗𝑗=0

𝐺𝐺−1

𝑖𝑖=0
 

Since nk=|(i+mk)-(j+mk)|=|i-j|=n and, assumed mk≈mk+1, nk,k+1=|(i+mk)-(j+mk+1)|=|(i+mk+1)-
(j+mk)|≈|i-j|=n. 

Thus small additive modifications of local intensity will not modify significantly the 
value of this texture feature. The same conclusion will be valid for some other parameters, 
such as Sum of Squares, Inverse Difference Moment, Variance and Entropy of Difference 
Distribution because these parameters also depend on the difference of GLCM element 
indexes. Thus values of these parameters should not be much sensitive to slow variations of 
texture intensity.   

Multiplicative nonuniformity is also modeled by a smooth (but stepwise) function that 
consists of K regions of different intensity multiplication vk=1+ck, where ck characterizes the 
variation of image contrast across regions, k=1,2,..,K.  Introducing this variations will 
transform an original texture GLCM element a[i,j] into a set of elements a[ivk,jvk], 

(11) 

m4 
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a[ivk,jvk+1], a[ivk+1,jvk], k=1…K, as in the case of intensity nonuniformity (original image 
gray levels are modified by multiplying their values by respective local coefficient vk). 
Assuming smooth changes of the multiplicative nonuniformity (vk≈vk+1), these elements will 
be also located close to each other. However, due to the index multiplication operation, their 
clusters will not be located in parallel to the GLCM diagonal. Sample matrix element 
distribution is shown in Fig. 6c, assuming that original texture was degraded by means of 
multiplicative nonuniformity modeled by four regions with coefficients 1<v1<v2<v3<v4 
respectively. As a result, the previously discussed GLCM parameters will be more sensitive 
to local contrast distortion when compared to the additive changes since difference of 
indexes will not cancel the effect introduced by multiplication (|ivk-jvk|= vk|i-j|≠|i-j|). 
However, for small contrast changes (vk≈1), these elements will be less sensitive to contrast 
variation than other ones defined for GLCM, which by definition do not depend on index 
difference. 

Our study revealed also that some GLCM texture parameters which are in general 
sensitive to multiplicative changes of image intensity, become insensitive to them if the 
function describing this nonuniformity possesses appropriate symmetry in the image 
coordinate system.  

3.2. RLM 

RL matrix elements p[i,r] represent the number of times there is a run of length r having 
grey level i, for given direction in the image [10]. Considering similar assumptions as in the 
case of GLCM discussion, additive image intensity changes will cause two effects. First, 
RLM entries split into K new ones located in matrix rows indexed by i+mk. Also, this new 
entries shift towards shorter runs rk, proportionally to the shape and length of the regions, 
r1+…+rk = r. This is illustrated in Fig. 7 where sample element p[i,r] of original texture split 
into four ones p[i+mk, rk], k=1…4 (assuming variable intensity model with four regions as 
shown in Fig. 6a). The transition of RLM elements for additive local intensity variation is 
illustrated by eq. (12): 

𝑝𝑝[𝑖𝑖, 𝑟𝑟] →�𝑝𝑝[𝑖𝑖 + 𝑚𝑚𝑘𝑘, 𝑟𝑟𝑘𝑘]
𝐾𝐾

𝑘𝑘=1

,  � 𝑟𝑟𝑘𝑘
𝐾𝐾

𝑘𝑘=1
= 𝑟𝑟    (12) 

where rk corresponds to new shorter run lengths introduced after split of original element 
p[i,r]. 

Figure 7.   Modification of RLM as a result of variable intensity: original element 
p[i,r] splits into four ones with shorter runs and intensities altered by mk 
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Similar effect will occur for multiplicative degradation, except for the new element 
locations will depend on the product of i and mk. This means that RLM structure will be 
rather significantly modified, in terms of element distribution and alteration of their values.  

3.3. Wavelet coefficients 

The discrete WT of a signal is based on its successive decomposition into high-pass and low-
pass filtered components [17]. Each component is down-sampled by 2 to provide next-scale 
(lower resolution) signal, for further decomposition with the same filter bank. In the 2D case, 
the 1D analysis filter bank is usually first applied to the columns of the image and then 
applied to the rows of the first-step result. The normalized energy of the image at each scale 
is typically computed to provide the parameters of the image texture. The MaZda software 
[24,26] computes Haar-wavelet DWT up to 8 scales with a cascade of high and low-pass 
filters, resulting in four subbands (low-low, low-high, high-low and high-high) for each 
scale. This is also reflected in names used for estimated energies of wavelet coefficients. 
First two letters (L or H) correspond to given subband while a number denotes the scale. For 
example, “(H,L,2)Wavelet_energy” was estimated for high-low subband at second scale. 
Due to high-pass filtering, slow variations of image intensity are suppressed, thus one can 
expect that energies evaluated for these subbands should preserve the information about the 
texture only. Thus Haar DWT parameters should be resistive against local intensity 
variation, except for those estimated for low-low subband. The high-pass filtering that 
partially removes variable illumination is built into image gradient operator, as well. Thus 
the latter conclusions are practically valid for parameters estimated from gradient matrix in 
the case of additive variation of texture intensity. Variable contrast will modify image 
gradient resulting in modification of estimated parameter values. 

Considering other texture models (e.g. statistical, like autoregressive), they in general 
show sensitivity of their parameters to image local intensity and contrast variations.  

4. Results

4.1. MR liver images 

First, texture features were computed for all 26 MR liver images used in this experiment. A 
scatter plot on the best features plane is shown in Fig. 8. As the two clusters are quite 
compact and well separated, it seems one can distinguish images of a fibrotic liver from 
images representing the healthy group, with no error.  

Bearing in mind, however, that the measured images at hand are apparently not uniform 
in terms of local average intensity, their corrections were made with the use of additive and 
multiplicative models. An example of the additively corrected liver images shown in Fig. 1 
is presented in Fig. 9. As a matter of fact, the multiplicatively corrected images look the 
same, at least to the Authors’ eyes. 
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Figure 8.   Scatter plot of best discriminating co-occurrence matrix parameters 
computed for thirteen different slices of normal and fibrotic liver MR image. Fisher 

coefficient F = 27.1, misclassification rate e = 0/26. 

The texture features were then computed for the corrected images and best of them were 
selected using the largest Fisher coefficient criterion. The best-feature scatter plots for 
additively and multiplicatively corrected images are respectively shown in Fig. 10 and Fig. 
11. First, one can notice that the best features are different from those selected for the
uncorrected images. Moreover, the class clusters for the corrected ones are less compact and 
relatively closer to each other. Thus the removed average intensity field has had an important 
contribution to the “nice” class separation shown in Fig. 8.  

 a)  b) 

Figure 9.   Normal (a) and fibrotic (b) liver images of Fig. 1, corrected using the 
additive (brightness non-uniformity) model. 

Figure 12 shows a distribution of the best features selected for multiplicatively corrected 
images applied to additively corrected ones and the best features selected for additively 
corrected liver images applied to multiplicatively corrected ones. Again, good separation of 
the two texture classes is possible in both cases. Thus the additive and multiplicative 
corrections produce images of similar “texture content” in the considered case of liver MRI 
slices.   
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Figure 10.   Scatter plot of best discriminating texture parameters computed for 
additively corrected MR images of normal and fibrotic liver (F = 6.4, e = 0/26). 

On the other hand, using the features that best separate the two classes of uncorrected 
images (see Fig. 9) for discrimination of the corrected images is a failure. This is illustrated 
in Fig. 13 where the (4,-4)Inverse_difference_moment and (5,-5)Difference_entropy 
features, computed for additively corrected images, are scatter plotted. Similar effect is 
observed when these features are used or classification of the multiplicatively corrected 
images. 

Figure 11.   Scatter plot of best texture features for multiplicatively corrected liver 
images (F = 6.8, e = 1/26). 
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a) 

b) 

Figure 12.   Scatter plot of best texture features for a) multiplicatively corrected  liver 
images applied to additively corrected ones (F = 6.3, e = 0/26), b) additively corrected  

liver images applied to multiplicatively corrected ones (F = 5.8, e = 0/26). 
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Figure 13.   Scatter plot of best texture features for uncorrected liver images applied to 
additively corrected ones (F = 0.6, e = 12/26). 

To evaluate the contribution of the slowly varying local average intensity of the images 
shown in Fig. 1 to their “texture analysis”, the modeled local average intensity images 
mfs(x,y; aopt) were computed inside ROIs (for the additive correction example), as presented 
in Fig. 14, respectively for fibrotic and healthy liver. Their texture features were then 
computed and selected using the largest Fisher coefficient criterion. The scatter plot of the 
best texture features in this case is shown in Fig. 15a. One can notice, the two classes of liver 
images can be very well separated, even if there is no image texture information inside ROI. 
On the other hand, it is rather unlikely that the local average smooth variations of the image 
intensity are caused by the development of fibrosis. Moreover, they are present in healthy 
liver as well, but incidentally their surfaces have different shape. Thus the results presented 
in Fig. 15a wrongly combine two effects – the texture and the image nonuniformity. Similar 
results were obtained for other example liver images collected within the framework of EU 
COST B21 Action. 

 a)  b) 

Figure 14.   Local average intensity field for additive correction: a) healthy, 
b) fibrotic liver, respectively corresponding to Fig 1a and Fig. 1b.

On the effect of image brightness and contrast ... 178



a) 

b) 

Figure 15.   Scatter plot of best texture features a) for the images of local average 
brightness (for the additive correction fields) (F = 53.0, e = 0/26), b) for uncorrected 

liver images applied to the images of local average brightness (F = 16.8, e = 0/26). 

Finally, the texture features (4,-4)Inverse_difference_moment and (5,-5)Difference_entropy 
selected as being the best for the uncorrected image classes separation (Fig. 8) were also 
computed for the additive correction fields, i.e. the images of smoothly varying image 
intensity. The obtained scatter plots are presented in Fig. 15b. One can see that these features 
are still very good for the classification of the images with removed texture.  
     It should be emphasized that the local-average-brightness images contain the smooth 
correction surfaces only, with the original image content (i.e. texture) removed. To better 
visualize the properties of the original, corrected and additive-correction images, their 
examples corresponding to slice #50 were surface-plotted in Fig. 16. The spatial variations 
of the image intensity well seen in Fig. 16b are considered as representing the texture 
patterns. There is no texture in this sense in Fig. 16c, and the texture is superimposed on 
smooth background variations in Fig. 16a. 
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a) b) 

c) 

Figure 16.   Surface plots of liver MR image gray levels (slice #50) inside ROIs. Healthy 
organ (on the left) and cirrhotic tissue (on the right): a) original images (Fig. 1), 

b) corrected images (Fig. 9), c) additive correction field (Fig. 14)

4.2. Classification of Brodatz textures 

Figure 17 shows distributions of GLCMs elements build for sample texture (shown in Fig. 
3c) and its two distorted versions (Fig. 5) using image nonuniformity models described in 
Sections 2 and 3. Assumed distortions introduce linear changes of the modelled 
nonuniformity: mk ranging in [-80, 80] and vk in [0.4, 1.6] for the additive and multiplicative 
case, respectively. Although the nonuniformities introduced to the images with these 
example ranges are not perhaps small, the assumed variations more effectively visualize 
their effects on the parameters of real-world textures. Moreover, ROIs taken from the images 
shown in Fig. 5 for texture analysis were of lower size – 60x60 pixels. Total variations of 
local intensity and contrast within those ROIs were accordingly smaller than for the full-size 
images.  

It can be observed that variable intensity extends the GLCM elements along its diagonal 
when compared to its original distribution (Fig. 17b). For contrast variations (Fig. 17c), 
larger scatter of elements outside matrix diagonal is observed as a result of multiplication of 
element indexes by function from Fig. 4b. However, if most of GLCM elements will be 

On the effect of image brightness and contrast ... 180



located close to its diagonal (which seems to happen for majority of natural textures) and 
smooth contrast variations are assumed, the scatter will be not significant. Thus resulting 
matrix will be similar to this obtained for additive artifacts. Thus the same texture 
parameters whose values do not depend on translation along matrix diagonal should be 
robust to texture contrast variation. 

a) b) c) 

Figure. 17. GLCM (vertical direction, interpixel distance equal to 1) for texture from 
Fig. 3c (a), with additive (b) and multiplicative (c) nonuniformities 

 a)  b)  c) 

Figure. 18. RL matrices (only first 32 columns shown, there are no longer runs) for 
texture from Fig. 3c (a) and for the additive (b) and multiplicative (c) artifact. 

Sample RLMs for textures from Figs. 3c and 5 are presented in Fig. 18. Both types of 
degradation result in element scattering along intensity axis and their transition towards 
shorter runs. Following the discussion in Section 3, one can expect that all RLM derived 
parameters will be affected by both additive and multiplicative distortions. By definition, 
these parameters depend on a sum of all processed matrix elements. Thus increase of 
element number (resulted by their splitting) will alter evaluated RLM feature values. 
Especially features that additionally directly depend on the index that corresponds to run 
lengths (Short Run Emphasis, Long Run Emphasis, Fraction) will be strongly affected. In 
conclusion, no RLM based feature is insensitive to the discussed image nonuniformities.  

Classification results of texture samples from Figs. 3 and 5 by means of a 1-NN 
classifier are shown in Fig. 19. The left column presents scatterplots of two most 
discriminant features selected according to Fisher criterion applied to original textures. 
They provide perfect classification, however for the distorted images misclassification takes 
place due to the spread of texture feature values caused by nonuniformity artifacts. The 
right column shows results obtained for two other parameters, less sensitive to image 
variable intensity and contrast. As can be observed, these features preserve their values both 
for additive and multiplicative degradation model, providing correct texture classification.  
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a) 

b) 

c) 

Figure 19. Scatter plots of texture parameters used for classification of images from a) 
Fig. 3, b) Fig. 5a, and c) Fig. 5b. Distribution of features with highest Fisher coefficient 
is shown in the left column, while those less sensitive to image nonuniformities – in the 

right column. Symbols ‘dotted circle’, ‘cross’, ‘circle’, ‘diamond’ correspond to 
textures from Fig. 3a, b, c, and d, respectively. 

Different results were obtained for classification of the same textures considering the 
RLM parameters only. Three parameters of largest F coefficient gave correct classification 
of the original textures.  These parameters (as well as any other RLM-type subset) were 
unable to provide error-free discrimination of distorted images. Finally, Haar DWT based 
features were considered. Features calculated for subband obtained for at least one high-
pass filtration represented the highest F coefficient, thus they were selected for 
classification. Introduced texture inhomogeneities did not modify their distribution, thus 
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features selected for original textures provided also correct discrimination of the distorted 
ones. Results for classification of texture with multiplicative nonuniformities obtained for 
RLM and DWT features are shown in Fig. 20. 

 a)

 b) 

Figure 20. Scatter plots of texture parameters used for classification of images from 
Fig. 5b using a) three RLM and b) three DWT features with the highest F coefficient. 
Symbols ‘dotted circle’, ‘cross’, ‘circle’, ‘diamond’ correspond to textures from Fig. 

3a, b, c, and d, respectively. 

5. Discussion and Conclusions

It has been demonstrated that results of quantitative texture analysis by means of the popular 
texture descriptors are sensitive to variations in local image intensity. These nonuniformity 
artifacts are especially prominent in real-life MRI where large image area/volume of uniform 
texture is considered. The presence of those artifacts may bring up misleading results to MRI 
texture analysis. This has been illustrated in Fig. 8 where apparent very good separation of 
texture classes was actually caused by image intensity inhomogeneity fields (Fig. 14), 
irrelevant to texture and structural tissue changes related to the disease development. This 
suggests, the smoothly varying intensity patterns, consistent within the image classes, were 
the primary properties that allowed the images discrimination. Referring back to the general 
characterization of image components [10], one can say that in the liver images under 
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analysis, the smooth spatial tone variations are dominant over the texture. Moreover, each 
class of images has – for some technical reason – a typical tonal pattern.    

Image local intensity and/or contrast variation may cause texture misclassification due to 
image brightness and/or contrast inhomogeneities. Texture parameters selected for non-
distorted images might be unable to correctly discriminate the same images with these 
artifacts present. 

In conclusion, correction of nonuniformity artifacts is recommended, followed by ROI 
normalization (e.g. with the “±3 sigma” scheme), prior to texture analysis. Two models, 
additive and multiplicative, were considered to show that such correction is feasible.  

An attempt was made to identify texture features which, in some extent, are robust to 
image nonuniformities. It has been discussed and demonstrated that some features derived 
from GLC matrix possess this property, as parameters estimated with Haar DWT also do. It 
is expected that presented results will help in texture feature selection and new feature 
definition, especially in the cases where correction of image nonuniformity cannot be 
performed.  
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