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Abstract. The missing values are not uncommon in real data sets. The algorithms
and methods used for the data analysis of complete data sets cannot always be applied
to missing value data. In order to use the existing methods for complete data, the
missing value data sets are preprocessed. The other solution to this problem is creation
of new algorithms dedicated to missing value data sets.

The objective of our research is to compare the preprocessing techniques and
specialised algorithms and to find their most advantageous usage.
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1 Introduction

The missing values are not uncommon in real data sets. They occur due to the
measurement errors or loss of values after acquisition. Many medical data lack some
values [18]. Some data may be merged from various sources and they are not fully
compatible or they are used with different aim than they were collected with.

The values may miss from the data set completely at random (MCAR) – the
probability of an tuple having a missing value for an attribute depends neither on
the known values nor on the missing data. In the second type of incompleteness the
probability that the tuple has a missing value may depend on the known values, but
not on the value of the missing data itself. The is missing at random (MAR) type of
incompleteness. In the third type the values do not miss at random (NMAR) – the
probability of an instance having missing value for an attribute can depend on the
value of that attribute [15].
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Table 1: Symbols used in the papers. See page 2 for general rule for symbols.
set of tuples, data examples,
vector of tuple’s descriptors, data example,
number of tuples,
descriptor of a tuple,
object
number of objects
set of objects
set of attributes
attribute,
number of attributes in a tuple,
set of clusters
number of clusters,
cluster,
partition matrix,
membership value of the -th tuple to -th cluster
distance between -th cluster’s centre and -th tuple

The algorithms and methods used for the data analysis of complete data sets
cannot always be applied to missing value data. In order to use the existing methods
for complete data, the missing value data sets are preprocessed. The other solution to
this problem is the creation of new algorithms dedicated to missing value data sets.

The objective of our paper is to compare various techniques on the same data sets
and to determine which approach can discover the localisation of the data clusters in
spite of the missing values in the data sets. As the reference cluster localisation we
take the clusters elaborated from the complete data set.

In the paper we propose the dissimilarity measure for two cluster sets. We define it
as a dissimilarity of localisation of the cluster centres. We plan to use the clustering as
the step in creation of the fuzzy rule base for the neuro-fuzzy system. In this approach
the localisation of the cluster centre is crucial, the fuzzification of the clusters is to
be tuned in tuning procedure.

In the paper we discuss the algorithms for data sets with numerical attributes.
The algorithms that take into account the missing attributes have been proposed for
data sets with categorical attributes [10].

The paper is organised as follows: Section 2 shortly summarises the preprocessing
techniques, Sec. 3 describes the specialised algorithm compared in our paper. Section
4 presents quality measures used in validation of the elaborated clusters. Section 5
describes the data sets and experiments and finally Sec. 6 summaries the paper.

In the paper we follow the general rule for symbols: the blackboard bold uppercase
characters are used to denote the sets, uppercase italics – the cardinality of
sets, uppercase bolds – matrices, lowercase bolds – vectors, lowercase italics

– scalars and set elements. Table 1 lists the symbols used in the paper.
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2 Data preprocessing

The data preprocessing is a common technique for handling incomplete data with
methods that proved to be efficient with complete data [9]. This step is not always
necessary. In the paper we describe the specialised algorithms for incomplete data,
many others techniques have been developed [10]. There are two essential prepro-
cessing techniques: missing values are marginalised or imputed with some values.

Marginalisation (WDS – whole data strategy) removes either incomplete data vec-
tors or the features with missing values. Deletion of the incomplete data vectors is
more common than marginalisation of the features.

The missing values are imputed with various techniques: by simple imputation
(with zeros, means, medians, random values) or more sophisticated approximation
(regression [4, 23], expectation-maximization [6, 8], nearest neighbours [26, 27]).

Mean imputation is one of the most often applied methods. The missing value
of an attribute is substituted with a mean of all existing values of this attribute
in the whole data set. This method may impute non-existing values into the data
vectors. The imputed values may have no physical meaning [23]. Mean imputation
is vulnerable to outliers. Median imputation avoids these drawbacks: in this method
missing values are imputed with existing values. The outliers have lower influence
on median imputation. The disadvantage of this approach is longer time of median
calculation in comparison to mean imputation.

The simple mean and median imputation techniques use the whole data set to
calculate the mean or median values. For some data sets it is more advantageous to
use a certain subset of tuples to calculate mean or median values. Mean or median is
calculated basing only on nearest neighbours. The distance function between two
objects has to be defined. This method has two main drawbacks: the difficulty in
choosing of optimal number ( ) of neighbours and the high cost of finding neighbours.

Both marginalisation and imputation are commonly used due to their simplicity.
Imputation is applied more frequently than marginalisation [14]. Preprocessed data
become less reliable: marginalisation loses some information, imputation may add
non-existing or meaningless information [23]. The imputed values are not labelled and
indiscernible form original values what can also be treated as some loss in information.
Biological conclusions from imputed data cannot be drawn with high reliability [22].

3 Specialised clustering algorithms

The second major approach to clustering of incomplete data is applying specialised
and dedicated clustering algorithms. These algorithms use various techniques. Most
of them incorporate imputation into clustering procedure.

The algorithm proposed in [20, 19] applies rough sets to clustering of data with
missing values. This algorithm will not be further analysed in our paper as it elabor-
ates the rough clusters.

Many specialised algorithms are based on the fuzzy -mean (FCM) algorithm [7].
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FCM clustering minimises the objective function

(1)

with constraints

(2)

where stands for number of clusters, – number of objects (vectors), – object
(data vector), – cluster centre and is membership values of the th object to
the th cluster and is weighting exponent [7]. There is no theoretical basis for
fixing the value, we use here [5]. The centre of the th cluster is elaborated
with the formula

(3)

The improved fuzzy -means (IFCM) [21] imputes the missing values iteratively.
The clusters are elaborated with full data examples, then the missing values are
imputed with weighted mean of values of missing attributes from elaborated clusters’
centres. The weights are the membership values of the object in question to the found
clusters.

The Partial Distance Strategy (PDS) calculates the distance of the object to the
cluster basing only on the existing values. The total distance is modified by the
number of used dimensions. The distance of the th object to th cluster is
defined as

(4)

where
if th attribute in th object exists,
otherwise.

(5)

and stands for the number of attributes in the data vector. When the object lacks
no values the distance measure defined above is Euclidean measure. This method
modifies the formula for cluster centres (cf. Eq. 3):

(6)

The Optimal Completion Stategy (OCS) treats the missing values as additional
variables. The algorithm is similar to FCM. First the cluster centres
and missing values in data set are initialised with random numbers. Then the new
membership matrix is calculated and new cluster centres. The missing values are
recalculated with formula:

(7)
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The Nearest Prototype Stategy (NPS) [13] is similar to the OCS. The missing
values in an object are recalculated, but instead of applying formula 7 the nearest
prototype (object with all attributes) is found and the missing values in object are
substituted with respective values of the nearest prototype. For calculating distance
the formula 4 is used.

The Nearest Cluster Strategy (NCS) [25] uses the Gustafson-Kessel [12] clustering.
First all data with missing values are removed (marginalisation), the cluster centres
are calculated. Then for each data vector with missing values the nearest cluster
centre is found. When distance is calculated only the existing dimensions are used.
Having discovered the nearest cluster , the search for nearby vectors to this cluster
is started. These vectors are closer to the discovered cluster than to other clusters’
centres. The missing values of the vector are imputed with the mean values of
the respective attributes of the vectors neaby to the discovered cluster . Finally the
whole set of vectors (original with all attributes and vectors with imputed values) are
clustered. In our experiment we use version with the FCM clustering [7], so that the
comparison of the algorithms is more reliable. We do not want to compare the FCM
and the Gustafson-Kessel algorithms, but to compare the modifications of clustering
algorithms for incomplete data.

4 Quality of clustering

In this section we shortly describe the indices for evaluating the quality of clustering
(Sec. 4.1) and the proposition of an index for comparison of clusters elaborated by
the two algorithms (Sec. 4.2).

4.1 Quality indices

There seems not to be one good index for evaluating clustering. Many indices have
been proposed, in this section we shortly describe the measures as in [5]. Lower
values of the indices denote higher quality of clustering. The simplest are partition
coefficient

PC (8)

and partition entropy

PE (9)

Some more sophisticated indices have also been proposed. Xie and Beni [24]
proposed index defined as

XB (10)
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Xie and Beni use . The index measures both compactness (nominator) and
separation (denominator) of clusters [5].

Fukuyama and Sugeno proposed [16] index defined as

FS (11)

where stands for grand mean over all data vectors.
Bensaid proposed [3] following index

B (12)

Czogała and Łęski defined clustering validity index as mean quotient of dissipation
against the cluster centre by dissipation of cluster centre against the centre of the given
cluster [5]:

CzŁ (13)

For all indices above lower values mean better clustering.

4.2 Comparison of clustering results

All indices presented above are designed for evaluating results of clustering procedure
elaborated for one data set. We propose the cluster dissimilarity measure to compare
the localisation of the clusters elaborated by various algorithms. We use this index
to evaluate the clusters elaborated for incomplete data set in comparison with the
clusters for the complete version of the data set. The pseudocode for cluster dissimil-
arity measure is presented in Fig. 1. The reference set of clusters is the set elaborated
with FCM algorithm for complete data. The second set of clusters is calculated for
incomplete data with one of the described above techniques. Then we sort the clusters
of each set with the first attribute being the key of sorting. Next we calculate the
Euclidean distances between the first clusters in each cluster sequences, then the dis-
tance between second pair etc. The distances are added up. We repeat the procedure
for each dimension and select minimal value.

The number of all matches of two sets holding clusters each is (the exhaustive
search requires an analysis of all permutations of set with items). This is why we
proposed the heuristic algorithm presented in Fig. 1. Its complexity is

, where stands for number of dimensions, if we use sorting algorithm.
However it should be taken into consideration that when it is more convenient
to use the exhaustive search instead of heuristics. The Fig. 2 presents the example of
calculation of the dissimilarity measure for two sets of three clusters.

112 A. Matyja, K. SimiĔski



1 funct ion d i s s im i l a r i t y_me a s u r e ( , ) ;
2 input : ,
3 {Matrices conta in the cen t r e s o f the c l u s t e r s from two

c l u s t e r i n g procedures , an element i s the l o c a l i s a t i o n
o f th c l u s t e r in th dimension . The numbers o f a t t r i b u t e s
in both c l u s t e r s e t s are the same ( a l l_dimensions ) . }

4 output : d i s s i m i l a r i t y { d i s s im i l a r i t y measure}
5 begin
6 d i s s i m i l a r i t y := ;
7 f o r d := 1 to do { f o r a l l dimensions }
8 { so r t cen t re matr ices by dimension }
9 s o r t ( , ) ;

10 s o r t ( , ) ;
11 d i s t a n c e := 0 ; {sum of d i s t anc e s between a l l p a i r s o f

c l u s t e r s }
12 f o r c := 1 to do { f o r a l l c l u s t e r s }
13 d i f f e r e n c e := 0 ; {between c l u s t e r c en t r e s in p th

dimension}
14 f o r p := 1 to do { f o r each dimension}
15 d i f f e r e n c e += power ( [ c , p ] [ c , p ] , 2) ;
16 end fo r ;
17 d i s t a n c e += s q r t ( d i f f e r e n c e ) ;
18 end fo r ;
19 i f d i s t a n c e < d i s s i m i l a r i t y then
20 d i s s i m i l a r i t y := d i s t a n c e ;
21 end i f ;
22 end fo r ;
23 return d i s s i m i l a r i t y ;
24 end .

Figure 1: Algorithm for calculation of dissimilarity index.
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Figure 2: The figure illustrates the application of the dissimilarity measure described
by the pseudocode in Fig. 1. Let’s assume we have two sets of clusters in two dimen-
sional space: (dashed circles) and (solid circles). The
algorithm tries to match the clusters in both sets in all dimensions. First the clusters
are match in the dimension, the clusters in both sets are sorted and we get two
series: for the and for the . The matches ,
and are denoted by solid lines. The distances in this match are summed up.
Then the procedure is repeated for the next dimension . In this case the clusters
are sorted into series for the and for the . The matches are

, and . The distances (denoted by dashed lines, for the
dashed line is overprinted by the solid one from the first match) are summed up. The
minimal value of sums is returned as the dissimilarity measure.
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5 Experiments

The experiments were conducted on real life data sets.
We used preprocessing techniques described above with subsequent FCM and spe-

cialised algorithms for clustering incomplete data. The reference cluster set was elab-
orated with FCM and complete data. The complete data set contains the whole
information and incomplete data sets miss some information. This approach seems
reasonable although it has been shown in [11] that rules induced from incomplete data
sets can be more useful than rules induced from complete data sets. It requires more
research to check whether similar situation may occur in clustering task.

The stop condition of algorithms is an alternative of two subconditions:

, where stands for the number of iterations or

, where is the maximal number of iterations.

Our objective was to test whether various algorithms can discover similar localisation
of clusters or whether each of them discovers totally different clusters for the same
data sets. To check this we tried to find the best match of clusters in two cluster sets.
We used the algorithm described in Sec. 4.2.

5.1 Data sets

The ‘Iris’ data set is commonly known and consists of 150 samples of Iris plants divided
into three classes. Each data tuple is represented by 4 attributes (sepal length, sepal
width, petal length and petal width).

The ‘Glass’ data set [2] is an imbalanced version of the Glass data set, where the
positive examples belong to class 2 and the negative examples belong to the rest. The
data set can be downloaded from public repository . The data set has 214 instances
of 9-feature tuples.

The ‘Telugu’ data set [17] describes Telugu vowels. They are characterised by 3
attributes (frequency values) and class (‘a’, ‘e’, ‘i’, ‘u’, ‘o’ and ‘ ’ vowels). The data
set contains 871 vowels.

The incomplete data sets were created from the data described above. The ratio
of missing value is: 1, 2, 3, 5, 7, 10, 15, 25%. The value miss at random in three
patterns:

form the whole data set (NMAR),

only from one attribute, other attributes are complete,

only from one cluster, other clusters are complete (MAR).

Each approach was started 10 times for each option (missing value ratio and the
missing pattern), the averages of indices, times and number of iterations are presented
in tables and figures.

http://sci2s.ugr.es/keel/dataset.php?cod=121
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5.2 Results

The experiments were conducted for following values of the parameter: , ,
, , , , , . For the brevity of the paper we will limit the

presented results only to . One value shows the results sufficiently good.
In the experiments we use applied preprocessing (‘mar’ – marginalisation of ob-

jects, ‘ ’ – average imputation, ‘ ’ – median imputation, ‘ ’ – nearest neighbours
average imputation, ‘ ’ – nearest neighbours median imputation) and subsequent
FCM algorithms and specialised algorithm: IFCM, PDS, OCS, NPS and NCS.

The results of the experiments on the ‘Iris’ data set are presented in Tab. 2.
The table presents the dissimilarity measure (defined in Sec. 4.2), clustering time (in
milliseconds) and the number of iterations. The results are also visualised in Figures
3 (dissimilarity), 4 (clustering time) and 6 (number of iterations). We provide the
results for the time of clustering and the number of iterations only for the ‘Iris’ data
set. The results for the ‘Glass’ and ‘Telugu’ data sets are similar and we restrain
ourselves from pasting very similar results. The Table 3 presents the dissimilarity
index for the ‘Glass’ data set. The tables 12, 16, 14, 17, 15 and 13 present the quality
measures for the ‘Telugu’ data set.

The results show that the for small ratios of missing values the best results are
elaborated by median imputation (both simple and nearest neighbours). The spe-
cialised clustering algorithms take about twice more time than preprocessing and FCM
algorithm. The results show that the number of iteration is lower in preprocessing
and complete data clustering than in the specialised algorithms.

For higher ratios of missing values ( ) the specialised algorithms are more
advantageous. The NCS algorithm has the longest time of clustering. It is worth
mentioning that even for high missing value ratio ( ) marginalisation is better
than all imputation method we have analysed, but worse than specialised algorithms.
Marginalisation is the quickest method for high missing ratios, this seems natural.
The analysed methods are independent of the kind of missing pattern (described in
Sec. 5.1).

The cluster quality indices are not unanimous in case of the specialised algorithms.
The Fukuma-Sugeno index points the IFCM algorithm as the best one, whereas the
Bensaid index points this algorithm as the worst one. For the ‘Iris’ data set the Xie-
Beni and Czogała-Łęski indices do not show unambiguously the most advantageous
algorithm for the specialised ones. For the ‘Telugu’ data set the Czogała-Łęski index
orders the algorithm from the best OCS through IFCM to the worst PDS algorithm.
The dissimilarity index is in concordance with the Czogała-Łęski, Bensaid and Xie-
Beni indices. Basing on the clustering indices it cannot be stated which specialised
algorithm elaborates the best results. These algorithms differ severely in times of
calculation. The IFCM differs by one and the NCS by two orders of magnitude in time
of calculation from the PDS, OCS and NPS algorithms. The dissimilarity measures is
in concordance with partition entropy (Eq. 9), Xie-Beni (Eq. 10), Fukuyama-Sugeno
(Eq. 11) and Czogała-Łęski (Eq. 13) indices.

The results achieved for the ‘Iris’ dataset with missing values from one cluster are
gathered in Tab. 4. The experiments were repeated for all data sets with missing
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Table 2: The dissimilarity measure between clusters elaborated for the complete
and incomplete ‘Iris’ data set. The results are also drawn in figures 3 (dissimilarity
measure), 6 (number of iterations), 4 and 5 (time of clustering). The left part of the
table shows the results for preprocessed data and subsequent FCM algorithm. The
preprocessing techniques are labelled: ‘mar’ – marginalisation of objects, ‘ ’ – average
imputation, ‘ ’ – median imputation, ‘ ’ – nearest neighbours average imputation,
‘ ’ – nearest neighbours median imputation.

FCM specialised algorithms
% mar IFCM PDS OCS NPS NCS

dissimilarity measure

1 0.31 0.16 0.02 0.16 0.02 0.31 0.13 0.11 0.11 0.11
2 0.17 0.04 0.04 0.03 0.04 0.03 0.13 0.11 0.12 0.11
3 0.17 0.07 0.06 0.18 0.08 0.31 0.13 0.12 0.13 0.12
5 0.47 0.13 0.10 0.07 0.13 0.18 0.13 0.13 0.14 0.13
7 0.20 0.16 0.14 0.10 0.50 0.23 0.13 0.13 0.14 0.12

10 0.00 0.25 0.22 0.17 0.41 0.07 0.14 0.16 0.15 0.14
15 0.50 0.38 0.38 0.29 0.76 0.12 0.13 0.17 0.17 0.14
25 0.36 0.84 1.05 0.58 1.13 0.36 0.15 0.24 0.22 0.28

clustering time [ms]

1 2.61 3.47 2.98 3.36 2.49 55.87 7.47 5.70 7.74 141.67
2 2.39 2.94 3.05 3.30 2.78 68.64 8.29 6.70 6.97 255.98
3 2.63 2.92 3.04 3.49 2.95 64.79 8.25 6.57 5.91 348.65
5 2.28 3.43 3.06 3.48 2.95 75.59 7.26 7.14 8.22 421.01
7 2.07 3.23 3.10 4.00 4.73 75.13 8.06 7.37 9.13 570.38

10 2.21 3.48 2.94 3.25 3.74 100.17 7.99 8.37 7.02 815.09
15 1.33 3.31 3.36 3.31 4.81 113.91 9.59 9.81 8.54 985.08
25 1.27 4.96 5.67 4.65 4.21 118.58 7.49 14.55 18.36 1081.23

number of iterations

1 16.20 18.50 12.90 13.80 14.60 182.00 20.60 15.70 14.70 17.80
2 14.20 15.40 14.10 14.30 14.20 200.00 21.60 15.80 16.00 15.60
3 15.30 15.60 14.10 15.00 17.30 200.00 21.50 17.80 35.90 16.80
5 17.20 14.80 12.40 14.10 19.10 200.00 20.90 19.90 18.00 15.20
7 14.70 13.70 13.60 14.00 22.70 200.00 23.20 24.00 35.40 16.00

10 14.10 14.90 12.80 13.10 25.70 200.00 20.90 26.50 21.30 15.80
15 18.60 15.40 15.50 13.80 21.60 200.00 23.70 25.30 22.70 18.40
25 14.90 26.90 47.60 22.80 17.30 200.00 21.60 37.30 26.10 17.20

Table 3: The dissimilarity index between cluster sets for the complete ‘Glass’ data
set and incomplete sets with various missing value ratio. The abbreviations are the
same as in Tab. 2.

FCM specialised algorithms
% mar IFCM PDS OCS NPS NCS

1 0.007 0.062 0.062 0.054 0.056 0.017 0.182 0.248 0.248 0.248
2 0.016 0.189 0.191 0.192 0.192 0.012 0.011 0.251 0.250 0.250
5 0.024 0.234 0.237 0.235 0.238 0.012 0.009 0.243 0.240 0.236

10 0.037 0.297 0.307 0.301 0.305 0.077 0.012 0.280 0.248 0.254
15 0.098 0.335 0.338 0.335 0.339 0.277 0.225 0.245 0.246 0.248
25 0.091 0.334 0.341 0.336 0.340 0.230 0.018 0.288 0.273 0.225
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Figure 3: The dissimilarity measure between clusters elaborated for the complete
and incomplete ‘Iris’ data set. The results are gathered in Tab. 2. Abbreviations: ‘m’
– marginalisation of objects, ‘ ’ – average imputation, ‘ ’ – median imputation, ‘ ’ –
NN average imputation, ‘ ’ – NN median imputation. The specialised algorithms

are denoted with dots in following convention: IFCM, PDS, OCS,
NPS, NCS

Figure 4: Time of clustering of the ‘Iris’ data set. The results are gathered in Tab.
2. The results for the NCS algorithm are drawn with the solid line, the results for
the IFCM with the dashed line. All other approaches are marked with dots.
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Figure 5: The same as Fig. 4, but without NCS and IFCM. The results are gathered
in Tab. 2. Abbreviations: ‘m’ – marginalisation of objects (dashed line), ‘ ’ – average
imputation (solid line), ‘ ’ – median imputation (dashed lined), ‘ ’ – NN average
imputation (solid line), ‘ ’ – NN median imputation (dots).

Figure 6: Iterations of various clustering approaches for the ‘Iris’ data set. The
results are gathered in Tab. 2. Abbreviations: ‘m’ – marginalisation of objects
(dashed line), ‘ ’ – average imputation (dashed line), ‘ ’ – median imputation (solid
line), ‘ ’ – NN average imputation (solid line), ‘ ’ – NN median imputation
(solid line), PDS (dots), OCS (dashed line), NPS (solid line) and NCS (dots).
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Table 4: The dissimilarity index between cluster set for the complete ‘Iris’ data set
and incomplete sets with missing values from one cluster.

FCM specialised algorithms
-nn -nn

% mar IFCM PDS OCS NPS NCS

1 0.01 0.04 0.04 0.03 0.03 0.31 0.13 0.11 0.11 0.11
2 0.01 0.05 0.05 0.18 0.17 0.31 0.13 0.11 0.11 0.11
5 0.31 0.07 0.05 0.04 0.04 0.33 0.13 0.12 0.12 0.12
7 0.31 0.08 0.06 0.05 0.05 0.03 0.14 0.12 0.14 0.12

10 0.61 0.09 0.07 0.07 0.06 0.07 0.14 0.13 0.13 0.13
15 0.19 0.13 0.10 0.08 0.08 0.07 0.15 0.13 0.15 0.13
25 0.37 0.21 0.16 0.13 0.14 0.13 0.15 0.13 0.15 0.14
50 0.66 0.33 0.23 0.20 0.22 0.21 0.19 0.14 0.19 0.28
75 0.7 0.43 0.25 0.26 0.28 0.22 0.54 0.26 0.25 0.49

Table 5: The dissimilarity index between cluster sets for the complete ‘Iris’ data set
and incomplete sets with missing values from one attribute.

FCM specialised algorithms
-nn -nn

% mar IFCM PDS OCS NPS NCS

1 0.15 0.32 0.46 0.33 0.03 0.01 0.13 0.11 0.11 0.12
2 0.46 0.04 0.04 0.04 0.47 0.16 0.13 0.11 0.11 0.12
5 0.61 0.06 0.05 0.05 0.32 0.29 0.13 0.12 0.11 0.12
7 0.17 0.07 0.06 0.06 0.05 0.16 0.13 0.12 0.12 0.12

10 0.17 0.09 0.09 0.08 0.06 0.04 0.13 0.12 0.11 0.12
15 0.32 0.12 0.12 0.11 0.08 0.05 0.13 0.12 0.12 0.13
25 0.34 0.16 0.16 0.15 0.12 0.44 0.13 0.13 0.12 0.14
50 0.38 0.35 0.35 0.33 0.29 0.56 0.13 0.15 0.14 0.16
75 0.42 0.70 0.76 0.62 0.55 1.22 0.13 0.17 0.14 0.20

values from each cluster. The results are very similar, so we present them only
once. Very similar situation was detected for data sets with missing values from one
attribute (Tab. 5). Although the attributes have different meanings, the results for
values missing form various attributes are very similar.
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Table 6: The partition coefficient (Eq. 8) for clusters elaborated by various methods
for the ‘Iris’ data set.

FCM specialised algorithms
-nn -nn

% mar IFCM PDS OCS NPS NCS

Table 7: The partition entropy (Eq. 9) for clusters elaborated by various methods
for the ‘Iris’ data set.

FCM specialised algorithms
-nn -nn

% mar IFCM PDS OCS NPS NCS

1 0.27 0.30 0.30 0.30 0.30 0.27 0.40 0.65 0.65 0.65
2 0.26 0.32 0.32 0.32 0.32 0.28 0.40 0.65 0.65 0.65
3 0.28 0.35 0.35 0.35 0.35 0.29 0.40 0.66 0.65 0.65
5 0.26 0.40 0.40 0.40 0.40 0.29 0.40 0.66 0.66 0.66
7 0.28 0.46 0.46 0.46 0.46 0.29 0.40 0.66 0.66 0.66

10 0.26 0.54 0.54 0.54 0.54 0.31 0.40 0.67 0.66 0.67
15 0.25 0.66 0.67 0.65 0.66 0.33 0.39 0.69 0.66 0.69
25 0.26 0.90 0.94 0.86 0.85 0.34 0.40 0.73 0.66 0.76

Table 8: The Xie-Beni index (Eq. 10) for clusters elaborated by various methods for
the ‘Iris’ data set.

FCM specialised algorithms
-nn -nn

% mar IFCM PDS OCS NPS

1 0.36 0.38 0.27 0.27 0.27 0.26 0.29 0.29 0.29
2 0.25 0.29 0.29 0.29 0.29 0.47 0.30 0.29 0.29
3 0.48 0.30 0.31 0.32 0.31 0.27 0.30 0.29 0.29
5 0.25 0.33 0.35 0.35 0.31 0.26 0.32 0.32 0.30
7 0.37 0.38 0.40 0.40 0.35 0.29 0.33 0.32 0.32

10 0.36 0.48 0.51 0.50 0.39 0.30 0.33 0.31 0.31
15 0.35 0.52 0.60 0.61 0.33 0.28 0.35 0.34 0.35
25 0.34 22.97 147 1.74 0.62 0.29 0.38 0.37 0.37
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Table 9: The Fukuyama-Sugeno index (Eq. 11) for clusters elaborated by various
methods for the ‘Iris’ data set.

FCM specialised algorithms
-nn -nn

% mar IFCM PDS OCS NPS

1
2
3
5
7

10
15
25

Table 10: The Bensaid index (Eq. 12) for clusters elaborated by various methods
for the ‘Iris’ data set.

FCM specialised algorithms
-nn -nn

% mar IFCM PDS OCS NPS

1 0.19 0.22 0.21 0.22 0.22 0.19 0.17 0.17 0.17
2 0.18 0.22 0.23 0.22 0.23 0.20 0.17 0.17 0.17
3 0.20 0.26 0.25 0.26 0.26 0.21 0.18 0.17 0.17
5 0.19 0.29 0.28 0.28 0.31 0.23 0.18 0.17 0.18
7 0.20 0.32 0.30 0.30 0.41 0.24 0.19 0.17 0.18

10 0.19 0.40 0.36 0.37 0.45 0.24 0.19 0.17 0.20
15 0.19 0.51 0.44 0.44 0.61 0.28 0.20 0.17 0.22
25 0.18 0.81 0.83 0.64 2.91 0.34 0.19 0.17 0.29

Table 11: The Czogała-Łęski index (Eq. 13) for clusters elaborated by various
methods for the ‘Iris’ data set.

FCM specialised algorithms
-nn -nn

% mar IFCM PDS OCS NPS

1 0.0037 0.0037 0.0038 0.0037 0.0039 0.0036 0.0046 0.0046 0.0045
2 0.0039 0.0042 0.0042 0.0041 0.0042 0.0037 0.0047 0.0045 0.0046
3 0.0041 0.0045 0.0045 0.0045 0.0045 0.0037 0.0047 0.0046 0.0047
5 0.0045 0.0053 0.0053 0.0052 0.0056 0.0044 0.0049 0.0046 0.0047
7 0.0045 0.0060 0.0060 0.0060 0.0068 0.0043 0.0051 0.0048 0.0049

10 0.0052 0.0075 0.0076 0.0073 0.0099 0.0042 0.0050 0.0047 0.0050
15 0.0070 0.0115 0.0115 0.0109 0.0128 0.0049 0.0056 0.0049 0.0057
25 0.0132 0.0260 0.0376 0.0224 0.0238 0.0057 0.0069 0.0052 0.0079
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Table 12: The dissimilarity index between clusters elaborated for the complete and
incomplete ‘Telugu’ data set.

FCM specialised algorithms
-nn -nn

% mar IFCM OCS PDS

1 0.6530 0.2691 1.2504 0.7595 1.0679 0.8654 0.6266 1.0098
2 0.7329 0.5791 0.3620 0.3607 0.6678 0.4051 0.6383 0.5646
5 0.7783 0.4458 0.7408 0.6743 0.4271 0.8004 1.1059 0.8823

10 0.7614 0.5916 0.5635 0.6538 0.6015 0.6879 0.3507 0.3498
20 0.6659 0.5250 0.5755 0.6122 0.4861 0.9233 0.6254 0.2814
50 0.3613 1.0112 1.0260 1.0258 1.0602 4.8977 1.4857 0.3196

Table 13: The partition coefficient (Eq. 8) for clusters elaborated by various methods
for the ‘Telugu’ data set.

FCM specialised algorithms
-nn -nn

% mar IFCM OCS PDS

1 0.7529 0.7376 0.7389 0.7389 0.7389 0.7519 0.4794 0.5487
2 0.7526 0.7222 0.7276 0.7273 0.7269 0.7520 0.4808 0.5517
5 0.7501 0.6858 0.6887 0.6885 0.6848 0.6711 0.4804 0.5504

10 0.7574 0.5984 0.5997 0.5997 0.5997 0.7645 0.4870 0.5518
20 0.7570 0.4280 0.4287 0.4283 0.4219 0.6973 0.4919 0.5606
50 0.7857 0.1667 0.1667 0.1667 0.1667 0.6592 0.5513 0.6332

Table 14: The Xie-Beni (Eq. 10) for clusters elaborated by various methods for the
‘Telugu’ data set.

FCM specialised algorithms
-nn -nn

% mar IFCM OCS PDS

1 0.2292 0.2321 0.2303 0.2304 0.2387 0.2978 0.2228 2.9053
2 0.2345 0.2655 0.2292 0.2290 0.2324 0.4033 0.2308 3.4253
5 0.2302 0.2725 0.3019 0.3014 0.2791 1.7502 0.2308 4.9126

10 0.2231 0.6452 0.6729 0.6730 0.6946 0.5748 0.2008 8.4114
20 0.2169 73.9845 2.92 107 1.39 107 4.95 104 2.3041 0.1768 56.9151
50 0.2202 1.54 109 0.1616 74.0118

Table 15: The Fukuyama-Sugeno (Eq. 11) for clusters elaborated by various methods
for the ‘Telugu’ data set.

FCM specialised algorithms
-nn -nn

% mar IFCM OCS PDS

1 219 216 216 216 216 225 140 135
2 215 207 209 209 209 219 142 123
5 195 181 181 181 180 196 143 95

10 165 128 128 128 128 255 146 42
20 115 40 40 40 42 236 155 38
50 29 92 90 90 87 322 182 187
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Table 16: The Bensaid index (Eq. 12) for clusters elaborated by various methods
for the ‘Telugu’ data set.

FCM specialised algorithms
-nn -nn

% mar IFCM OCS PDS

1 0.1250 0.1437 0.1499 0.1500 0.1581 0.1384 0.0902 0.1739
2 0.1234 0.1754 0.1744 0.1736 0.1724 0.1741 0.0868 0.2237
5 0.1222 0.2815 0.4727 0.4582 0.3436 0.2425 0.0865 0.3094

10 0.1288 0.7057 2.0071 2.0053 0.8223 23.5907 0.0912 0.4934
20 0.1222 7.5756 3.4237 3.2467 1.2089 0.3507 0.0937 0.7631
50 0.1207 2.24 1013 17.5297 13.2160 2.6080 0.0819 0.0929 1.4597

Table 17: The Czogała-Łęski (Eq. 13) for clusters elaborated by various methods
for the ‘Telugu’ data set.

FCM specialised algorithms
-nn -nn

% mar IFCM OCS PDS

1 0.0007 0.0008 0.0008 0.0008 0.0008 0.0008 0.0009 0.0017
2 0.0007 0.0009 0.0009 0.0009 0.0009 0.0010 0.0009 0.0022
5 0.0008 0.0014 0.0014 0.0014 0.0014 0.0014 0.0009 0.0031

10 0.0010 0.0028 0.0028 0.0028 0.0028 0.0013 0.0009 0.0049
20 0.0014 0.0100 0.0099 0.0099 0.0110 0.0020 0.0009 0.0076
50 0.0049 3.86 1012 4.12 1012 5.03 1012 3.98 1013 0.0007 0.0008 0.0144

6 Conclusions

The paper presents the comparison of several clustering algorithms for data sets
with missing values. We analysed the preprocessing techniques and specialised al-
gorithms for data missing values. The experiments show that for moderate missing
ratio ( ) it is more advantageous to use preprocessing method (the best is me-
dian imputation). For high missing ratios ( ) the specialised algorithms should
be used, but it is worth mentioning that simple marginalisation can elaborate better
results than imputation in preprocessing. The results seems to be independent of the
type of data loss: missing from the whole data set, missing from only one cluster or
attribute. The proposed dissimilarity measure (although its different objective) seems
to be in concordance with the cluster quality indices.

Acknowledgements

The authors are grateful to the anonymous referees for their constructive comments
that have helped to improve the paper.

124 A. Matyja, K. SimiĔski



References

[1] Acuña E., Rodriguez C., The treatment of missing values and its effect in the clas-
sifier accuracy. In Banks D., House L., McMorris F. R., Arabie P., Gaul W. (eds.),
editors, Classification, Clustering and Data Mining Applications, Springer, Ber-
lin, Heidelberg, 2004, 639–648.

[2] Alcalá-Fdez J., Fernandez A., Luengo J., Derrac J., García S., Sánchez L., Her-
rera F., KEEL data-mining software tool: Data set repository, integration of
algorithms and experimental analysis framework. Journal of Multiple-Valued
Logic and Soft Computing, 17, 2-3, 2011, 255–287.

[3] Bensaid A. M., Hall L. O., Bezdek J. C., Clarke L. P., Silbiger M. L., Arrington
J. A., R. F. Murtagh, Validity-guided (re)clustering with applications to image
segmentation. Transactions on Fuzzy Systems, 4, 2, 1996, 112–123.

[4] Chan L., Gilman J., Dunn O., Alternative approaches to missing values in
discriminant analysis. Journal of the American Statistical Association, 71, 356,
1976, 842–844.

[5] Czogała E., Łęski J., Fuzzy and Neuro-Fuzzy Intelligent Systems. Series in Fuzzi-
ness and Soft Computing. Physica-Verlag, A Springer-Verlag Company, Heidel-
berg, New York, 2000.

[6] Dempster A. P., Laird N. M., Rubin D. B., Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B,
39, 1, 1977, 1–38.

[7] Dunn J. C., A fuzzy relative of the ISODATA process and its use in detecting
compact, well separated clusters. Journal Cybernetics, 3, 3, 1973, 32–57.

[8] Ghahramani Z, Jordan M. I., Learning from incomplete data. Technical report,
Lab Memo No. 1509, CBCL Paper No. 108, MIT AI Lab, 1995.

[9] Grzymała-Busse J., Hu M., A comparison of several approaches to missing at-
tribute values in data mining. In Ziarko W. and Yao Y. (eds), Rough Sets and
Current Trends in Computing, volume 2005 of Lecture Notes in Computer Sci-
ence, 378–385. Springer Berlin / Heidelberg, 2001.

[10] Grzymała-Busse J., Grzymała-Busse W., Handling missing attribute values.
In Maimon O., Rokach L. (eds), The Data Mining and Knowledge Discovery
Handbook, 37–57. Springer, 2005.

[11] Grzymala-Busse J., Siddhaye S., Rough set approaches to rule induction from in-
complete data. In Proceedings of the IPMU’2004, the 10th International Confer-
ence on Information Processing and Management of Uncertainty in Knowledge-
Based Systems, volume 2, pages 923–930, 2004.

Comparison of algorithms for clustering incomplete data 125



[12] Gustafson D., Kessel W., Fuzzy clustering with a fuzzy covariance matrix. In
Decision and Control including the 17th Symposium on Adaptive Processes, 1978
IEEE Conference on, volume 17, pages 761–766, 1978.

[13] Hathaway R. J., Bezdek J. C., Fuzzy c-means clustering of incomplete data.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 31,
5, 2001, 735–744.

[14] Himmelspach L., Conrad S., Fuzzy clustering of incomplete data based on cluster
dispersion. In Hüllermeier E., Kruse R., Hoffmann F. (eds), Computational In-
telligence for Knowledge-Based Systems Design, volume 6178 of Lecture Notes in
Computer Science, pages 59–68. Springer Berlin / Heidelberg, 2010.

[15] Little R. J., Rubin D. B., Statistical analysis with missing data. John Wiley and
Sons, New York, 1987.

[16] Pal N. R., Bezdek J. C., On cluster validity for the fuzzy c-means model. IEEE
Transactions on Fuzzy Systems, 3, 3, 1995, 370–379.

[17] Pal S. K., Majumder D. D., Fuzzy sets and decision making approaches in vowel
and speaker recognition. IEEE Transactions on Systems, Man, and Cybernetics,
7, 1977, 625–629.

[18] Renz C., Rajapakse J., Razvi K., Liang S., Ovarian cancer classification with
missing data. In Proceedings of the 9th International Conference on Neural In-
formation Processing, ICONIP’02, volume 2, pages 809–813, Singapore, 2002.

[19] Simiński K., Neuro-rough-fuzzy approach for regression modelling from missing
data. International Journal of Applied Mathematics and Computer Science, 22,
2, 2012, 461–476.

[20] Simiński K., Clustering with missing values. Fundamenta Informaticae, 123, 3,
2013, 331–350.

[21] Timm H., Kruse R., Fuzzy cluster analysis with missing values. In NAFIPS 1998
Conference of the North American Fuzzy Information Processing Society, pages
242–246, 1998.

[22] Troyanskaya O., Cantor M., Sherlock G., Brown P., Hastie T., Tibshirani R.,
Botstein D., Altman R., Missing value estimation methods for DNA microarrays.
Bioinformatics, 17, 6, 2001, 520–525.

[23] Wagstaff K., Laidler V., Making the most of missing values: Object clustering
with partial data in astronomy. In Proceedings of Astronomical Data Analysis
Software and Systems XIV, volume 347, pages 172–176, Pasadena, California,
USA, 2005.

[24] Xie X., Beni G., A validity measure for fuzzy clustering. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 13, 8, 1991, 841–847.

126 A. Matyja, K. SimiĔski



[25] Yao L., Weng K., Chang R., Fuzzy classification of incomplete data with adaptive
volume. In ACIIDS ’09: Proceedings of the 2009 First Asian Conference on
Intelligent Information and Database Systems, pages 232–237, Washington, DC,
USA, 2009.

[26] Zhang C., Zhu X., Zhang J., Qin Y., Zhang S., GBKII: An imputation method
for missing values. Advances in Knowledge Discovery and Data Mining, 4426,
2007, 1080–1087.

[27] Zhang S., Shell-neighbor method and its application in missing data imputation.
Applied Intelligence, 35, 1, 2011, 1–11.

Received May,2013

Comparison of algorithms for clustering incomplete data 127


