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Abstract. We propose a collaborative filtering (CF) method that uses behavioral data pro-
vided as propositions having the RDF-compliant form of (user X , likes, item Y ) triples.
The method involves the application of a novel self-configuration technique for the gener-
ation of vector-space representations optimized from the information-theoretic perspective.
The method, referred to as Holistic Probabilistic Modus Ponendo Ponens (HPMPP), enables
reasoning about the likelihood of unknown facts. The proposed vector-space graph represen-
tation model is based on the probabilistic apparatus of quantum Information Retrieval and on
the compatibility of all operators representing subjects, predicates, objects and facts. The dual
graph-vector representation of the available propositional data enables the entropy-reducing
transformation and supports the compositionality of mutually compatible representations. As
shown in the experiments presented in the paper, the compositionality of the vector-space
representations allows an HPMPP-based recommendation system to identify which of the
unknown facts having the triple form (user X , likes, item Y ) are the most likely to be true
in a way that is both effective and, in contrast to methods proposed so far, fully automatic.

Keywords: collaborative filtering, self-configuration, propositional RDF-compliant data
representation, quantum IR, information theory

1 Introduction

The integration of probabilistic reasoning with machine learning and the use of relational
representations – which is the subject of studies on Statistical Relational Learning (SRL) –
is ranked among the main challenges of research on Artificial Intelligence (AI) [14]. Due to
the universal nature of the fact-based data representation, any significant progress in inves-
tigation of vector-space propositional data modeling and processing methods is very likely
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to be valuable for research on SRL and recommendation systems, as well as for Information
Retrieval (IR), Machine Learning (ML), and Natural Language Processing (NLP).

Algebraic approaches to SRL deserve a serious interest of the IR community, in particular
as far as the progress in research on the vector-space data representation and transformation
methods is concerned. It should be also pointed out that typical ‘IR-like’ recommendation
methods and SRL-based recommendation methods share the same evaluation methodology
originally proposed by authors working in the field of IR [18]. Moreover, the task of user
action prediction (naturally based on the use of a propositional data represented as a set of
facts) is strongly related to the ‘find good items’ task that defines one of the most important
recommendation system application scenarios [7].

In contrast to the application of a typical (i.e., non-SRL) recommendation system, the ap-
plication of an SRL-based recommendation system is usually based of assumption of using a
probabilistic inference system. In turn, the application of theoretically grounded probabilistic
inference may eliminate the need for experimental tuning of the inference system parameters.
Surprisingly, despite the importance of the recommender system self-configurability (which
is especially evident in the context of real-world applications), the authors of solutions pre-
sented in the relevant literature have not seriously undertaken the self-configurability chal-
lenge [1, 5, 12]. Self-configurability is essential for on-line applications which have to take
into account the most recent information when generating recommendations (e.g., the infor-
mation about the user session or her/his last actions). In such a scenario the data necessary to
refine the parameters of collaborative filtering system are not available at the stage of system
configuration. Additionally, advanced collaborative filtering systems usually use some addi-
tional data in order to augment the information about users and items. These data is usually
of heterogeneous structure what makes the task of the manual parameter configuration even
harder.

The recommendation system proposed in the paper may be seen as an application of a
new method for reasoning about unknown facts, that we refer to as Holistic Probabilistic
Modus Ponendo Ponens (HPMPP). To our knowledge, the vector-space graph representation
method, being one of the key elements of HPMPP (exemplifying a group of methods that
in the graph theory literature are referred to as graph embedding methods [20]), is the first
propositional data representation method that is based on the probabilistic apparatus of quan-
tum Information Retrieval [2, 19]. Moreover, the properties of the proposed model enable
a synergic combination of the core elements of the HPMPP system: the use of a proposi-
tional data graph of a carefully designed probabilistic edge weighting scheme and the use of
a vector-space data transformation that enables the fully automatic operation of the HPMPP
system.

The paper presents the very first application of the proposed framework. Evaluation sce-
narios investigated here are limited to the single-relational case. Such a choice is a con-
sequence of the assumption that one of the core issues of the paper is the analysis of the
information-theoretical aspects of the HPMPP data processing algorithm and their influence
on the ability of making the algorithm auto-configurable. The choice of the simplified ex-
perimental scenario has enabled us to observe the spectral features of the processing results,
which may be conveniently analyzed and illustrated in small-scale experiments. Neverthe-
less, the authors regard the further experimental evaluation of the proposed method, in partic-
ular in heterogeneous multi-relational domains, as one of the key points of the future work.
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2 Related work

The approach presented in the paper is not the first application of an algebraic SRL method
to a personalized recommendation system [15, 21, 22]. However, rather than being based
on the widely-used dimensionality reduction technique or, in general, on some factorization
heuristics [9,15], our method follows the quantum approach to IR [2,19] and is the first SRL
method that applies an information-theoretic model for the optimality of the vector-space
representation generation.

Recently algebraic SRL solutions methods based on the 3rd order tensor decomposition
[9, 15] have emerged as an important alternative to graphical models [14]. Our approach
may be regarded as an algebraic method capable of representing propositions of various arity
(including RDF triples), which makes it an alternative to tensor-based approaches. Moreover,
HPMPP provides the possibility of modeling unconstrained structures (complete weighted
graphs). To our knowledge, the framework of HPMPP is the first that makes it possible to
model probabilistically all the elements (i.e., subjects, objects and predicates) and all the facts
as compatible and composable vector-space representations.

The proposed method may also be regarded as a contribution to research on information-
theoretic optimization of CF systems [24]. HPMPP is the first method that explicitly applies
a model of gradual holistic entropy reduction, without compromising entropies of individual
representations [12, 24]. The majority of the papers on the information-theoretical optimiza-
tion of collaborative filtering focus on the application of the proven maximum entropy rule
(MaxEnt) to the process of individual representations generation [23, 24]. Although it has
been additionally observed (e.g., in [6]) that adding relevance feedback information reduces
the system holistic entropy, so far neither a model nor an algorithm has been proposed that
explicitly targets the decrease of the holistic dataset representation entropy achieved in par-
allel with the increase of the item representation entropy. In this paper, we provide such an
algorithm and analyze it from the information-theoretic perspective.

To our knowledge, none of the existing approaches to collaborative filtering (see [12] for
a comprehensive survey) is oriented toward automatic self-configuration. Although there are
many collaborative filtering systems that are able to provide a high quality recommendation
for particular application scenarios, they require purely experimental parameter optimization
(e.g., involving searches for the optimal number of components used to represent data [5,13]
or for the optimal number of reflections [4]). In the present paper, we propose a solution
that is fully automatic due to the application of the probabilistically-grounded relational data
representation and processing model of HPMPP. Our system is able to achieve a high recom-
mendation quality for datasets of different sparsity and spectral characteristics (i.e., different
heavy-tailness [16]).

3 Model

In contrast to the well-known collaborative filtering methods [5, 7], HPMPP is founded on a
probabilistic model and avoids both the application of reflective random indexing [4] and the
application of dimensionality reduction heuristics. The model proposed in the paper enables
our algorithm to iteratively produce increasingly optimized vector-space representations of
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subjects, predicates and objects (optimized with respect to the quality of recommendation
provided on the basis of these representations), but also to effectively determine at which
iteration the procedure should be terminated.

3.1 Basic Assumptions

We assume that the input data of the system are given as a set of propositions (i.e., facts) F
describing the relationships between elements modeled in the system, where (|F | = m).

The proposed model is not limited only to the case of RDF propositions – it enables to
represent propositions of any arity greater or equal to 2. In general, we define Y = {y1, .., yn}
(such that |Y | = n) as the set of all possible elements which may be used to define facts from
the set F . In the case of RDF propositions, which are propositions of arity 3, the set of
elements Y is equal to S ∪ P ∪ O, where S is the set of subjects, P is the set of predicates,
and O is the set of objects. The application scenario used in the tests presented in this paper
involves modeling of propositions of arity 2, what is equivalent to the presence of the single
relation between users and movies. Thus, in the investigated case, the set Y is just a sum of
the set of users and the set of items not including any predicate. In a case of processing more
than one relation, the model would involve the use of propositions of arity 3 (i.e., propositions
equivalent to the RDF triples), since we assume to model predicates exactly in the same way
as other elements. For the general case of propositions of arity l the set Y may be modeled
as Y = Y1 ∪ Y2 ∪ .. ∪ Yl, where Yi denotes the domain of i-th element in the proposition
(i = 1, .., l).
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M1 M3

U2
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F5 F6

e1e1

e2e2 e4e4 e6e6 e12e12
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Figure 1: The example of graph G.

The structure of the input data may be represented as a bipartite graphG = (V (G), E(G))
specifying coincidences of (i.e., ‘links’ between) propositions (i.e. facts) and elements, where
V (G) = Y ∪ F is a set of graph vertices and E(G) ⊆ Y × F is a set of graph edges. Each
edge of this graph {vi, vj} represents the information that the element modeled by the vertex
vi is used to define the fact modeled by the vertex vj .
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Moreover, we introduce the notion of events for the purposes of the probability estimation.
We associate each element and each fact with the event of the ‘observation’ of the element’s
or the fact’s presence in the input data [19]. In particular,Bi denotes the event associated with
a given entity (i.e., with a given element or fact), which is modeled by the vertex vi ∈ V (G)
where 1 ≤ i ≤ n + m. In Figure 1 an example of graph G for the case of modeling
propositions of arity 2 is presented. The example corresponds to the application scenario in
which the propositions modeled in the system represent a set of facts constituting a single
relation (i.e., the likes relation). Such a scenario has been also assumed in the experiments
reported in this paper. In particular, for the illustrated example we have:

• V (G) = Y ∪F , where Y = {U1, .., U4}∪{M1, ..,M3} is a set of elements including
four users and three movies, and F = {F1, .., F6} is a set of six propositions – each
representing the fact that a given user likes a given movie,

• and E(G) = {e1, .., e12}.

3.2 Input Data Representation

Our method enables the generation of compatible representations [19] for all elements and
facts modeled in the system (vertices ofG). The coincidences of elements and facts (edges of
G) are the atomic units of the modeled information. According to these two assumptions, the
incidence matrix M = [mi,j ](n+m)×r of graph G (where |E(G)| = r) is used to represent
the structure of the input data. The matrix M is constructed as follows:

1. The incidences of edge ej ∈ E(G), (1 ≤ j ≤ r), and the vertices constituting the ends
of the edge are encoded by setting the corresponding matrix entries to 1 and −1:

mi,j =

 1 if there exists k such that edge ej = {vi, vk} and i < k,
−1 if there exists k such that edge ej = {vi, vk} and i > k,
0 otherwise.

2. Each row of matrix M is normalized using norm 2. The row normalization step is an
application of the Principle of Indifference with respect to prior probabilities of events
represented in the system. We use norm 2 in order to model all the atomic events as
equally probable quantum states represented by unit vectors in a Hilbert space of r
dimensions [19].

A form of the incidence matrix obtained as a result of this procedure is known as the
normalized oriented incidence matrix of a given graph. Matrix M for the graph presented in
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Figure 1 is equal to:

M =

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12



U1 1 0 0 0 0 0 0 0 0 0 0 0
U2 0 0 1 0 0 0 0 0 0 0 0 0
U3 0 0 0 0 1√

2
0 1√

2
0 0 0 0 0

U4 0 0 0 0 0 0 0 0 1√
2

0 1√
2

0

M1 0 1√
3

0 1√
3

0 1√
3

0 0 0 0 0 0

M2 0 0 0 0 0 0 0 1√
2

0 1√
2

0 0

M3 0 0 0 0 0 0 0 0 0 0 0 1
F1 −1√

2
−1√
2

0 0 0 0 0 0 0 0 0 0

F2 0 0 −1√
2

−1√
2

0 0 0 0 0 0 0 0

F3 0 0 0 0 −1√
2

−1√
2

0 0 0 0 0 0

F4 0 0 0 0 0 0 −1√
2

−1√
2

0 0 0 0

F5 0 0 0 0 0 0 0 0 −1√
2

−1√
2

0 0

F6 0 0 0 0 0 0 0 0 0 0 −1√
2

−1√
2

.

At the next step, a normalized Laplacian matrix [20] of G is constructed according to
formula:

L(G) =MMT = [li,j ](n+m)×(n+m),

where

li,j =


1 if i = j,

− 1√
di(G)dj(G)

if {vi, vj} ∈ E(G),

0 otherwise,

where di(G) is the degree of vertex vi of graph G. The Laplacian matrix is the operator on
Hilbert space which may be regarded as representing the observable of the quantum system
[10]. The smallest eigenvalue of L(G) (λ0(L(G))) is equal to 0 and it corresponds to the
eigenvector of coordinates proportional to square roots of degrees of graph G vertices [8].
The central role in the data transformation process is played by matrix A = I − L(G) =
[ai,j ](n+m)×(n+m) (where I = In+m is the (n+m)-dimensional identity matrix), for which

ai,j =

{
1√

di(G)dj(G)
if {vi, vj} ∈ E(G),

0 otherwise.

A is the adjacency matrix ofG, which is the weighted version of graphGwith edge weighting
w({vi, vj}) = ai,j . In the case of the example presented in Figure 1, the matrix A takes a
form:
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A=

U1 U2 U3 U4 M1 M2 M3 F1 F2 F3 F4 F5 F6



U1 0 0 0 0 0 0 0 1√
2

0 0 0 0 0

U2 0 0 0 0 0 0 0 0 1√
2

0 0 0 0

U3 0 0 0 0 0 0 0 0 0 1
2

1
2 0 0

U4 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2

M1 0 0 0 0 0 0 0 1√
6

1√
6

1√
6

0 0 0

M2 0 0 0 0 0 0 0 0 0 0 1
2

1
2 0

M3 0 0 0 0 0 0 0 0 0 0 0 0 1√
2

F1 1√
2

0 0 0 1√
6

0 0 0 0 0 0 0 0

F2 0 1√
2

0 0 1√
6

0 0 0 0 0 0 0 0

F3 0 0 1
2 0 1√

6
0 0 0 0 0 0 0 0

F4 0 0 1
2 0 0 1

2 0 0 0 0 0 0 0
F5 0 0 0 1

2 0 1
2 0 0 0 0 0 0 0

F6 0 0 0 1
2 0 0 1√

2
0 0 0 0 0 0

.

The normalized Laplacian matrix has all eigenvalues within interval [0, 2], where 0 =
λ1(L(G)) ≤ λ2(L(G)) ≤ · · · ≤ λn+m(L(G)) = 2. SinceA = I−L(G), the eigenvalues of
A are equal to λi(A) = 1−λi(L(G)) and share their eigenvectors set with L(G). Therefore,
λi(A) ∈ [−1, 1].

3.3 Holistic Entropy Reduction

The data transformation realized by the HPMPP system is based on an iterative transfor-
mation of the Hermitian operator describing the quantum system (represented by A). The
transformation results in a gradual reduction of the von Neumann entropy [10]. The process
may also be seen as the exploration of G resulting in the increase of the similarities between
event representations.

As our approach is based on the quantum IR theory of Hermitian operators [19], we model
the holistic entropy as von Neumann entropy [10]. To compute it, we normalize the trace of a
given operator in order to obtain a statistical quantum operator complying with the definition
of the density matrix [10]. The von Neumann entropy is calculated on the basis of the density
matrix eigencomposition according to the formula S(ρ) = −

∑
i λi lnλi, where λi denotes

the eigenvalues of the density matrix.
The representation generation process starts with the operator having the maximum en-

tropy (equal to log2(n + m)) and, if not terminated by an optimization algorithm, ends by
producing an operator of the minimal entropy. The process outcome is the sequence of oper-
ators A(t) (t ≥ 0) defined in the following way:

• t = 0: A(0) = [a
(0)
i,j ](n+m)×(n+m) = I(n+m)×(n+m),

• t ≥ 1: A(t) = A(t−1) ·A = [a
(t)
i,j ](n+m)×(n+m), where a(t)i,j =

∑n+m
k=1 a

(t−1)
i,k ak,j .
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The entries of A(t) = [a
(t)
i,j ] correspond to probabilities of events’ coincidences P (Bi ∩ Bj)

(events Bi are defined in Subsection 3.1) based on a reasoning chain of length t (i.e., the
estimated number of t-step walks on the weighted graph G starting at vertex i and finishing
at vertex j).

The final result of the representation generation process is an arithmetic average of op-
erators A(t), i.e., the matrix A

(k)
= [a

(k)
i,j ](n+m)×(m+n), where a(k)i,j = 1

k+1

∑k
t=0 a

(t)
i,j and

k ≥ 0. The use of the arithmetic average in the construction of operatorA
(k)

may be regarded
as an application of the Principle of Indifference with respect to the length of the graph ex-
ploration process. A

(k)
may be seen as a partial (i.e. approximate) inverse of L(G) realized

by means of Neumann series
∑k
i=0(I − L(G))i =

∑k
i=0A

i. Due to the fact that the Lapla-
cian matrix has an eigenvalue equal to zero, it is formally not invertible and the Neumann
series does not converge, but approaches a zero-entropy state. This state corresponds to the
projector on the eigenvector of L(G) associated to the eigenvalue that is equal to zero (the
vector representing the stationary distribution of a random walk on graph G) [8].

OperatorsA(i) and operatorsA
(k)

have the same eigenbasis as operatorA. Therefore, the
eigenvalues of A

(k)
(k ≥ 0) may be calculated according the formula:

λi(A
(k)

) =

{
1 if λi(A) = 1,

1
k+1

1−(λi(A))k+1

1−λi(A) otherwise,
(1)

for 1 ≤ i ≤ n+m.
Due to the fact that λi(A) ∈ [−1, 1], formula (1) implies that λi(A

(k)
) ∈ [0, 1] and that

the entropy of operators A
(k)

gradually decreases with the increase of k, i.e., S(A
(k+1)

) ≤
S(A

(k)
) for each k ≥ 0.

Due to the fact that the biggest eigenvalue of operator A is equal to 1, the biggest eigen-
value of each operator A(t) as well as of each operator A

(k)
is also equal to 1. As a result of

this property, the entries of these matrices (i.e., the values a(t)i,j , as well as values a(k)i,j ) may be
regarded as mutually comparable probability estimates P (Bi ∩Bj).

The entropy reduction process described above may be alternatively seen as a result of
the exploration of input data (given as operator A) aimed at obtaining new estimations of
probabilities of events coincidences. At the same time, such a process may be illustrated as
the procedure of counting the expected number of walks on G (i.e., the graph, for which A is
its adjacency matrix) of, at most, k steps – the walks of the length less or equal to k.

For the purposes of the probability estimation, our model assumes the use of element rep-
resentations taken from matrix A

(k)
for the optimal value of k. The HPMPP model proposes

two techniques for the optimization of k, which are derived from graph theory. The first one
assumes using the diameter of graph G as the optimal number of k, whereas the other one
uses the mixing time [8] of G for this purpose. The diameter of the graph presented in the
Figure 1 is equal to 10 whereas its mixing time is equal to 25. The block of the matrix A

(25)

limited only to the rows and columns that correspond to the modeled elements (i.e., users and
movies) is as follows:
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A
(25)

7×7 =

U1 U2 U3 U4 M1 M2 M3



U1 0.133 0.056 0.047 0.010 0.113 0.023 0.004
U2 0.056 0.133 0.047 0.010 0.113 0.023 0.004
U3 0.047 0.047 0.148 0.054 0.099 0.089 0.030
U4 0.010 0.010 0.054 0.202 0.024 0.111 0.127
M1 0.113 0.113 0.099 0.024 0.222 0.049 0.012
M2 0.022 0.022 0.089 0.111 0.049 0.162 0.066
M3 0.004 0.004 0.030 0.127 0.012 0.066 0.155

.

3.4 Probability Estimation

The method used to compute the probability of any coincidence of events (of any arity) is
based on the 1-norm length of the Hadamard product of vectors from matrix A

(k)
. For a

given subset of events Z = {Bi1 , Bi2 , . . . , Bis} such that |Z| = s and ik (1 ≤ k ≤ s) are
distinct indices taken from set {1, .., n+m}, we calculate the probability estimation pi1,i2,..,is
as the 1-norm length of the Hadamard product of row vectors corresponding to these events,
according to the formula:

pi1,i2,..,is = ‖a(k)i1
◦ a(k)i2

◦ · · · ◦ a(k)is
‖
1
,

where a(k)i1
, a(k)i2

, and a(k)is
are the row vectors of matrix A

(k)
that correspond to elements

forming the given proposition, and the symbol a(k)i1
◦ a(k)i2

◦ · · · ◦ a(k)is
denotes the Hadamard

product of vectors a(k)i1
, a(k)i2

, and a(k)is
. In the case of propositions of arity 2 the formula

simplifies to the dot product of two vectors. Therefore, the proposed formula may be seen as
a generalization of the dot product formula.

The model of computing the probability of the joint incidence of two or more events fol-
lows the approach of quantum probability modeling presented in [11] and [19]. The central
role in the model is played by the Hilbert space which is used to represent the structure of co-
incidences between the real-world entities modeled in the system. The probability definition
is based on the Gleason’s theorem [11], [19], which explains the correspondence between
probability measure on the lattice of closed subspaces of the Hilbert space and the density
operator on this space [11]. The procedure of the probability calculation may be described
in terms of quantum observables (represented by Hermitian operators) corresponding both to
the elements and to the facts modeled in the system.

As a result of such modeling assumptions (in particular, the operators’ compatibility as-
sumption), each vector representation may be used to build a diagonal operator exemplifying
a quantum observable of the probability of the given entity occurrence in the dataset. Proba-
bility of entities’ coincidences (i.e., observables of propositions) are obtained as products of
its constituents observables [19], [10]. The probability calculation is done as a result of quan-
tum measurement procedure, i.e., as an expectation value of the respective observables [11].

In the case of the graph presented in Figure 1 the final probabilities are calculated as dot
products of rows of matrixA

(10)
(for the optimization parameter k equal to the diameter ofG)
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or A
(25)

(for the optimization parameter k equal to the mixing time of G). The probabilities
corresponding to pairs (user, movie) are equal to:

pUi,Mj =

M1 M2 M3


U1 0.126 0.019 0.002
U2 0.126 0.019 0.002
U3 0.106 0.099 0.027
U4 0.019 0.122 0.145

for the case of the HPMPP diameter-based method, and

pUi,Mj =

M1 M2 M3


U1 0.104 0.039 0.015
U2 0.104 0.039 0.015
U3 0.107 0.085 0.048
U4 0.052 0.110 0.108

.

for the case of the HPMPP mixing-time-based method.

4 Experiments

The experiments presented in this section have been conducted with the aim of comparing
HPMPP with state-of-the-art collaborative filtering solutions from the perspective of the rec-
ommendation quality. Moreover, all the methods have been analyzed from the information-
theoretic perspective. In order to provide reliable and realistic results, the experiments in-
volve using datasets of various sparsity (various training-set/testing-set ratios) [13] and vari-
ous heavy-tailness (i.e., various spectral features of input data) [16].

4.1 Datasets

We have selected MovieLens [25] as the experimentation dataset, as it is undoubtedly the
most popular collaborative filtering dataset that is widely referred to in the relevant literature.
The MovieLens (ML100k) dataset (available at [25]) consists of 100000 ratings (provided
by means of a five-star scale) concerning 1682 movies given by 943 users. The majority of
the ML100k ratings is condensed in a small set of the most popular items (called the short
head) [5]. For this reason, we have made our experiments more realistic by reflecting the
observation made by the authors of [5] that recommending the most popular items is rarely
beneficial for the users. Following [16], we have removed a specified number of the most
popular items to produce a long-tailed dataset. The percentage of items remaining in the
dataset after removing items from the short head has been defined as lt.

Furthermore, we have randomly partitioned each dataset into pairs of a training set and a
test set, according to the ratio x as shown in [13]. A training set constructed for a given x and
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Table 1: Numbers of triples in ML(lt) datasets.

Dataset (lt): ML100k (0.6) ML100k (0.8) ML100k (0.945)
Likes 6735 18341 34669

Dislikes 6268 16915 31051

a given lt is denoted as ML(x, lt). In our experiments, we have used x ∈ {0.2, 0.5, 0.8} and
lt ∈ {0.6, 0.8, 0.945}.

Using a heavy-tailed dataset for the analysis of the representation entropy reduction pro-
cess implies a dataset spectral characteristic that allows for slower entropy changes, and, in
turn, for a more precise analysis. Setting lt = 0.6 has been chosen as the smallest value
of parameter lt for which training set ML(0.5, lt) (obtained after removing ratings from the
short head) still contains a single dominating connected graph component; choosing a smaller
value of lt would lead to decomposing the training set into several disconnected ‘datasets’.

The main assumption with regard to the dataset preparation was that extracted RDF triples
should represent data of both the likes and dislikes relations. Following the approach pre-
sented in [16] (which was based on the MovieLens dataset analysis presented in [5]), we
have subtracted the arithmetic average of the user average rate and the item average rate
from each known rate. All the users’ ratings below zero have been interpreted (both for the
training set and the test set) as facts: (user X, dislikes,movie Y ) and those above zero as
facts: (user X, likes, movie Y ). The numbers of propositions remaining in the MovieLens
dataset after removing items from the short head (for different values of lt) and after the
transformation of ratings into the RDF triples of likes and dislikes relations are presented
in Table 1.

In this paper, we present the first application of the proposed framework for the scenario
of one-relational training sets (consisting of propositions of the likes relation only). As a
consequence of using one-relational training sets for each compared method, the observed
recommendation quality for the experiments presented in this paper is lower than the quality
observed in experiments on the ML100k dataset including all the ratings (i.e., in [5] or [16]).

4.2 Evaluation Methodology

HPMPP has been compared with three widely-referenced methods, namely, pure Singu-
lar Value Decomposition (SVD) [13], Reflective Random Indexing (RRI) [4], Randomized
SVD-RI (RSVD-RI) [3]. For both RRI and RSVD-RI, the same configuration of the random
indexing function has been used, i.e., a configuration of the seed number s = 2 and the di-
mension number d = 500, which was chosen as the optimized settings for the MovieLens
dataset according to the test results described in [17]. Additionally, for RRI and for each
of the investigated recommendation quality measures, an experimentally optimized number
of reflections has been used. It has to be stressed that SVD, RRI, and RSVD-RI methods
have been applied in the classical way, i.e., the one that assumes using the standard user ×
item matrix (i.e., neither the normalized Laplacian matrix nor the matrix A), which is much
smaller matrix than matrix A used for the HPMPP method. As a consequence, the runtime of
these methods is considerably smaller than the runtime of the HPMPP method (see Table 5).

In this paper, we investigate a mono-relational propositional data representation method.

Holistic entropy reduction for collaborative filtering 219



Table 2: Results of the evaluation performed using AUROC.

Dataset (lt): ML100k (0.6) ML100k (0.8) ML100k (0.945)
Set partition (x): 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8
Method k — — — — — — — — — Avg

RRI — 0.511 0.498 0.459 0.525 0.523 0.502 0.556 0.560 0.539 0.519

RSVD-RI

2 0.501 0.521 0.498 0.542 0.554 0.544 0.574 0.591 0.573 0.544
5 0.519 0.540 0.521 0.544 0.571 0.570 0.571 0.611 0.601 0.561
15 0.519 0.537 0.530 0.534 0.557 0.574 0.550 0.600 0.613 0.557
50 0.498 0.527 0.532 0.520 0.536 0.567 0.528 0.564 0.595 0.541

SVD

2 0.501 0.520 0.498 0.542 0.553 0.543 0.573 0.594 0.573 0.544
5 0.518 0.539 0.520 0.543 0.570 0.570 0.571 0.610 0.600 0.560
15 0.518 0.537 0.529 0.533 0.556 0.574 0.550 0.599 0.613 0.557
50 0.498 0.526 0.532 0.520 0.535 0.567 0.528 0.564 0.594 0.540

hpmpp-diameter 0.512 0.544 0.521 0.544 0.565 0.568 0.574 0.607 0.601 0.559
hpmpp-mix-time 0.508 0.540 0.512 0.541 0.563 0.571 0.574 0.611 0.601 0.557

Therefore, the input data have been limited to the triples of the likes relation (for each of the
compared methods, facts have their representations as binary entries in the input matrix).

We have evaluated the methods by means of the most widely used recommendation qual-
ity measures: F1 and AUROC [18]. The recommendations have been generated according to
the user-item likelihood values obtained by means of (i) the procedure based on the Hadamard
product (for the case of HPMPP), (ii) the procedure based on the dot product (for the case
of RRI), or (iii) the procedure based on low dimensional approximation of the input user ×
item matrix (for the case of SVD and RSVD). The F1 results have been calculated based on
the recommendation lists of a given length, whereas the AUROC results have been obtained
based on an ordered list of all possible recommendations. Obviously, in order to calculate
the AUROC values, for each compared method we have used both the likes and dislikes
propositions of the corresponding testing set.

4.3 Results

The evaluation results of the algorithms have been collected in Tables 2, 3, and 4. The cells
of the tables have been shaded according to their values. The shades indicate a few of the
highest values in each column. The highest values in the column have been marked by the
dark gray color, while the rest have been made lighter, proportionally to their values.

As far as the AUROC results are concerned (see Table 2), the highest overall performance
has been achieved by RSVD-RI and SVD (at k = 5). However, in order to outperform the
fully automatic system based on HPMPP, RSVD-RI and SVD algorithms have to be carefully
configured, what requires the execution of many experiments. Therefore, the applicability of
these algorithms to a real-world system is severely limited.

Tables 3 and 4 present the results of recommendation scenarios in which, respectively
two and twenty items are included in a single recommendation list [12]. In the first of these
scenarios, the standard methods have been proven to be less effective in experiments involv-
ing the use of realistically sparse datasets. In scenarios in which 20 items for each user are
recommended (see Table 4), on average HPMPP outperforms the other algorithms. On the
other hand, in the case of using dense datasets, the RSVD-RI method achieves the highest
quality. The overall results from both the tables show the superiority of the standard methods
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Table 3: Results of the evaluation performed using F1@2.

Dataset (lt): ML100k (0.6) ML100k (0.8) ML100k (0.945)
Set partition (x): 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8
Method k — — — — — — — — — Sum

RRI — 0.005 0.004 0.008 0.010 0.011 0.008 0.016 0.017 0.013 0.093

RSVD-RI

2 0.009 0.016 0.016 0.011 0.013 0.011 0.015 0.024 0.020 0.135
5 0.008 0.014 0.020 0.011 0.023 0.028 0.015 0.027 0.055 0.221
15 0.013 0.017 0.029 0.013 0.029 0.047 0.016 0.055 0.064 0.274
50 0.011 0.017 0.029 0.014 0.035 0.050 0.017 0.051 0.065 0.289

SVD

2 0.008 0.016 0.016 0.011 0.013 0.011 0.015 0.024 0.020 0.134
5 0.008 0.014 0.020 0.011 0.023 0.028 0.015 0.027 0.055 0.201
15 0.013 0.017 0.029 0.013 0.029 0.047 0.016 0.055 0.064 0.283
50 0.011 0.017 0.029 0.014 0.035 0.034 0.017 0.051 0.065 0.273

hpmpp-diameter 0.015 0.020 0.038 0.013 0.027 0.037 0.012 0.040 0.062 0.264
hpmpp-mix-time 0.017 0.023 0.042 0.016 0.028 0.037 0.014 0.036 0.062 0.275

Table 4: Results of the evaluation performed using F1@20.

Dataset (lt): ML100k (0.6) ML100k (0.8) ML100k (0.945)
Set partition (x): 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8
Method k — — — — — — — — — Sum

RRI — 0.022 0.017 0.014 0.027 0.033 0.026 0.069 0.062 0.043 0.312

RSVD-RI

2 0.019 0.027 0.029 0.049 0.048 0.034 0.080 0.078 0.053 0.417
5 0.025 0.037 0.034 0.050 0.071 0.056 0.080 0.128 0.096 0.577
15 0.032 0.041 0.039 0.054 0.069 0.067 0.073 0.132 0.112 0.639
50 0.032 0.036 0.034 0.051 0.066 0.061 0.075 0.121 0.098 0.574

SVD

2 0.020 0.034 0.029 0.049 0.048 0.028 0.080 0.078 0.053 0.419
5 0.025 0.037 0.034 0.050 0.071 0.056 0.080 0.128 0.096 0.577
15 0.032 0.041 0.039 0.054 0.069 0.067 0.073 0.132 0.112 0.619
50 0.032 0.036 0.034 0.051 0.066 0.062 0.075 0.116 0.098 0.569

hpmpp-diameter 0.033 0.045 0.048 0.046 0.079 0.073 0.072 0.137 0.109 0.642
hpmpp-mix-time 0.036 0.050 0.049 0.054 0.080 0.072 0.083 0.131 0.109 0.664

Table 5: Runtime comparision for the case of lt = 0.8 and for various training set ratios x
(the results are provided in seconds).

Dataset (lt): ML100k (0.8)
Set partition (x): 0.2 0.5 0.8

Method k — — —
RRI — 20.55 21.65 20.51

RSVD-RI

2 21.17 20.83 20.51
5 20.41 21.09 21.22
15 20.63 21.02 21.02
50 20.86 20.53 21.03

SVD

2 5.21 5.54 5.79
5 5.23 5.54 5.82
15 5.12 5.49 5.80
50 5.34 5.54 5.84

HPMPP - diameter 261.84 467.97 1294.502
HPMPP - mixing time 146.67 912, 97 1139.89
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in the right parts of the tables. Therefore, one may conclude that the standard algorithms
can be accurate, but only when an unrealistically high number of ratings is available. On the
other hand, the proposed method provides a relatively high quality of recommendation in all
the cases and scenarios.

It may be observed that the quality of the standard methods depends on the particular
measure used. For example, RSVD-RI achieves the highest AUROC-measure quality at k =
15, but achieves the highest F1 value at k = 50. Thanks to the self-configuration capability,
the HPMPP method allows us to achieve a high recommendation quality in all these cases.
Figures 2-4 provide the additional visual qualitative results’ analysis of experiments executed
for datasets of various heavy-tailness and x ratio equal to 0.5.

4.3.1 Computational Complexity

All the presented methods have been evaluated using server of 2 CPUs 6 cores with the clock
of 2.67GHz and 48GB of RAM each.

It has to be admitted that the HPMPP method is more time consuming than the other
techniques under the comparison. The most time consuming operation is the full eigenvalue
decomposition of matrixAwhich is a square matrix of the size equal to the summarized num-
ber of elements and facts n +m. It has to be stressed, that A is a much bigger matrix than
the user-item matrices being decomposed in the case of using the SVD method. Thus, the
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computational complexity of the HPMPP method depends mostly on the complexity of eigen-
decomposition of matrixA, which is in the worst case equal toO((n+m)3). Despite the fact
that we use the optimized matrix eigendecomposition algorithm from Intel Math Kernel Li-
brary (Intel MKL), complexity of this operation is the main reason why the proposed method
requires much more time than other compared methods. However, the HPMPP method does
not require execution of iterative matrix multiplications described in section 3.3 – the operator
A

(k)
, which is an arithmetic average of operators A(t) is reconstructed using the eigenvectors

of A and eigenvalues calculated once (according to the formula (1)). The operators A and
A(t) of size (n + m) × (n + m) are also the biggest dense matrices that have to be stored
during the algorithm operation indicating the method demands in terms of memory.

Table 5 presents the runtime comparison for the case of ML(x, 0.8) dataset for x ∈
{0.2, 0.5, 0.8}. It may appear as surprising that the SVD method is faster than the RRI
method. Such a result is caused by the fact that in the case of the RRI application (similarly
as in the case of the RSVD-RI method) the computation time involves the dataset preparation
time (including the random vector generation phase).

4.4 Information-Theoretic Analysis

Each entity representation is a vector of probabilities that may be expressed as a conditional
probability distribution, which allows us to calculate the Shannon entropy of each entity
representation.

In order to measure the overall representations similarity in information-theoretic terms,
i.e., in order to calculate the von Neumann entropy of such a set, the vector-space representa-
tions have to be represented collectively as a density matrix. It may be noted that each of the
compared well-known methods for the generation of vector-space representations, be it RRI
or SVD-based dimensionality reduction, may be used to produce a set of vector-space repre-
sentations that are arbitrarily similar to one another, i.e., a set of the von Neumann entropy
equal to zero. It should be pointed out that, from the a formal point of view, the calculation
of the von Neumann entropy based on the results of SVD (matrices which are not operators)
requires some additional modeling assumptions, which are out of the scope of this paper.

Figure 5 shows plots of several types of entropies that have been measured in two differ-
ent domains - one being the number of matrix multiplications (for RRI and HPMPP) and the
other being the number of dimensions used to represent data after decomposition (for SVD).
As shown in Figure 5, the iterative procedure of the HPMPP method results in a gradual
reduction of the von Neumann entropy of the whole set of representations. The entropy re-
duction, which in the case of HPMPP and RRI is a result of the iterative matrix multiplication
(i.e. ‘reflections’), in the case of using SVD may be achieved by a gradual dimensionality
reduction.

As may be deduced from the definitions of the SVD and HPMPP methods, either an
extreme SVD-based dimensionality reduction or the application of many HPMPP procedure
steps leads to an extreme decrease of the von Neumann entropy. Moreover, as RRI is also
based on the multiple use of the multiplication of the input matrix by itself, it is natural that
RRI is another method that behaves in the above-described way.

A question that naturally arises is as follows: is the same correspondence among the
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Figure 5: Entropies of whole representations sets (each marked as vonN ) and entropies
of individual representations (each marked as Shmin, Shavg , Shstddev or Shmax) shown as
functions of the parameters of the analyzed methods, used to control the holistically measured
entropy. The greyed area Shstddev visualizes standard deviations of the individual represen-
tations entropies. The three plots represent the results obtained for HPMPP, RRI, and SVD
(visualized form left to right, respectively).

analyzed methods observable for less extreme configurations? As may be seen in Figure 5,
the answer is affirmative. However, it should be noted that there are some differences between
the impact that the number of dimensions has on the analyzed entropies and the analogical
impact of the number of steps on the entropies. What is especially evident is that HPMPP
reduces the von Neumann entropy in a much more asymptotic way than either RRI or SVD.
This is a direct consequence of the basic property of the Neumann series: each component
of the series ‘fine-tunes’ the sum of all the previous components by introducing a weaker
modification than the one introduced at the previous step. From a functional perspective, this
is a key property of the HPMPP-based system as it allows us to make it relatively robust to
the suboptimal operation of the procedure termination mechanism.

It is worth stressing that, among the analyzed methods, HPMPP is the only one that
provides recommendation results based on representations for which the holistic von Neu-
mann entropy is comparatively high and significantly higher than the Shannon entropies (for
ML(0.5, 0.6) the optimal number of reflections is equal to 22 and 26, for HPMPP-diameter
and HPMPP-mixing time, respectively). On the other hand, the optimal results for RRI (for
the reflection number equal to 3) and for SVD (for k = 15) are obtained when the process
of holistic entropy reduction is much more difficult to control (i.e., for ranges of parameter
values for which the entropy changes very rapidly).

The basic explanation of the key information-theoretic properties of HPMPP may be given
by showing that HPMPP applies the MaxEnt rule to the whole set of representations, rather
than to individual vectors. Obviously, the realization of such an objective has to be con-
strained by the necessary increase of the Shannon entropies of the representations. Moreover,
as shown in Figure 5, in the case of using SVD and, to some extent, also in the case of us-
ing RRI, the average value and the variance of entropies of the individual representations
closely depend on the overall entropy (approximating the von Neumann entropy with the use
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of XXT operator, where X is a matrix containing individual representations). Therefore,
despite differences between structures of coincidences that ‘link’ entities with other entities
(i.e., ‘different views’ on the input data graph that different nodes have), vectors produced as a
result of a dimensionality reduction (appropriately reducing the overall entropy) are severely
homogenized. In other words, as far as the vector-space graph nodes representations are
concerned, the application of SVD imposes entropy constraints that are avoidable when the
HPMPP method is used.

Additionally, we have observed that the performance of the HPMPP method on the CF
task changes smoothly across computing iterations. Figures 6-7 present the changes of per-
formance measures for the test on the ML(0.5, 0.6) dataset, in which the optimal number
of iterations is equal to 22 and 39 for the cases of using the graph diameter and the graph
mixing time as the ‘optimality indicator’, respectively. It can be concluded that, in contrast
to methods based on SVD or RRI, the HPMPP method shows relatively strong performance
for sparse datasets, since it enables to explore indirect relationships in data (i.e., to explore
paths of various length in graph G) without the rapid decline in von Neumann entropy and,
in consequence, without rapid changes of performance measures.
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5 Conclusions

The matrix data processing that is one of the core elements of HPMPP may appear similar
to the well-known SVD-based dimensionality reduction. On the other hand, from an algo-
rithmic point of view, the proposed method for the generation of vector-space representations
may resemble popular reflective matrix data processing methods, such as RRI [4]. How-
ever, it should be stressed that the proposed method, thanks to being based on the rigorous
probabilistic data processing model, avoids the application of the above-mentioned data pro-
cessing heuristics, typically dominating the collaborative filtering solutions presented in the
literature.

As we have demonstrated in the experiments, our model of the vector-space representa-
tions transformation constitutes a valuable basis for the iterative procedure of producing use-
ful vector-space representations of subjects, predicates, and objects. We have shown that the
iterative ‘gradual unification’ of HPMPP representations enables the generation of represen-
tations that may be used to effectively estimate the likelihood of unknown facts. Moreover,
we have shown that the quality provided by a particular HPMPP implementation does not
strongly depend on the number of the executed HPMPP procedure steps. In contrast to such
a behavior of HPMPP systems, algorithms based on RRI or SVD dimensionality reduction
are highly susceptible to a suboptimal configuration, such as too low or too high a number of
dimensions used to represent the users and items (in the case of applying SVD) or too low or
too high a number of reflections (in the case of applying RRI). Naturally, a low susceptibil-
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ity to a suboptimal configuration makes the effective self-configuration of the HPMPP-based
recommendation system much easier to achieve.

From an information-theoretic perspective, the key feature of the proposed dual, graph-
vector propositional data representation and optimization scheme is the ability to perform
the entropy-reducing transformation of mutually compatible vector-space representations in
a way that leads to high recommendation quality. In a clear contrast to methods proposed so
far, this property allows the HPMPP-based system to effectively optimize the number of the
executed HPMPP procedure steps and, as a result, to operate in a fully automatic way.
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