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Abstract. Context. Software data collection precedes analysis which, in turn,
requires data science related skills. Software defect prediction is hardly used in in-
dustrial projects as a quality assurance and cost reduction mean.

Objectives. There are many studies and several tools which help in various data anal-
ysis tasks but there is still neither an open source tool nor standardized approach.
Results. We developed Defect Prediction for software systems (DePress), which is an
extensible software measurement, and data integration framework which can be used
for prediction purposes (e.g. defect prediction, effort prediction) and software changes
analysis (e.g. release notes, bug statistics, commits quality). DePress is based on the
KNIME project and allows building workflows in a graphic, end-user friendly manner.
Conclusions. We present main concepts, as well as the development state of the De-
Press framework. The results show that DePress can be used in Open Source, as well
as in industrial project analysis.

Keywords: mining in software repositories, software metrics, KNIME, defect
prediction.

1 Introduction

A free, open and extensible framework which allows collecting and integrating software
development data across different projects, releases, as well as repositories, develop-
ment or measurement tools and development environments would be of great interest
and practical importance to software process improvement (SPI) or quality assurance
(QA) practitioners and researchers. It would be great if the framework would support,
e.g. versioning repositories like SVN, GIT or CVS, bug and issue trackers like JIRA
or Redmine, and JDepend, Eclipse Metric or AopMetrics measurement tools. If the
aforementioned framework would support also a wide range of predictive modelling
techniques offered by the most widely used platforms, such as R, Weka or KNIME,
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then the practical importance would be even higher. Hence, we decided to search for
(existing tools are described in Section [2]) and, as a result, to build such a framework
in an open source and extensible (i.e. plugin-oriented) manner.

Both the idea and developement of the DePress framework have been initiated at
Wroclaw University of Technology by the authors of this paper, but we collaborate
closely with software development companies (notably Capgemini Poland).

In our opinion a standardized, intuitive and extensible framework would make it
possible to include predictive modelling in general, and defect prediction analyses in
particular, as one of the common QA or SPI tasks, such as code review or software
testing. We believe that thanks to the DePress platform, which steadily increases its
support for various data sources in software engineering environments, the QA and
SPI engineers, or even trained project managers, would be able to introduce data
science methods to a wider range of software projects. We have analysed the needs
of commercial and open source software projects, as well as existing solutions and as
a consequence defined the following requirements for our framework:

e Workflow visualization and usability. The existing tools do not offer work-
flow visualisation for the purpose of software engineering data collection, inte-
gration and predictive modelling. The existing solutions are based on scripting
languages, require high customizing efforts and are mainly understandable only
to their creators [I]. New analytic frameworks, platforms or tools should be
based on commonly known standards and reuse the existing solutions.

e Support for collaboration. Since software development is based on collabora-
tion [2], [, collaboration could and should be made possible in quality assurance
and software process improvement activities.

e Extensibility. The manner of introducing new data sources or metrics should

be easy, not demanding significant effort (e.g. the need for rebuilding existing
implementation). New extensions should be independent so that they could
be built by different organizations (e.g. software development companies) or
research groups.
Additionally, the system has to ensure an effortless integration with the existing
solutions, such as WEKA [3], R [4] or Matlab [5]. Reusability is another
important factor. The framework should make it possible to reuse machine
learning and software measurement solutions to support core data collection,
integration and mining tasks within a software engineering domain.

e Standalone. There are obvious advantages of a client-server web-based archi-
tecture. However, that means that data analysis and data storage are managed
centrally by the application provider which, according to our best knowledge,
would discourage software development companies from using the tool. Such a
tool could also be installed within an organisation, which is a much safer so-
lution. However, in order to introduce and use such a tool, one needs to have
specific knowledge and administrative rights in an organization. That often re-
quires additional effort, especially in large companies. Hence, we suppose that
a standalone tool (which offers full data analysis and data acquisition capacity)
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would be more convenient to start with and it would provide a richer interaction
experience for the SPI, QA and project managers. However, at the same time,
we would like to be able to offer an upgrade to a web based solution.

e Export/import support. The frameworks should support, by default, all
popular data formats such as: CSV, XLS, ARFF or XML, in order to enable
an easy data exchange.

e Ready for commercial use. One of the obstacles which hinder the wider
use of software measurement and predictive modelling tools by software devel-
opment companies is the licensing issue. Tools are often hosted by research
centres. Remote access will not be accepted by a company, especially in the
case of business or personal data. For an effective collaboration between a soft-
ware development company and researchers, a clear licensing aspect and data
anonymization are required.

e Open Source. We argue that the new framework should be developed as an
open source project. The framework should be open for other research groups
and software development companies to support collaboration. It could have a
positive impact on the development speed and quality.

e Language and Technology Independent. We should not focus on one
language or technology. Instead, we should be able to collect and integrate
data from different environments.

A tool which fulfills the aforementioned requirements is DePress Extensible Frame-
work. We have used the KNIME Framework [6], which is open source, as an archi-
tectural basis. KNIME Framework is an integration backbone which allows one to
use various external statistical and machine learning tools. KNIME allows exchang-
ing data using various data formats, including the exchange of statistical models [7]
using the PMML [§] format. Additionally, we can leverage reporting and KNIME
Server Extension for distributed collaboration and centralized data storage.

Extending and reusing the KNIME environment is not a new idea. Many publicly
available extensions have been donated by industrial partners and research centres.
However, they focus mainly on chemistry [9], [I0] biotechnology and pharmacy [11],
but not software measurement and analysis.

On the basis of the KNIME plugin concept, we propose an extension set which
allows data collection, integration and predictive modelling. With the use of the
developed KNIME plugins and integration possibilities, we are able to perform and
visualise the complete defect prediction process, to start with data acquisition and
end in prediction model validation.

In the first version of the DePress framework we focus on Java and related technolo-
gies. Support for other environments will be provided in the future.
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2 Related Work

There are several tools and frameworks that move beyond simple dedicated script-
ing, created by researchers for their own studies. They offer more sophisticated and
complementary solutions, together with flexibility and real integration opportunities.
But still most of the tools are not available publicly and are used rather internally by
researchers and creators. Many tools only address some data acquisition tasks and
do not have a built-in support for predictive modelling (e.g. defect prediction).

Jureczko and Magot propose the QualitySpy framework [12]. The main motivation
behind that work was to provide a tool designed to collect raw data and allow the
user to define metrics. It consists of two groups of features: data acquisition and
reporting. Currently QualitySpy offers metric calculation from Java classes, reading
JIRA Issues and data retrieval from SVN. QualitySpy source and beta release are
available [I3] under the Apache 2.0 [I4] licence.

Fenton et al. [I5] [16] used AgenaRisk [17] as a tool for defect prediction. The tool
is used in general in modelling, analysing and predicting risk. It does not provide
support for data acquisition from software repositories and tools.

Churrasco [I] is a web based application which allows one to retrieve and com-
bine data from Bugzilla and SVN. Churrasco allows collaborative software evolution
analysis based on FAMIX [I§] language independent meta-model. Churrasco is pub-
licly available. The project could be used in software analysis whose repositories are
publicly available. Despite the fact that the software sources are provided we didn’t
find any information about the licence, which is required by industrial partners. Ad-
ditionally the system has been written in Smalltalk programming language, which is
not as popular as Java [19] 20].

Evolizer [2I] and Change Distiller [22] are Eclipse [23] plugins for software evolu-
tion analysis. Eclipse is a software development environment built upon extensible
plugin architecture. Current implementation allows one to collect data from ver-
sion control systems (CVS and SVN) and from the issue tracking system (Bugzilla).
ChangeDistiller stores fine grained class changes based on the Eclipse abstract syntax
tree (AST) and FAMIX meta-model. The main advantage of the tool is the possibility
of querying FAMIX data using Hibernate Query Language (HQL). This feature lets
researchers easily build their own metrics. Evolizer and Change Distillelﬂ plugins are
publicly available under the Apache 2.0 licence.

SOFAS [24] is a service oriented platform which integrates a number of services
related to software data acquisition and analysis. The platform allows retrieving data
from a number of external sources. It is one of the few enabling the analysis of data
from the SVN, CVS, GIT and Mercurial version control systems. It also provides
access to Bugzilla, Google Code, Trac and SourceForge. Apart from data collection,
the platform offers services based on the FAMIX meta-model, such as software met-
ric services, change coupling analysis, and change type distilling service. One of the
authors’ aims was to facilitate collaborative software analysis via the web interface.
Users are able to define their own workflows using SPARQL [25] query language.

1ChangeDistiller is currently actively developed as a standalone Java library at
https://bitbucket.org/sealuzh/tools-changedistiller
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Platform services are available upon request.
The complete SOFAS platform and the sources are not available publicly and thus
could not be installed and used in industrial research projects. Common security poli-
cies allow one to access software repositories only from a company intranet; moreover,
companies are not interested in providing access to the source code to third parties.
The tools described in this section do not fulfill all of the requirements discussed
in Section 1. Hence, we decided to implement a new framework which satisfies the
aforementioned requirements.

3 DePress Implementation

DePress is based purely on KNIME Plugin Architecture. We did not add any ar-
chitectural or technology abstraction. On the basis of KNIME API solely, we are
able to integrate with existing plugins and additionally we can reuse existing coding
guidelines and keep implementation as simple as possible.

Every plugin has to consist of at least 4 elements (see Figure [1| presenting sample
plugin for JIRA).

2\ Node Description £2 =g

Jira Adapter (Offline)

This node can be used to read data from Jira entries file.

Jira s defect tracking software, developed by Atassian. It uses web-
based user interfoce, which allows gathering all previously

— registered software defects, filtering them using custom settings and
Jira Plugin export in various formats, also in XML format vehich s required for

[— using this node.
«node model» To obtain such file, you need to switch view to XML in Issue

«create»
N Navigator section of Jira, and save the XML shown to a file on your
.| JiraAdapterNodeModel focal die. Then enier path to the file into node’s input Beld i
’ configuration dialog.
When executed, Jra Adapter node parses the flle and return
information collected in standard table form. When some of the
required information Is missing, for example due to Jira
«node factory» customization, node will generate appropriate warning message in
the console.

JiraAdapterNodeFactory

Flease check workflow examples here or inside plugin jar.
Copyright (c) ImpressiveCode, DePress Project

_(1uSeS))—:7

s ! Dialog Options
S/ «createy| «node dialog»

[E— .| JiraAdapterNodeDialog Jira file location
Enter a valid file. When you press ENTER, the file is analyzed and

the settings pre-set. You can also choose a previously read file
from the drop-down list, or select a file from the "Browse..."
dialog.

<<node description>>
JiraAdapterNodeFactory.xml Ports

Output Ports

0 Datatable just read from the jira entries file

Figure 1: JIRA Plugin Design

Figure 2: Jira adapter (of-
fline) node description
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Node factory is responsible for the instantiation of node dialog and node model
objects. The Node dialog class is responsible for providing the GUI representation of
the plugin. Developers do not need to know the PDEE| specific widgets (at least if they
want to use basic GUI elements). We can reuse, in a very simple way, controls from
the extensive KNIME widget collection and focus on plugin logic, which should be
implemented in the node model. The last important artifact is the node description.
This element is responsible for the description of the input and output ports, plugin
help, icon and type. We decided to include in every plugin a detailed description
and instruction on how the plugin should be utilized, see Figure 2] We deliver usage
examples with every plugin.

In order to keep plugins as independent as possible, we propose to develop every
plugin in a separate PDE project. It creates a small overhead in the implementation
process but allows one to release updated versions separately and, most importantly,
allows one to develop them undisturbed by different teams.

3.1 Plugins

The origin and the main task of the DePress Framework was software defect predic-
tion. In order to perform defect prediction we have to define plugins, which allow
us to collect, transform and analyse data. One of our assumptions was that plugins
are independent. Most of the existing systems impose predefined configuration. For
example CVS and Bugzilla [26], in many research projects, is a standard configuration
for post-release defects querying. If we want to use GIT instead of CVS (for instance,
because a project has been migrated to a new version control system, which happens
often nowadays) we probably have to change significantly the implementation of the
tool, not only because of a new data source, but because of a totally different version-
ing approach between CVS and GIT. We propose to allow simple plugin exchange,
without further workflow adjustments. For instance, GIT and CVS should return the
same data structure.

Currently, in version 1.0.0, we define (see Figure [3]) the following 3 main groups of
plugins:

1. Adapter Plugins. Allow to retrieve data from external systems and tools.
Retrieved data is transformed to a tabular representation.

2. Metric Generators Plugins. Compute metrics on a basis of delivered data.

3. Other. Support plugins for additional data transformations.

3.1.1 Adapter Plugins

Adapter plugins allow one to retrieve data from external tools and systems. Cur-
rently, we address three integration types: software configuration management sys-

2The Plug-in Development Environment (PDE) provides tools to create, develop, test, debug,
build and deploy Eclipse plug-ins.
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DePress

A

v v Y A 4
Metric Metric

JIRA SVN Judy Process & Organisation Anonymization
Bugzilla GIT JaCoCo Issues

Mantis CVS Pl Test

GitHub ClearCase Checkstyle

GoogleCode TFS PMD

Redmine FindBug

HP QC EclipseMetrics

CKIM Metrics

Figure 3: The plugin concept

tems (SCM), issue tracking systems (ITS) and metric readers (MR). In the first
DePress version we are supporting ITS such as JIRA and Bugzilla. In future releases
we want to provide access to GoogleCode, GitHub, HP Quality Center, MantisBT
and RedMine. As in the case of issue tracking systems, we focus on popular SCM
systems. In the first release we developed SVN and GIT. Afterwards we plan (with
the help of a number of open source committers also from our industrial partners) to
develop CVS, ClearCase, TFS and Mercurial.

Based on the DePress principle that each plugin can be easily exchanged with
another within a given group, every ITS plugin has to return (at least) the following
columns: issue id, creation date, resolution date, status, type, resolution, version(s),
fix version(s), summary.

Similar SCM plugins should at least return the following data: resource name, issue
marker(s) (extracted from commit message using regular expression [26]), author.

The MR plugins support data retrieval from various external tools. The MR plu-

gins do not compute metrics themselves. They simply acquire and transform data to
a common tabular format.
In the first release we implemented plugins for Judy mutation tester for Java [27] 28]
29, 30, 31], JaCoCo [32], EclipseMetrics [33], CheckStyle [34] and PMD [35]. In fea-
ture relases we plan to add PITest [36], Findbug [37], CKJM Metrics [38] and others
in response to needs of our industrial partners and open source community.
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3.1.2 Metric Generators Plugins

DePress, besides pure data acquisition, allows one to compute metrics as well. As
a proof of concept we implemented two metric generator (MG) plugins Issues Per
Artefact [26] and People and Organization [39)].

Issues Per Artefact links issue reports with source code modification reports. The
modification report, in the SCM system, contains list of changed files and comment
written by developer at a commit time. It often includes a marker which points to
issue report (e.g.”’fized bug HHH-1231"" ). Such marker (e.g. HHH-1231) allows to
link issue report with changed files. Additionally, we compute a number of issues and
number of unique issues for each file. The plugin itself is simple but using KNIME
we are easily able to extend its functionality.

For instance (Figure [4]) using built-in KNIME row filter plugin we can include only
defect issues and thus we can compute a defect post-release metric.

la. Jira Plugin 2. Row filter 3. Row filter
(ITs) (Type:BUG) (Resolution:FIXED)

4, Issue Metric
L : K : Plugin
1b. GIT Plugin :

(SCM)
/ ]

Figure 4: Issue Metric usage

In the first step (la and 1b) raw data is extracted from external systems. In the
second and third steps the row filter is executed: the first time in order to include
issues which have type set as “defect” or “bug” and the second time in order to include
those which have the resolution set as “fixed”. In the fourth step filtered data and
raw data from SCM are used as the input sources in the Issues Metric plugin.

3.1.3 Other

We have developed some plugins which do not focus on data acquisition or analytic
tasks but are indeed required. Many industrial partners allow one to mine and anal-
yse their repositories with the assumption that no business-related data will be avail-
able outside the company. We propose to encrypt (secure) sensitive data using the
Anonymization plugin and allow external data analysis. The basic steps are shown in
Figure |5| Retrieved data (1) consist of sensitive class and author data columns. We
choose which columns have to be encrypted (2). In the next step, secured data are
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1. GIT Plugin 2. Anonimization 3. XLS Writer 4. Data Analysis

AT ety

/

Anonymization Plugin

Raw data Anonymized data

uiD » Class
Comment Author
-

[ OK ] [ Apply ] [Cancel ]

Figure 5: Anonymization Plugin

saved as an Excel (xls) file (3). Further analysis can be conducted outside the com-
pany, e.g. by external researcher with data science skills (4). The analysed data are
passed to the company. After decryption, the results could be used back in the com-
pany. Through those steps we can establish collaboration between industrial partners
and our research team.

3.1.4 Online and offline work mode

One of the first decisions we had to make was the mode of collecting data, especially
in the case of adapter plugins. We found two options. The first was direct (online)
access to the software repository. For instance, in the case of JIRA we could extract
data directly using JIRA REST API [40] and JIRA Query Language (JQL) or read
directly the JIRA RSS feed. The second option was to export issues manually, e.g.
as XML using a web interface. We have also two options with regard to the way
of collecting data from SVN. We can use either native access using the SVNKit [41]
library (online mode) or export a history log using the svn log command (offline
mode).

We decided to start with the offline mode support in the first DePress release and
then add the online mode support. The reason for the decision we made was quite
simple. Often in case of collaboration with business partners we get only exported
data and we do not get full access to all required repositories. Manual preparation
of plugin input in this case should not cause additional effort. QA engineers and
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developers are familiar with SCM, ITS and measurement tools (e.g. JaCoCo) and use
them in their daily work. At the moment we are focused on the online plugins. SVN,
JIRA, Bugzilla, and GIT online plugins are ready.

3.2 Data exchange

Instead of using a new metadata format or new type of protocol, we decided to use
tabular data. The plugin checks only whether incoming data consists of the required
columns or not.

For instance, we can use the People and Organization Metric Plugin. It requires two
types of input data: change history data and author details. Change history data
could be retrieved from one of the SCM plugins. Before processing, the plugin vali-
dates the incoming data and checks whether it contains the required columns (column
name and column type are taken into account). In our case we check if the data table
consists of at least two columns: resource name and author. If the input does not
provide the required data structure, the transformation process is interrupted and a
detailed warning message is shown.

This kind of data exchange, without a high level of formalization, allows quick and
independent plugin development. Additionally, we are still using mature KNIME
support and thus we can benefit from native data management. This helps us es-
pecially in the case of large data sets — data are visualized, properly buffered and
automatically persisted.

3.3 Integration with other tools

Designing DePress we focus on high reusability and integration possibilities. We
wanted to reuse existing tools and focus on core tasks related to QA and SPI data
integration to allow predictive modelling in software engineering. We do not want
to develop any statistical or input-output (IO) support, but to focus on collecting or
computing software metrics and software data sources integration. This was the main
reason we decided to use KNIME as the integration backbone. As shown in Figure [6]
we can benefit from the existing KNIME ecosystem and rapidly growing new plugin
implementations and tools integration.

Most importantly, KNIME offers, out of the box, integration with R [42], WEKA [43]
and using extra plugins with Matlab [5]. Additionally, KNIME natively provides a
wide range of analytic and mining algorithms.

Besides statistical and analytical support, KNIME offers a number of data export/import
plugins. For instance, analysed and transformed results could be exported as xlIs or
arff files or could be persisted in an external database.

One of the DePress usage scenarios assumes that data will be gathered inside a
given company and then preparation of, for example, a defect prediction model will be
outsourced to an external partner. Assuming that the data will be trained, e.g. using
R, we may take advantage of model import/export support using the PMML [7], [44]
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Figure 6: DePress integration with 3rd parties

standard.

3.4 Reporting

The DePress Framework, like any other plugin, could take advantage of KNIME
reporting capabilities. The KNIME Report Designer is based on BIRT (Business
Intelligence Reporting Tool) [5]. Apart from BIRT, we are able to export data as
pdf, html reports or images depending on our needs.

4 Workflows

On the basis of a general defect prediction model building approach [46] we propose
2 types of workflows: learner workflow(Figure [7)) and predictor workflow (Figure .
Each workflow, in general, consists of the following steps:

e Data Access. Data are retrieved from external systems or resources.

e Data Transformation. Additional filtering, data cleaning and general data
preparation, as well as the metrics computations.

e Data Analysis and Mining. Use or development of defect prediction models.
e Data Ezxploitation. Prediction results, trained models or reports are saved.

In addition to data manipulation and transformation, depending on our needs, we
can show or visualize data in every workflow step.

As an example, we describe learner workflow shown in Figure[7] Let’s assume that
we analyse version 1.1 of a hypothetical software unit, which was released six months
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Data Access Data Transformation Data Analysis & Mining Data Exploitation
GIT Plugin

(pre release changes) People & Organization Metric

.

GIT Plugin

(post release changes) RToPMML  PMML File Writer

. . Row filter )
Jira Plugin (Type:BUG) | Issue Metric Joiner R Learner

DB Writer

EclipseMetric

Figure 7: Learner Workflow

ago.
In order to prepare the defect prediction model we have to make the following steps.
First, we collect data from external sources. Software metrics for V 1.1 are retrieved
using the Eclipse Metric plugin. Post release defects are computed using the Issues
Per Artefact plugin, which, in turn, reads defect data (retrieved with JIRA plugin)
and post-release source changes (retrieved with the GIT plugin). As an additional
metric we compute People and Organization metrics using pre-release changes. We
merge the data using the KNIME Joiner plugin.

In the next step we use the KNIME R Learner plugin which is responsible for preparing
a statistical model. The trained and tested model is saved using the KNIME PMML
File Writer Plugin. Additionally, we save the merged data in an external database
using the KNIME Data Base Writer extension.

The trained PMML model can be used during hypothetical development of the next
version (in our example V 1.2) of given software unit. As shown in the exemplary
predictor workflow (Figure , we read the model using the KNIME PMML File
Reader and we proceed to the defect prediction based on current software metrics.
Results can be stored in an Excel (xls) file or we can generate a more advanced report
using KNIME reporting capabilities.
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Data Access Data Transformation Data Analysis & Mining Data Exploitation
GIT Plugin
(post) People & Organization Metric Table To HTML

EclipseMetric Joiner R Predictor

PMML File Reader

&

XLS Writer

Figure 8: Predictor Workflow

4.1 Evaluating DePress

DePress has been tested on a set of commercial (we have focused mainly on middle
sized JEE projects with more than a four-year history), as well as open source projects.
For instance, we have analysed commons-math version 2.1, which is a math Java
library provided by the Apache Software Foundation. An example with a detailed
description can be found on the DePress homepage (see Section . We found that
after a short introduction inexperienced project members were able to retrieve data
from project repositories and perform basic data analysis tasks.

We performed also extensive load and reliability tests of DePress plugins using large
software repositories from industrial projects. Our test data set consists of the SCM
repository with approximately 18 000 modification reports (about 150 000 individual
file changes) and the ITS repository with approximately 3000 issue reports.

In future releases we plan to develop a set of examples which will be available on
the DePress homepage [47]. They will cover data gathering from software repositories
and predictive modelling. Similar to data sharing (see, e.g. PROMISE repository [48],
49], or other approaches towards more reproducible research [50]), which we think is
incredibly important, and experiment sharing (see, e.g. Social Experiment Sharing
initiative [51]), we will try to involve other researcher groups to share their work using
DePress framework and workflows.

5 Open Source and Collaborative Development Model

Public and fully accessible source code is one of the success key factors and is often
required by industrial partners, mainly for security reasons. Since we want to collab-
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orate with industrial partners we have to guarantee system transparency.
The next aspect is clear licensing rules. The collaboration between different organi-
zations and researchers requires a transparent licence. After an analysis as well as
discussions with one of our prospective industrial partners we have decided to use the
GPL v.3 [52] licence in order to ensure that the collaborators’ work would make a
contribution in both research and industrial communities.

DePress is developed on the GitHub platform [53] as part of the ImpressiveCode
Organization [47]. GitHub is a web based Git hosting service (Figure [9).

ImpressiveCode / ic-depress @ Unwatch~ 5 A Unstar 5 % Fork 26
868 commits 5 branches 1 release 21 contributors ¢> Code
| 0
5 branch: master ~ | ic-depress / + = @ Issues

i Pull Requests 0
Merge pull request #160 from ImpressiveCode/dey

¢ majchmar authored 24 day latest commit 7261629del o EE Wiki
BN dev-buildtools/eclipse Revert "DEP-12 isses metric name changed to Issues Per Artefact” 11 months ago

BN dev-snapshots/plugins Merge pull request #139 from Imodlinski/dev & months ago o Pulse
M ic-depress-base DEP-45 component placement change 25 days ago L Graphs
BN ic-depress-data-anonymisation  DEP-12 qualifier added 10 months ago

Figure 9: GitHub repository

" Developer repository

2. pull request

master

DePress main repository

Figure 10: DePress collaboration model

One of the reasons we decided to use GitHub was the social coding support [54].
Figure |10 shows the collaboration model.

There are two code branches in the main repository. The master branch for finally
approved work and the dev branch for current development. Each developer works in
his/her own repository (1). After the work is completed he/she sends a pull request
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(2) to the dev branch. After that, code changes are reviewed, and the feature owner
or the project coordinator approves or rejects them. New features are merged (3)
with a master branch after successful integration tests.

For feature requests, project management and bugs reporting we currently use JIRA [55].
In early project phase we used GitHub Issues [56].

DePress is being actively developed by a group of PhD and MSc graduate students
lead by the first author.

6 Case study

In this study we have described predictive modeling of post-release defects in Com-
mons Math v2.1 library. The whole process has been performed with DePress and
KNIME Framework only.

The Commons Math is a library of lightweight, self-contained mathematics and statis-
tics components, addressing the most common problems not available in the Java pro-
gramming language. The library is build on top the Java SDK without any external
dependencies. Its design base fully on well known OO design principles. The library
has been released for the first time in July 2007, and the latest released version has
been officially available since April 2013. The Commons Math project is developed by
group of volunteers and Apache developers. Apache Foundation provides unrestricted
access to version archives and to all project-related software repositories.

Table [1| shows the basic characteristics of the 2.1 version. Despite the fact that the
code basis is relatively small, the project has a high coverage of JUnit tests. We will
analyse its history in the first year after the release.

Release | 2.1
Time period | 31.03.2010 - 31.03.2011
Transactions | 318
Files changed | 2191
Classes | 298
No. of active dev. | 4

Post-rel. defects reported | 40
No. of new features reported | 34

Table 1: System in benchmark

In order to simplify the analysis we divided the workflow into 4 main steps: data
collection, data preprocessing, predictive modelling and archiving. Each step was col-
lapsed into KNIME meta node. Meta nodes are nodes that contain subworkflows,
i.e. in the workflow they look like a single node, although they can contain many
nodes. Figure|lI|shows the main workflow view in KNIME. Each meta node contains
additional text description.
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6.1 Data collection

The Commons Math sources are located originally in the SVN repository. Neverthe-
less, the Apache Foundation decided to create mirror on GitHub platform. In view
of the fact that the Git is much faster than the SVN, we decided to use the mirror
repository and Git Offline DePress node.

Post-release defects. To analyze the SCM transaction history we retrieved all
transactions from MATH_2_X branch. In order to make transaction report readable
for the Git Offline node we used dedicated git log command, described in plugin help.
Default Git transaction does not contain information required in further processing.
In the next step we extracted (Extract Time Window node) all rows where the time
value of the selected column lies within a given time window from the input. The
time window is specified in Table [I} After loading and extracting proper logs, data
was transferred to Marker Parser node for issue marker extraction from comments
stored in the SCM transaction.

In the next step, we retrieved issues from the Jira repository. Selected items met all
the criteria listed below:

1. Type: Bug

2. Status: Closed, Resolved, Reopened

3. Resolution: Fized, Duplicated

4. Priority: Blocker, Critical, Major, Minor
5. Affects Version: 2.1

The exported XML has been directly passed to JIRA Offline node.

In the next step, using Issues per Artifact node, changes from the Git and issues from
Jira were linked via, extracted in previous step, defect marker. The obtained results
will be used, in the next phase, as a post-release defect metric.

Source code metrics. Many approaches in the literature use the CK Java Met-
rics [38]. The complex components are harder to change. As a result of their com-
plexity, software engineers are not able to perform proper tests, and hence defects.
Additionally, we computed the code coverage metrics using JaCoCo [32]. Both soft-
ware metrics were computed outside KNIME, using DePress plugins (Eclipse Metric
and JaCoCo Adapter node) we converted the data and imported into KNIME work-
flow.

Data Collection PreProcessing PredictiveModeling Archive

i

Figure 11: Data preprocessing and predictive modelling workflow.
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The post-release defects, CJKM and code coverage metrics were joined via Joiner
node. It is important to mention that, because the FEclipse Metrics and the Issues
Per Artifact nodes may return an incomplete list of the project classes, we decided
to use JaCoCo results as a baseline.

6.2 Preprocessing the data

We removed the columns which were unnecessary from the point of view of predictive
modeling, and replaced missing values. By "missing” we simply mean ”not present”
in the joined data set. Incomplete values occurred, because the Eclipse Metric was
not able to properly cope with some Java types. Secondly, not all the files (classes)
were changed in the time period under consideration, hence the Issues per Artifact
plugin didn’t compute the metric and, therefore, it didn’t include them in the output.
In this case, we replaced missing values in Haslssues and NumberOflssues columns
with 0.

The only missing value in the dataset, we accepted, was the column Branch Coverage.
The missing value is correct and simply means that the underlying class does not have
methods with conditional statements.

6.3 Predictive modelling

In the commons-math case study, we follow the methodology described below.
Attribute selection. A large number of attributes might lead to an over-fitting a
model. Also highly correlated attributes are problematic. To solve that problem, we
employ an attribute selection technique called a future elimination. Feature Elimina-
tion is a predefined KNIME meta node. It is based on the backward elimination of
the irrelevant variables. It uses explicitly the error rate during the selection process.
Building regression model. We based our prediction on the classification deci-
sion tree. The dependent variable (the predicted attribute) is the boolean attribute
Haslssues indicating whether or not in a given class post-release defect was found.
The independent variables are the data set of metrics selected in feature elimination
process. In order to train the model we use the KNIME Decision Tree Learner node.
K-folds cross validation. We obtain an ”optimal” subset of variables but we know
that this solution relies heavily on the learning set. Cross validation is a statistical
method of evaluating and comparing results of a learning algorithm by dividing data
into two segments: one used to learn a model and the other used to validate the
model. KNIME offers a special type of meta node for this purpose. Cross Validation
is a meta node which encapsulates an inner workflow which is executed several times,
the results of each iteration are collected and returned as a result of the node. We
decided to use 10-iterations and random sampling.
To get the overall cross validation error rate, we used the KNIME Scorer node.
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6.4 Results and their archiving

To asses the model one may use a wide range of measures (e.g. the precision, recall,
accuracy) and predictive modelling techniques supported by KNIME (including R
packages like caret). To make our case study reproducible, we share our workflows
and input datasets on the DePress Homepage.

Archiving is essential. We decided to store joined datasets in two formats of xls
and arff. Additionally, we saved the PMML model. The model could be used in the
next project release, especially during the development or during the testing campaign
to concentrate test budget and efforts on specific defect-prone components.

7 Summary and Future Work

In this paper we have proposed a visual and workflow-oriented approach, correspond-
ing implementation and usage examples of a framework for data acquisition from
software repositories and tools, as well as predictive modelling in software engineering
environments. We have used KNIME as an integration backbone and we developed
a set of useful plugins.

The project’s infrastructure supports not only software defect prediction but also, to
some extent, other areas of predictive modelling in software engineering where the
collected metrics can serve as predictors. For example, collecting data related to time
developers spent on assigned tasks (using our plugin to JIRA) can help us to build
effort prediction models.

Future work. Our future plans mainly focus on further plugin development to sup-
port new data sources, e.g. new software development and measurement tools. Ad-
ditionally, we want to introduce support for code churn and burst change related
metrics [07]. Apart from further development of DePress, we also plan to conduct a
study to evaluate the effectiveness of DePress usage by QA Engineers in commercial
software projects. We also plan to improve the DePress development environment
itself in order to open it to a wider group of contributors and researchers. We want
to introduce new features, such as continuous integration support, test automation,
user manuals, tutorials and become KNIME trusted community contributor.
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