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Abstract.  Some recent works have established the importance of handling abundant 
reference information in multi-criteria sorting problems. More valid information allows a 
better characterization of the agent’s assignment policy, which can lead to an improved 
decision support.  However, sometimes information for enhancing the reference set may be 
not available, or may be too expensive. This paper explores an automatic mode of 
enhancing the reference set in the framework of the THESEUS multi-criteria sorting 
method. Some performance measures are defined in order to test results of the 
enhancement. Several theoretical arguments and practical experiments are provided here, 
supporting a basic advantage of the automatic enhancement:  a reduction of the vagueness 
measure that improves the THESEUS accuracy, without additional efforts from the 
decision agent. The experiments suggest that the errors coming from inadequate automatic 
assignments can be kept at a manageable level. 

Keywords: Multi-criteria decision; Sorting; Outranking methods; Knowledge 
management 

1. Introduction

This paper addresses the multi-criteria sorting problem, which is considered a particular 
case of classification problems involving preferences (cf. [10], [11]).  Unlike nominal 
classification problems in which the classes (groups, categories) have been defined in a 
nominal way, sorting refers to problems in which the categories have been defined in an 
ordinal way ([3]).  Among different decision aiding situations concerning sorting problems, 
our interest in this paper is focused on a particular case in which i) a set of ordered 
categories (from the worst to the best in the specific decision aiding context) has been 
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defined (or agreed) by a decision agent; ii) there is a universe of objects that are 
characterized by multiple criteria; iii)  the decision agent has assigned (or agreed with the 
assignment of) a set of objects (reference set, training set) which are considered 
representative of his/her assignment policy; iv) the decision agent assesses (or agrees with) 
a predicate M (a,b) which, based on the multi-criteria description of the objects a,b, 
establishes the truth value of a certain preference statement. M (a,b) may come from an 
outranking model, a value function, a system of rules, or other multi-criteria decision 
model. M (a,b) may be assessed directly by the decision agent, or inferred from the 
reference set through a preference-disaggregation analysis (e.g. [4], [6], [8], [11], [13]); v) 
the decision agent wants to use the reference set as a basic knowledge in order to obtain 
appropriate prescriptions with a simultaneous minimization of his/her participation in new 
assignments.  

The preference information contained in M (x,y) and in the reference set can be 
considered preference knowledge. Multi-criteria sorting methods use such information in 
order to suggest new assignments in a compatible way with the assignment policy that may 
be implicit in this knowledge. More valid knowledge should be preferred. Reference sets of 
bigger size should provide more information about the agent’s assignment policy, thus 
allowing more appropriate assignments.  

Here, we are interested in outranking-based sorting methods. Unlike other multi-criteria 
approaches, outranking methods can handle ordinal and imprecise information, 
incomparability and veto effects (cf. [9]). Some recent papers have addressed the size of the 
reference set and its importance in achieving a good characterization of the categories ([2], 
[7], [9]).  If the object to be sorted were incomparable with most actions in the reference 
set, an outranking-based sorting method would suggest ill-defined (vague) assignments. To 
illustrate this point, let us consider the below trivial example taken from [7]. Table 1 shows 
a reference set which is built from a very simple assignment policy. This can be formulated 
as: ‘If its average criterion value is close to 3 or less than 3, the object should be assigned to 
C1. If it is close to 4, assign the object to C2. If it is close to 5 or greater than 5, assign the 
object to C3’. 

 In the following bki denote the i-th object assigned to category Ck. 

Table 1. A reference set 
Reference element Multi-criteria description 

(increasing preferences) 
Category 

b11 (3, 3, 3, 3) C1
b21 (4, 4, 4, 3) C2
b31 (4, 6, 5, 4) C3

Let σ(x,y) denote the credibility of ‘x outranks y’. It will be calculated as in ELECTRE 
III and ELECTRE TRI (e.g. [15]). Let us accept that the ELECTRE III model parameters 
(weights, indifference thresholds, preference thresholds, veto thresholds) are set to: wj= 
0.25; qj= 0; pj= 1; vj= 2; ( j = 1,…4). Consider a new object x= ( 2, 2, 2, 6) to be sorted. 
Note that σ(bk1, x) = 0, k= 1, 2, 3, σ(x,b11)= 0.25, σ(x,bk1)=0, k= 2, 3. So, x is incomparable 
with any reference action. This leads to an ill-determined assignment of (2, 2, 2, 6). Now, 
suppose that the reference set is expanded by introducing b12 = (2, 2, 3, 5), assigned to C1. 
Note that σ(x,b12)= 0.75 = σ(b12, x). The valued indifference relation proposed by 
Fernandez et al. in [5],[6] i(x,b12)= min (σ(x,b12), σ(b12,x))  suggests assigning x to C1, 
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prescription which corresponds to the assignment policy. So, the new reference element 
introduced new information useful for a better characterization of the assignment policy. 

The ability to capture the agent’s assignment policy and make well-defined assignments 
depends on the reference set. Expanding the reference set may be a way to improve results. 
In this paper, the process of including new reference elements  aimed at making more 
appropriate assignments is called ‘enhancement of the reference set’. 

The process of enhancement may be performed in three different ways: 
1. A decision agent provides new assignment examples;
2. In automatic mode, without agent’s participation. Thus, the method itself decides

which new objects should be incorporated into the reference set;
3. A semi-automatic way in which the proper sorting method suggests new assignments

to agent approval.
In the first way, the new reference examples may be provided by: 
a) former assignments accepted as valid by the decision agent;
b) assignment of a limited set of objects for which the decision agent is comfortable

expressing his/her decision policy.
To the best of our knowledge, the paper by Greco et al. ([12]) is the deepest analysis 

about enhancement processes in the scientific literature. They proposed an interesting 
approach in which inclusions of new elements in the reference set are performed in an 
interactive way. Their assignments should be compatible with the previous assignments in 
the frame of an additive value function model. The consistency preference model-reference 
set can be increased by removing objects from the set or modifying their assignments.  

However, in some problems the decision maker (DM) may be inaccessible or may be a 
mythical person. Sometimes there is no person to ask about new assignments; the reference 
set may be obtained from past data as in bankruptcy prediction, corporate risk assessment, 
or data-based scholar success assessment. If there is no  identifiable decision maker, if (s)he  
is not accessible, or if (s)he does not want to provide more assignment examples, the 
cardinality of the reference set  could be increased by the self method (automatic mode). An 
examination of whether the automatic enhancement mode provides good results should be 
welcomed. 

Here we are interested in studying the automatic enhancement mode in the framework 
of the THESEUS method proposed in [7]. The main goal is to find out if the automatic 
enhancement increases the THESEUS capacity to suggest better assignments. This paper is 
structured as follows: Some notation and premises are described in Section 2. A brief 
outline of the THESEUS method is given in 2.2. Some theoretical arguments and the 
proposal of enhancement process are presented in Section 3, followed by detailed numerical 
examples (Section 4). Finally, we draw some concluding remarks. 

2. Some background

2.1. Basic premises and notation 

Some premises follow: 
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i) There is a finite set of ordered categories Ct= {C1, …CM}, (M ≥ 2); CM  is assumed to
be the preferred category. The term ‘preferred’ is related to each particular sorting problem 
(for instance, ‘more quality’, ‘more consensual’, ‘less risky’). 

ii) Let U be the universe of objects x described by a coherent set of N criteria, denoted
G= {g1, g2, . . . ,gj, . . . , gN}, with N ≥ 3. This set has been defined in order to evaluate any 
object considered for assignment to a certain category ([1],[16]). 

iii) There is a decision agent who has (or agrees with) a certain decision policy defined
on a subset U’ of the universe. According to this policy, there should be a certain function 
F:U’→Ct  such that for each  x∈U’  the decision agent accepts that F(x) is the most 
appropriate assignment of x. F expresses the assignment policy from the agent (or accepted 
by him/her).  

iv) There is a set of reference objects or training examples T, which is composed of
elements bkh∈U assigned to category Ck, (k= 1,...M). 

v) The decision agent agrees with a fuzzy outranking relation σ(x,y) defined on U×U. Its
value models the degree of credibility of the statement ‘x is at least as good as y’ from the 
agent’s perspective in each particular sorting problem (for instance, ‘x is at least as 
consensual as y’, or ‘x is at most as risky as y’). 

Remarks: 
- The decision agent may be a real decision maker (who has his/her preferences and 

decision policy), or be an actor in charge of solving the problem,  accepting the 
assignment examples; 

- The reference set may come from the decision agent or be accepted by him/her 
when the information comes from past data; 

- The reference set contains implicit multi-criteria preferences among objects.  A 
high level of compatibility between σ and T is desirable. In order to hold a full 
compatibility, σ should satisfy:  
For each (bkh, bk’l), if  bkhis  at  least  as  good  as bk’l with  a  sufficient  high degree 
of credibility, THEN k≥k’. 
Looking for compatibility with the reference   information, the σ parameters may 
be inferred by using preference-disaggregation methods as in [6],[8]; these 
approaches  minimize inconsistencies with the above implication. 

Let us consider a real value λ> 0.5. 
Definition 1:  Given σ(x, y), the following crisp binary relations are defined on the 
universe: 

(x, y) ∈S(λ) iff σ(x, y) ≥λ  (λ-outranking) 

(x, y) ∈P(λ) iff σ(x, y) ≥λ ∧ σ(y, x) < 0.5 (λ-strict preference) 

(x, y) ∈Q(λ) iff σ(x, y) ≥λ ∧  0.5 ≤σ(y, x) <λ (λ-weak preference) 

(x, y) ∈I(λ) iff σ(x, y) ≥λ ∧ σ(y, x) ≥λ (λ-indifference). 

 (x, y) ∈R(λ) iff σ(x, y) <λ ∧ σ(y, x) <λ (λ-incomparability). 

Definition 2: We say that a reference set T covers Ct if for each Ck∈Ct there is at least one 
bkh∈ T. 
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2.2. The THESEUS method 

The THESEUS method is based on comparing a new object to be assigned with reference 
objects through models of preference and indifference relations (cf. [7]). The assignment is 
not a consequence of the object intrinsic properties; it is rather the result of comparisons 
with other objects whose assignments are known.  In the following C(x) denotes a potential 
assignment of object x.  According to THESEUS, C(x) should satisfy: 

∀x∈U, ∀bkh∈T 

𝑥𝑃(𝜆)𝑏𝑘ℎ ⇒ 𝐶(𝑥) ≿ 𝐶𝑘 

𝑏𝑘ℎ𝑃(𝜆)𝑥 ⇒ 𝐶𝑘 ≿ 𝐶(𝑥) 
(1.a) 

𝑥𝑄(𝜆)𝑏𝑘ℎ ⇒ 𝐶(𝑥) ≿ 𝐶𝑘 

𝑏𝑘ℎ𝑄(𝜆)𝑥 ⇒ 𝐶𝑘 ≿ 𝐶(𝑥) 
(1.b) 

𝑥𝐼(𝜆)𝑏𝑘ℎ ⇒ (𝐶(𝑥) ≿ 𝐶𝑘) ∧ �𝐶𝑘 ≿ 𝐶(𝑥)� ⇔ 𝐶(𝑥) = 𝐶𝑘 (1.c) 

 (≿ denotes the statement “is not worse than” on the set of categories, which is related to 
the decision-aiding context). 

Note that C(x) is a variable whose domain is the set of ordered categories. Equations 
(1.a-c) express the necessary consistency amongst the preference model, the reference set 
and the appropriate assignments of x. The assignment C(x) should be as compatible as 
possible with the current knowledge about the assignment policy. 

THESEUS uses the inconsistencies with Equations (1.a-c) to compare the possible 
assignments of x. More specifically: 

• The set of P(λ)-inconsistencies for x and C(x) is defined as DP= {(x,bkh), (bkh,x),
bkh∈T such that  (1.a) is FALSE};

• The set of Q(λ)-inconsistencies for x and C(x) is defined as DQ = {(x,bkh), (bkh,x),
bkh∈T such that  (1.b) is FALSE};

• The set of I(λ)-inconsistencies for x and C(x) is defined as DI= {(x,bkh), (bkh,x),
bkh∈T  such that  (1.c) is FALSE}.

Suppose that C(x) = Ck and consider bjh∈ T. Some cases in which xI(λ)bjh∧k-j=1 
might be explained by “discontinuity” of the description; x may be close to the upper 
(lower) boundary of Ck and bjh may be close to the lower (upper) boundary of Cj. They will 
be called second-order I(λ)-inconsistencies and grouped in the set D2I. The set   D1I = DI – 
D2I contains the so-called first-order I(λ)-inconsistencies, which are not consequences of 
the described discontinuity effect. Let nP,nQ, n1I, n2I denote the cardinality of the above-
defined inconsistency sets, and N1= nP+ nQ+ n1I , N2= n2I . 
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THESEUS suggests an assignment that minimizes the above inconsistencies with 
lexicographic priority favouring N1, which is the most important criterion ([7]). The basic 
assignment rule is: 

For each x ∈U and given a minimum credibility level λ>0.5 
a) Starting with k =1 (k =1,…M) and considering each bkh∈T, calculate N1(Ck);
b) Identify the set {Cj} whose elements hold Cj = argmin N1(Ck);
c) Select Ck*= argminN2(Ci);

     {Cj} 
d) If Ck* is a single solution, assign x to Ck*; other situations are approached below.

The suggestion may be a single category or a sequence of categories. The first case is 
called a well-defined assignment; otherwise, the obtained solution highlights the highest 
category (CH) and the lowest category (CL) which is appropriate for assigning the object, 
but fails in determining the most appropriate. Such solution will be called “a vague 
assignment”. In this sense, the following uniqueness theorem is important: 

Theorem: A THESEUS solution Ck* is unique only if one of the following conditions is 
held: 

i) there is (l,m) such that xS(λ)bk*l and also  bk*mS(λ)x;
ii) there is a bML such that xS(λ)bML;

iii) there is a b1n such that b1nS(λ)x.
In case ii) Ck*= CM; in iii) Ck*= C1.  
A proof of a similar result was given in [7]. 
In simple words, in order to be unique the THESEUS assignment should be ‘bounded’ 

by two objects in the same category, or be ‘bounded’ by objects belonging to extreme 
categories. 

3. The proposal

3.1. Theoretical bases 

Definition 3: If x∈U is assigned by THESEUS to an element (well-specified) of Ct, we say 
that the assignment of x is THESEUS well-defined. 

Definition 4: Consider the subset U’’ of the universe that includes all the objects whose 
assignments are THESEUS well-defined. The THESEUS assignment function FTH is 
defined as FTH:U’’→Ct  in which  FTH(x) is the assignment of x suggested by THESEUS. 

Definition 5: Under the above notation, for a finite universe U the THESEUS 
vagueness measure is defined as 

𝑉𝑔 = 1 − � � 𝑧𝑗�𝑥𝑗� 𝑐𝑎𝑟𝑑(𝑈)⁄
𝑐𝑎𝑟𝑑(𝑈)

𝑗=1

� (2) 
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where xj∈U  and zj = 1 if xj is THESEUS-well defined; otherwise, zj= 0. 
Definition 6: The λ-assignment range for Ck in the set T is defined as 
For 1< k <M, Aλ,k (T) = {x∈U such that there is (bkl,bkn)∈T×T which satisfies xS(λ)bkl ∧ 

bknS(λ)x}; 
For k =1, Aλ,1(T) = {x∈U such that there is b1n∈T which satisfies  b1nS(λ)x}; 
For k =M, Aλ,M (T) = {x∈U such that there is bMl∈T which satisfies  xS(λ)bMl}. 
The above concept can be interpreted as the set of objects of the universe for which 

there are positive arguments for assigning them to Ck. If x∈Aλ,k(T), assigning this object to a 
category different from Ck would be inconsistent with Eq. 1. x∈Aλ,k(T) is a necessary 
condition for assigning x to Ck (uniqueness theorem).  Hence, if there is no Ck such that 
x∈Aλ,k(T), then the assignment of  x is not well-defined. 

The following proposition was proved in [7]: 
Proposition1: Let T’ be equal to T ∪{bkl} and T∩{bkl}= φ.  Then Aλ,k(T) ⊆Aλ,k(T’). 
That is, Aλ,k(T) may be different from Aλ,k(T’); the addition of bkl may enhance Aλ,k and 

increase the cardinal of the THESEUS assignment function. So, if T is enhanced with new 
reference elements, from Proposition 1 and the uniqueness theorem the THESEUS 
vagueness measure should decrease. 

Definition 7: Under the above notation, for a finite universe U the THESEUS accuracy 
measure is defined as 

𝐴𝑐 = 1 𝑐𝑎𝑟𝑑(𝑈)⁄ � 𝑦𝑗�𝑥𝑗�
𝑐𝑎𝑟𝑑(𝑈)

𝑗=1

 (3) 

where xj∈U and  yj = 1 if FTH(xj) = F(xj); otherwise,  (including when xj does not belong 
to U’’ ∩U’),yj= 0. 

In case of non-finite universe, the vagueness and accuracy measures can be extended as: 

𝑉𝑔 = 1 − � lim
𝑁𝑠𝑎𝑚𝑝𝑙𝑒→∝

� 𝑧𝑗�𝑥𝑗� 𝑁𝑠𝑎𝑚𝑝𝑙𝑒⁄
𝑁𝑠𝑎𝑚𝑝𝑙𝑒

𝑗=1

� (4) 

𝐴𝑐 = lim
𝑁𝑠𝑎𝑚𝑝𝑙𝑒→∝

1 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 � 𝑦𝑗�𝑥𝑗�
𝑁𝑠𝑎𝑚𝑝𝑙𝑒

𝑗=1

�  (5) 

where xj comes from a sample of the universe whose cardinality is Nsample. Vg and Ac 
can be estimated from a random sample of large size. 

Remark: As was discussed above, the domain of the THESEUS assignment function is 
influenced by card (T). As much greater card (T) is through an enhancement process, more 
yj= 1 to be added in Eqs.3 and 5, thus improving the THESEUS accuracy measure. Let us 
formalize this issue by introducing some probability-based arguments. 

Let us denote by 
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Pac: the probability of obtaining an accurate assignment; 
Pwell-def: the probability of obtaining a well-defined assignment; 
P(acc/well-defined): the conditional probability of obtaining an accurate assignment 

given it is well-defined. 
The probability P(acc/well-defined) depends on two factors: a) how exactly the relations 

P(λ), Q(λ), I(λ) reflect real preference and indifference relations of the decision-maker; b) 
the quality of information in the reference set. Moreover, the discontinuity effect, present in 
the reference set, should make P(acc/well-defined) be lower than 1. Suppose that a well-
defined assignment of x is given by xI(λ)bkl. If bkl is close to the “border” between Ck and 
Ck+1, may be F(x) = Ck+1, although THESEUS suggests assigning x to Ck. 

Since Ac and Vg can be interpreted as probabilities and  Pac= P(acc/well-defined). Pwell-

def, we can write 

𝐴𝑐 ≈ 𝑃(acc well-defined⁄ ). �1 − 𝑉𝑔� (6) 

If we assume that P(acc/well-defined) is not a decreasing function on card (T), then  Ac 
should be increased when the vagueness measure is reduced as a consequence from an 
enhancement process of the reference set. 

3.2. Enhancing the reference set 

In this section, our proposal of automatic enhancement is justified by analogy with an 
enhancement of the reference set conducted by a real decision maker, whose preferences 
are compatible with the information contained in that set. 

First of all, let us revisit Premise iii) of Section 2. The assignment policy may not be 
clearly defined in the DM’s mind. Indeed, this policy should be based on certain relational 
system of preferences, which is reflected in different assignments.  Given x∈U, F(x) can be 
estimated for other objects of the universe in a way compatible with the DM’s preferences. 
F should contain all the pairs (x, F(x)) for which a) the DM feels comfortable with the 
assignment, and b) the assignment is compatible with the DM’s system of preferences 
taking into account the information from other previously known/accepted assignments. 
Thus, the assignment function should be compatible with the DM’s system of preferences, 
as well as with the set of categories and some assignments previously made by the DM or 
accepted by him/her. To some extent, this claim for consistency among new assignments, 
previous assignments and DM preferences was suggested by Greco et al. in [12], but in the 
framework of additive value models. Here, this is extended to relational models. 

More formally: 
Assumption1: The DM agrees with certain indifference, strict, weak preference and 

outranking relations on a subset of U denoted by I, P, Q, and S respectively. They were 
defined by Roy in [16] as follows: 

- Indifference corresponds to the existence of clear and positive reasons that justify 
equivalence between the two actions (objects).  

- Strict preference corresponds to the existence of clear and positive reasons that 
justify significant preference in favor of one (identified) of the two actions. The 
statement ‘x is strictly preferred to y’ is denoted by xPy.  

64 E. Fernandez, J. Navarro, E. Salomon



- Weak preference corresponds to the existence of clear and positive reasons in 
favor of x over y, but these are not sufficient to justify strict preference. 
Indifference and strict preference cannot be distinguished appropriately. This is 
denoted by xQy. 

- Outranking: It corresponds to the existence of clear and positive reasons that 
justify the statement “x is at least as good as y”, but with no significant division 
being established among the situations of strict preference, weak preference and 
indifference. Notation: xSy. 

Assumption 2: The assignment of x is compatible with the DM’s preference relations 
and the previously accepted assignments if  
∀bkh whose assignment has been performed/approved by the DM:  

𝑥 𝑜𝑢𝑡𝑟𝑎𝑛𝑘𝑠 𝑏𝑘ℎ ⇒ 𝑡ℎ𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑜𝑓 𝑥 𝑖𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑎𝑠 𝑔𝑜𝑜𝑑 𝑎𝑠 𝐶𝑘 

𝑏𝑘ℎ 𝑜𝑢𝑡𝑟𝑎𝑛𝑘𝑠 𝑥 ⇒ 𝐶𝑘𝑖𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠 𝑎𝑠 𝑔𝑜𝑜𝑑 𝑎𝑠 𝑡ℎ𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑜𝑓 𝑥 

(7) 

This assumption claims for a basic consistency between preferences and assignments 
that are expression of preferences. 

Note that (7) matches with Eq. 1 when S is replaced by S(λ). So, the THESEUS 
assigning manner given by Eq. 1 is a model of the compatible assignment policy defined by 
Assumption 2. Hence, in order to be unique, an assignment derived from (7) should fulfil 
the Uniqueness Theorem of THESEUS solutions. Thus, x is assigned to Ck* only if  i) there 
is a pair (l,m) such that xSbk*l and also  bk*mSx; ii) there is a bML such that xSbML; or iii)  there 
is a b1n such that b1nSx. In case ii) Ck*= CM; in iii) Ck*= C1. Informally, x is assigned to Ck* 
when the DM finds good arguments to make this assignment based on his/her particular 
outranking relation and the previous assignments (s)he performed or approved, in a way 
compatible with (7). So, an enhancement process on a finite universe (conducted by a real 
DM that agrees with Assumption 2) should obey the following logic: 

S-based enhancement 
∀xj∈U and xj∉ T(i) 
xj is incorporated to T(i)if one of the below propositions is true: 
a) There is b1h∈ T(i) such that   b1h Sxj;
b) There is bMl∈ T(i) such that xjSbMl;
c) There is (bkh ,bkl) ∈ T(i)× T(i) such that   xjSbkh  and bkl Sxj.

In case a), assign xj to C1; in b), assign xj to CM; in case c),assign xj to Ck. 
The superscript i denotes the i-th iteration of the enhancement process. This process 

finishes when there is no xj satisfying the above conditions. 
In case of non-finite universe, the above algorithm can be applied by restricting xj to a 

large-cardinality finite subset of the universe. 
In order to perform an automatic process that simulates the S-based enhancement, the 

DM should be replaced by a model of his/her outranking relation. Let us introduce the 
following assumption: 
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Assumption 3: The cutting level λ and the parameters of the model σ(x,y) can be identified 
in order to achieve (P(λ) ∪Q(λ)) ⊂S. 
From this assumption 

�𝑏𝑘ℎ𝑃(𝜆)𝑥𝑗 or  𝑏𝑘ℎ𝑄(𝜆)𝑥𝑗� ⇒ 𝑏𝑘ℎ𝑆𝑥𝑗; (8.a) 

�𝑥𝑗𝑃(𝜆)𝑏𝑘ℎ or  𝑥𝑗𝑄(𝜆)𝑏𝑘ℎ� ⇒ 𝑥𝑗𝑆𝑏𝑘ℎ; (8.b) 

�𝑥𝑗𝑃(𝜆)𝑏𝑘ℎ or  𝑥𝑗𝑄(𝜆)𝑏𝑘ℎ� and  �𝑏𝑘𝑙𝑃(𝜆)𝑥𝑗 or  𝑏𝑘𝑙𝑄(𝜆)𝑥𝑗� ⇒ 𝑥𝑗𝑆𝑏𝑘ℎ and  𝑏𝑘𝑙𝑆𝑥𝑗.   (8.c) 

Using (8.a, 8.b, 8.c) in the above S-based enhancement, the following procedure for the 
enhancement in automatic mode is straightforward: 
Automatic enhancement procedure (T, Tenh) 
Initialize i 
Tenh(i)= T 
Tenh(i+1)= Φ 
DO WHILE  Tenh(i+1)≠Tenh(i) 
∀xj∈U and xj∈Tenh(i) 
xj is incorporated to Tenh(i+1) 
      End of Loop  
∀xj∈U and xj∉Tenh(i)

xj is incorporated into Tenh(i+1)if one of the below propositions is true: 
d) There is b1h∈Tenh(i) such that b1hP(λ)xj or b1hQ(λ)xj;
e) There is bMl∈Tenh(i) such that xjP(λ)bMl or xjQ(λ)bMl;
f) There is (bkh ,bkl) ∈Tenh(i)×Tenh(i) such that (xjP(λ)bkh or xjQ(λ)bkh)  and (bklP(λ)xj or

bklQ(λ)xj ) .
   In case d), assign xj to C1; in e), assign xj to CM; in case f),assign xj  to Ck. 

     End of Loop 
End of DO 
Tenh= Tenh(i+1) 
End of procedure 

In plain language: an element x is accepted as a new reference example if there are 
convincing arguments in favor of Conditions a), b) or c) of the S-based enhancement 
process. The automatic enhancement finishes when no new element holds Conditions d), e) 
or f), which are sufficient for a), b), c). The procedure only works on finite universes. 
Infinite ones should be approximated by large-size finite subsets. The simplest way may be 
the following: i) For each criterion, define a range of variation that covers the universe; ii) 
Use the indifference threshold in order to make a partition of each criterion range; if the 
indifference threshold is zero, then use a fraction of the strict preference threshold; iii) If Pi 
denotes the partition in the i-th criterion, take the sample of the universe as the Cartesian 
product P1×P2×….PN , where N is the number of criteria. 
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Under Assumption 3, all xj that satisfy d), e) or f), also satisfy a), b), c). The reciprocal 
is not true. So, the automatically enhanced reference set should be a subset of the S-based 
enhanced set. Thus, Assumption 3 guarantees certain correspondence between the 
automatic enhancement and the enhancement conducted by the DM. However, in practice 
there could be pairs (xj,bkh) and (bkh, xj) belonging to  (P(λ) ∪Q(λ))  but not to S. For these 
pairs Conditions d), e) or f) may be true although a), b),  c) are false. In such cases, the 
assignment of xj performed by the automatic enhancement procedure may be different from 
F(xj). If F(xj) does not coincide with the prescription of the enhancement procedure, the 
error can be propagated in its next iterations.  So, the fulfillment of Assumption 3 may be a 
central issue, which can be addressed by two different ways: i) increasing  λ, thus reducing 
the cardinality of (P(λ) ∪Q(λ)); or ii) applying a preference disaggregation analysis 
procedure (e.g. [4, 6, 8]) in order to achieve a more appropriate settlement of model’s 
parameters. The first way should be carefully used, since reducing cardinality of (P(λ) 
∪Q(λ))  could decrease the cardinality of Tenh. 

Replacing S by S(λ),  the S-based enhancement procedure may be extended to perform a 
semi-automatic enhancement: the method suggests new incorporations to the reference set, 
and the DM approves/rejects its suggestions. Thus, the new assignment examples should be 
coincident with F. σ parameters should be re-inferred from time to time and consistency 
analyses should be introduced. 

4. Two illustrative numerical tests

First example: 
The universe is generated by a multi-criteria functional model which simulates the 

assignment policy from a decision agent. Let us consider the model F = 0.2 ( F1 + F2 + F3 
+ F4 + (F1. F2 .F3 .F4)0.25). For both the criteria Fi and the decision categories, the following 
scale is considered: Very Poor = 1, Poor = 2, Below Average = 3; Average = 4; Above 
Average = 5; Good = 6; Very Good = 7. Fi takes every integer value in the interval  [1, 7]. 
So, card (U) = 74= 2401. 

Function F takes on values from [1, 7]. If a fractional value is obtained for F, it is 
rounded either up or down, and an integer Fn is obtained. If the decimal part were exactly 
0.5, Fn would be randomly chosen amongst F-0.5 and F+0.5. The categories of the 
different objects are determined by their Fn values (Fn = 1,2,…7 correspond to Very Poor, 
Poor,…Very Good).  

The following experiment was replicated 20 times, each with different value of N’: 
i. A covering reference set T of size N’ is randomly generated;
ii. λ and the parameters of the fuzzy outranking relation are settled;
iii. THESEUS Vg and Ac are calculated according to Eq. 2 and 3;
iv. P(acc/well-defined) is calculated from Equation 6;
v. Tenh is obtained by applying the automatic enhancement procedure;
vi. Vg and Ac are calculated by using Tenh;
vii. P(acc/well-defined) is calculated from Equation 6.
σ(x,y) is calculated as in ELECTRE-III, with the simplification proposed by Mousseau 

and Dias ([14]) in calculating the discordance index. The parameter settlement follows: 
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Weights wi= 0.25, i=1,…4; 
Indifference thresholds qi= 0.2, i=1,…4; 
Preference thresholds pi= 0.7, i=1,…4; 
Veto thresholds vi = 3, i=1,…4; 
Pre-veto thresholds ui =2, i=1,…4. 
The cutting threshold λ was set as 0.7. 
The average results are shown in Table 2 and Table 3 

Note: CH, CL refer to the highest and lowest category suggested by THESEUS 
assignment rule. Pb denotes P(acc/well-defined) before the enhancement; Pa  denotes the 
same probability after the enhancement process. 

Table 3. Average number of inappropriate assignments by the enhancement 
process 

Card (T) Card (Tenh) % of inappropriate assignments in Tenh

7 10.95 0 
10 15.45 0 
25 61.60 0 
50 169.50 0 

100 419.90 0 
Remarks: 

- According to Table 3, no errors are introduced by the enhancement process in the 
enhanced reference set; 

- The vagueness measure decreases with card (T) (Table 2, second column); 
- In case of vague assignments, the range of suggested categories is narrower when 

card (T) increases (fifth column); 
- The THESEUS accuracy increases with card (T) (third column); 
- Improvements of P(acc/well-defined) are pointed out  in column fourth when card 

(T) is increased. With more reference information, THESEUS assignments may be 
more justified, and a well-defined assignment may be based on more arguments, 
being thus more reliable;  

- The vagueness measure decreases when the enhancement process takes place 
(compare columns 2 and 7); 

- In case of vague assignments, the range of suggested categories is reduced by the 
enhancement process (compare columns 5 and 10); 

- The THESEUS accuracy is improved by the enhancement process (compare 
columns 3 and 8); in some cases, increases above 30% are achieved when the 
before-enhancement accuracy is compared to the after-enhancement accuracy; 

- P(acc/well-defined) is slightly improved by the enhancement process (compare 
columns 4 and 9 in Table 2). A greater cardinality of the enhanced reference set 
produces a slight increment of that probability. 

The distribution of the objects which are incorporated into the reference set is far from 
being uniform. Compared with Condition f) of the automatic enhancement procedure, the 
fulfillment of Conditions d) and e) is easier. Hence, in proportion, more objects are 
incorporated into categories C1 and C7. Table 4 shows results of the enhancement process 
per category. For comparison, the distribution of the universe per category is given by the 
first row. Each reference set was randomly generated, taking care to cover the set of  
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categories. Their cardinality per category (before enhancement/after enhancement) is given 
by the different columns. 

Note that proportionally to the universe C1 and C7 are more populated in the enhanced 
set. With Card (T) =7 and Card (T) =10, the enhancement is weak and limited to those 
categories. This effect tends to be reduced for bigger T since its intermediate categories are 
initially more populated, thus increasing the probability of fulfilling the enhancement 
condition f). 
Second example: 

Here each object in the universe is characterized by four criteria (F1, F2, F3, F4) which 
take integer values on the interval [1, 7]. So, card (U) = 74= 2401. 

A fuzzy outranking relation (with its parameters settled as in the first example) is 
defined on the universe. Like before, λ was set as 0.7. 
Using σ-values, a merit quantity of each object with respect to the entire universe is 
calculated as F(xj) = card(Ust) - card(Uw), where 
Ust= {yj∈U such that σ(xj,yj) ≥λ} and Uw= {yj∈U such that σ(yj,xj) ≥λ} 
The DM’s assignment policy is simulated by using the merit F as follows: 
Fmin and Fmax denote the minimum and maximum values of F on the universe. The range 
Fmax- Fmin is divided in seven intervals of equal  length [Fmin, a1), [a1, a2),… [a6, Fmax]. 
Then: 
If F(xj)∈[Fmin, a1), xj is assigned to Very Poor; 
If F(xj)∈[a1, a2), xj is assigned to Poor; 
. 
. 
. 
If F(xj)∈[a6, Fmax], xj is assigned to Very Good. 

Like in the first example, the following experiment was replicated 20 times: 
i. A covering reference set T of size N’ is randomly generated according to the

above simulated assignment policy;
ii. THESEUS Vg and Ac are calculated according to Eq. 2 and 3;
iii. P(acc/well-defined) is calculated from Equation 6;
iv. Tenh is obtained by applying the automatic enhancement procedure
v. THESEUS Vg and Ac are calculated by using Tenh;
vi. P(acc/well-defined) is calculated from Equation 6.

The average results are provided by Table 5 and Table 6.
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Note: CH, CL refer to the highest and lowest category suggested by THESEUS assignment 
rule. Pb denotes P(acc/well-defined) before the enhancement; Pa  denotes the same 
probability after the enhancement process. 

Table 6. Average number of inappropriate assignments by the enhancement 
process 

Card (T) Card (Tenh) Inappropriate 
assignments in Tenh 

% of erroneous information 
with respect to card(Tenh) 

7 53.55 1.00 1.87 
10 60.15 0.85 1.41 
25 84.00 2.05 2.44 
50 142.55 4.15 2.91 

100 300.70 12.20 4.05 
As in the first example, the following remarks come from Table 5: 
- The vagueness measure decreases with card (T); 
- In case of vague assignments, the range of suggested categories is narrower when 

card (T) increases; 
- The THESEUS accuracy increases with card (T);  
- From card (T)=10, P(acc/well-defined) increases with the reference set size;  
- The vagueness measure decreases when the enhancement process takes place; 
- In case of vague assignments, the range of suggested categories is reduced by the 

enhancement process; 
- The THESEUS accuracy is improved by the enhancement process. 

According to Table 6 the automatic enhancement introduces some erroneous 
information in the reference set. This means that the models S(λ) does not represent as well 
as in the first example the real outranking relation S from the DM. Therefore, P(acc/well-
defined) is lower, as shown by the fourth columns in Table 2 and Table 5. The inaccurate 
information introduced in the enhanced reference set may reduce P(acc/well-defined) as 
shown in Table 5, columns 4 and 9. Anyway, the decrement of P(acc/well-defined) due the 
enhancement process is always lower than 4% .When card (T) = 50, 100, although the 
proportion of erroneous assignments is higher,  Pa≅Pb is a consequence of the  bigger size 
of Tenh, since more reference information should provide greater reliability to THESEUS 
well-defined assignments. 
The distribution per category is provided by Table 7.  
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C1 and C7 are strongly privileged by the enhancement process. With  Card (T) =7 and 
Card (T) =10, the enhancement is almost limited to those categories, but strong in 
comparison to the universe. There is a tendency to reduce this privilege, but it is slighter 
than in the first example.  

5. Some conclusions

Enhancing the reference set is a way of enlarging the preference knowledge in multi-criteria 
sorting problems. This improves the reference set capacity to suggest more appropriate 
assignments. Some assumptions guarantee certain correspondence between the automatic 
enhancement proposed here and the enhancement conducted by a real DM, whose 
assignment function is compatible with his/her particular outranking relation and the 
previous assignments (s)he performed or approved. 

The automatic enhancement mode can be applied by other multi-criteria sorting 
methods that use several assignment examples by each category. It is only necessary to 
have a computable model of a preference predicate ‘x seems to be preferred to y’. Here, the 
study was based on the THESEUS method, but some results may be generalized. 

THESEUS performs better when the cardinality of the reference set is increased. 
Several theoretical arguments and practical experiments were given in this paper supporting 
the following concluding remarks: 

- the THESEUS vagueness measure decreases when card (T) increases; 
- the THESEUS accuracy increases with card (T); 
- P(acc/well-defined) (the conditional probability of obtaining an accurate 

assignment given it is well-defined) tends to increase when more valid information 
is included in the reference set; 

- the THESEUS automatic enhancement mode can be based on λ-strict preference 
and λ-weak preference relations, which model decision maker’s asymmetric 
preference relations; 

- the automatic enhancement mode has several basic advantages: i) it allows a 
reduction of the vagueness measure what improves the THESEUS accuracy; ii) 
even if vagueness is not eliminated, the range of suggested categories is reduced 
by the enhancement process; ii) these improvements can be achieved without the 
decision maker and without new reference examples; 

- its main drawback concerns the potential introduction of incorrectly assigned new 
objects into the enhanced reference set; nevertheless, these errors seem be kept at a 
manageable level; 

- the automatic enhancement may influence P(acc/well-defined). Incorrectly 
assigned reference elements affect this probability. On the other hand, more valid 
information in the reference set helps a better characterization of the DM’s 
assignment policy, thus positively influencing on P(acc/well-defined). In the 
analyzed examples P(acc/well-defined) shows a slight variation in a range of -4% 
to 2.5%; 

- the accuracy increases with  P(acc/well-defined) and when the vagueness measure 
is reduced. Since P(acc/well-defined) is approximately constant, the automatic 
enhancement process increases the THESEUS accuracy. In the analyzed examples, 
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when P(acc/well-defined) is reduced due to the introduction of some erroneous 
information during the enhancement process, the vagueness measure decreases 
more rapidly, thus allowing an improvement of the accuracy; 

- if P(λ) and Q(λ) were close to the real decision maker’s asymmetric preferences, 
P(acc/well-defined) would tend to be improved by the enhancement process, 
which would be even more effective; this could be handled by increasing the 
cutting threshold λ. However, this should be carefully performed, since reducing 
cardinality of (P(λ) ∪Q(λ))  could decrease the cardinality of Tenh and hence 
increase vagueness;

- in the automatic enhancement mode, there is a clear tendency to favor the least 
preferred and the most preferred categories. Thus, the enhancement should be 
more effective when most of the universe is concentrated in these extreme classes. 

Although in the examples the DM has been simulated by a decision model, the practical 
application of the automatic enhancement has similar features. The proposal is useful under 
the following conditions: 

A) There are no sufficient previous assignments and  the DM cannot or does not want
to provide or approve more reference assignments;

B) The DM agrees with Assumption 2, which claims for consistency among new
assignments, previous assignments and his/her system of preferences;

C) The outranking model parameters can be elicited in such a way that the model of
the DM’s asymmetric preference relation is basically a subset of his/her outranking
relation.

Several aspects of this proposal can be extended to the semi-automatic enhancement 
mode. Comparisons between both modes, and discussions about the reasonable limit of the 
enhancement process, and how the cognitive effort from the DM can be reduced and 
consistency analyses should be performed in the semi-automatic mode, are topics of a new 
paper. 
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