
CONTROLLLING SIMULATION EXPERIMENT DESIGN FOR

AGENT-BASED MODELS USING TREE REPRESENTATION OF

PARAMETER SPACE

Przemysław SZUFEL*, Bogumił KAMIŃSKI*, Piotr WOJEWNIK*

Abstract. An important aspect of the simulation modelling process is sensitivity

analysis. In this process, agent-based simulations often require analysis of structurally

different parameter specifications – the parameters can be represented as objects and the

object-oriented simulation configuration leads to nesting of simulation parameters.

The nested parameters are naturally represented as a tree rather than a flat structure.

The standard tools supporting multi-agent simulations only allow only the representation of

the parameter space as a Cartesian product of possible parameter values. Consequently,

their application for the required tree representation is limited. In this paper an approach to

tree parameter space representation is introduced with an XML-based language.

Furthermore, we propose a set of tools that allows one to manage parameterization of the

simulation experiment independently of the simulation model.

Keywords: agents, simulation modelling, sensitivity analysis.

1. Introduction

The paper deals with the problem of agent-based modeling and simulation (ABMS).

ABMS
1
 is defined an approach to modeling complex systems composed of autonomous

interacting agents [12]. It is assumed that the behavior of agents is described by a set of

rules specifying the interactions between an agent and its environment or other agents.

In real life, the analysis of complex situations and the design of simulation model

should be a structured process [7]; [10]. In particular, the authors agree that it should

include at least the following steps: model validation, verification and sensitivity analysis.

* Division of Decision Analysis and Support, Warsaw School of Economics,

ul. Madalińskiego 6/8, 02-513 Warszawa, Poland
1
 Macal and North [12] note that in the simulation literature two names for simulation of

complex systems with agents exist: agent-based modeling (ABM) and agent-based

simulation (ABS). In order to avoid ambiguity they propose a name agent-based modeling

and simulation (ABMS) [11].

F O U N D A T I O N S O F C O M P U T I N G A N D D E C I S I O N S C I E N C E S
Vol. 38 (2013)

DOI: 10.2478/fcds-2013-0014

 No. 4

ISSN 0867-6356
e-ISSN 2300-3405

These three steps, and the sensitivity analysis in particular, require evaluation of a model

with many different parameter sets. In a multi-agent simulation there is often a need to

analyze model sensitivity with respect to structural changes in its source code. A typical

structural change in such a case could be evaluating the influence of various agents’

decision making algorithms on simulation outcomes. The structural sensitivity analysis

problem becomes particularly important in simulation models having complex

parameterization. During the last ten years the complexity of simulation models has rapidly

increased and this calls for the development of new tools and architectures [21].

The simplest approach to simulation model parameterization and parameter space sweep

is introduction of several nested for-type loops within source code that executes the

simulation model for various parameter sets. This solution does not allow the separation of

the model source code from the runtime environment and is difficult to manage when a

parameter set dynamically changes during a simulation process. The parameter sweep

through source code becomes even more complicated when someone other than the

model’s author wants to change the parameter space – she might even not have the access

to model’s source code. The source code problems have been noted already at early stages

of simulation methodology development. Ziegler [23] introduced the concept of

experimental frame, arising from the need to separate simulation source code from its

parameterization. Daum and Sargent [5] further developed this idea, where authors pointed

out the need to manage a model structure from a configuration layer. They also stress out

the need to provide graphical tools for simulation process management – Visual Interactive

Modelling (VIM).

Railsback et al. [16] present an overview of papers on agent-based modeling tools.

Among other things they stress the role of simulation experiment design. Several popular

multi-agent simulation environments have functionalities supporting parameter sweep – e.g.

NetLogo BehaviourSpace [13], Repast Batch Parameters [4]. Another type of simulation

scenario management is using some external environment (and programming language) to

launch the simulation process and to manage its parameters. An example is RNetLogo,

a tool which can be used to start a NetLogo multi-agent simulation and manage its

parameters from GNU R programming language [18].

Each of the above presented approaches enables the consecutive launching of

simulation models with different parameter values. In BehaviourSpace those parameters are

presented as global values within a simulation model, while in Repast Batch Parameters

a configuration is presented as a JavaBean object in an XML file. Finally, running

a simulation from RNetLogo requires usage of GNU R language to write source code

responsible for changing the parameter values.

Another approach is JABM library [15]. The author proposed a new multi-agent

framework where the simulation configuration can be obtained from the Spring framework

similarly to the approach proposed in this work. Our paper extends the JABM library in

several areas: firstly, by providing configurable tools that can be used with various

simulation platforms; secondly, by supporting parameter sweep and thirdly, by taking into

consideration a tree parameter structure.

However, using any of the above tools requires choice of the variables to be

parameterized ex ante. Moreover, these tools do not offer full control over the simulation

process and do not provide any simple mechanism to repeat simulation experiments.

Another issue is integration of a formal simulation experiment description with parameter

278 P. Szufel, B. Kamiński, P. Wojewnik

sweep management. For example Waltemath et al. [20] propose a simulation experiment

scenario description, but do not consider controlling of parameter space.

A specific feature of multi-agent simulation is the need to consider the elements of the

model as independent agents. Usually this is achieved through implementation in object

oriented language and representation of agents as objects of appropriate classes. The

approach considered in this paper also allows model parameters to be represented by

objects. The objects can represent complex model features like decision rules used by a

particular agent classes. Each of these complex configuration objects can be further

internally parameterized, leading to parameter nesting that can represented as a tree

parameter space structure (see Section 2.3). However, currently all leading agent-based

modeling frameworks operate only on parameter spaces based on a Cartesian product of

possible parameter values. When a parameter nesting occurs, the Cartesian product

approach leads to increased computational complexity of the simulation model.

In this paper an approach to tree representation of nested parameter space is proposed

together with a set of tools to process this representation independently of a simulation

model. In Section 2, a review of existing approaches to simulation model parameter sweep

is presented. Based on this review, in Section 3 a new approach to solving the problem is

proposed and an illustrative example is described in Section 4. Discussion of the results is

given in Section 5.

2. Management of parameter space in simulation models

In the literature authors agree that each simulation model requires verification and

validation [10]; [7]. The goal of verification is to check whether a computational model

behaves along the mathematical expectations – i.e. to verify whether the model has been

programmed according to formal assumptions. The goal of validation is to check whether a

simulation model behaves in similar fashion to a real system. An important tool supporting

the verification and validation of a simulation model is sensitivity analysis. In this analysis

it is observed how the model parameters change influences the relation between model

inputs and outputs. The sensitivity analysis requires the running of a simulation model

several times (often thousands of times) – with different parameter sets.

To evaluate existing frameworks and approaches to multi-agent simulation we have

reviewed existing multi-agent software platforms. The initial list of software programs

(almost 100 platforms) is based on review papers [14]; [19] and internet sources [22].

For the selection we have used the following criteria:

Controllling simulation experiment design for agent-based models … 279

1. platforms should be general purpose (not focused on a single application domain) and

provide a full simulation framework;

2. they have to be freely available, still being actively developed (we exclude frameworks

that have not had updates since 2010) and be available for production use (not claim to

be in alpha or beta development stage);

3. as we focus on agent based modeling and simulation in our analysis we do not consider

frameworks aimed at modeling software agents
2
.

The following
3
 frameworks meet all the above criteria: Repast, NetLogo, Mason, and

Swarm. Our choice of agent-based simulation software is consistent with the literature. The

ABMS software review papers agree that the above four frameworks are the most important

software packages for agent-based modeling and simulation [[1]; [3]; [8]; [12]; [16]].

Therefore, four software packages will be used in the paper as benchmark agent-based

simulation platforms, i.e. NetLogo, Repast and Mason and Swarm. The first three are

written in Java while the last was created in Objective-C.

Two popular approaches to management of simulation model parameter space can be

considered: (1) specialized tools such as NetLogo BehaviorSpace or Repast Parameter

Sweep and (2) writing own code to control the model parameter sweep process, possibly

through batch or libraries provided with simulation library (e.g. Swarm Perl libraries). In

this Section, the selected tools and approaches for both parameter management scenarios

will be presented.

2.1. Tools for parameter sweep management in multi-agent simulation

Configuration of multi-agent simulation process in NetLogo (BehaviorSpace toolset) and

Repast (Repast Parameter Sweep toolset) can be done simply through a graphic user

interface (GUI). Moreover, both toolsets allow the replication of simulation results and the

management of multi-threaded simulation. However, they both have significant drawbacks.

Firstly, parameters are limited only to numbers; secondly, a parameter sweep is limited to

the Cartesian product of possible values – no tree parameter structures are supported;

thirdly, they do not provide full separation between a model and its configuration.

2.2. Programming parameter space management

The second approach to model configuration management is based on developing code

specific to a particular simulation. This can be achieved in several ways:

 parameter sweep within source code;

 parameter sweep through batch processing;

 parameter files;

 mixes of the above.

2
 This is the reason why we do not consider frameworks such as JADE [2].

3
 In particular we exclude from the list: Janus and MadKit as these are more

communication-oriented multi-agent frameworks and Ascape as it is only rule-oriented

simulation engine.

280 P. Szufel, B. Kamiński, P. Wojewnik

The fastest way to implement the parameter sweep is to embed it into source code.

Usually it takes the form of several nested loops. The main advantage of the source code

approach is fast implementation and fast code execution. However, this type of

parameterization requires the integration of the source code for a simulation model with the

source code responsible for parameter sweep. This leads to a situation where any parameter

space change requires changes in the model’s source code. Such changes are error prone,

requiring programming skills and in-depth knowledge of source code – which might turn

out to be difficult when a different person implements a simulation model and a different

person executes it.

Batch processing management of a simulation model is performed by running the

model with different parameter sets, where configuration of each run is external to the

model’s source code (e.g. a separate script file is created). A batch executing model with

different parameter sets can be implemented in scripting and shell languages or using tools

constructed for simulation processing, such as RNetLogo. The main advantage of batch

processing is its flexibility – it can be applied to any parameter set and any combination of

parameter values. This approach is also present in the Swarm simulation framework where

tools are provided to create batch scripts in Perl programming language. However, passing

values as parameters in a batch file can have several disadvantages: it is error prone,

requires some form of communication between a command shell and a simulation model,

and might require more computing power (in case of starting a new process for each

parameter set). The main disadvantage of the batch approach is that changes in model

parameter space are usually complicated and hard to control.

Managing the simulation process through parameter files is achieved by introduction of

an external flat file containing a set of keys and values. Consequently, the model

parameterization is strictly separated from model implementation. However, this approach

does not take into consideration complex data structures and makes it is difficult to include

additional dimensions (such as time) in a configuration file. Moreover parameter files do

not provide any tools that would allow validation of model specification.

The mixed approach is based on combining the former techniques in managing

simulation with parts of a model written in dynamic programming languages such as

Groovy or Jython (assuming that the simulation model is written in Java). The mixed

approach is used in simulation models constructed with the MASON framework. The main

advantage of this approach is its flexibility in constructing the various simulation parameter

sweep scenarios. While its main disadvantage is increasing complexity of the source code

and its interdependence.

Having presented various approaches to parameterization of simulation models we them

compare in Section 2.4. However, prior to this comparison we describe the need for tree

representation of parameter space in multi-agent simulations.

2.3. Tree representation of parameter space

Assume that an object simC of class SimC represents a configuration of a multi-agent

simulation model. Let the class SimC have one numerical attribute param1 and one object

attribute logic. The numerical attribute param1 can have one of two values: 1 or 2.

The object attribute logic of an abstract class Logic represents the agent’s decision rule

Controllling simulation experiment design for agent-based models … 281

algorithm. Assume that two possible logics are considered – object logicA of class

LogicA and logicB of class LogicB, where the classes LogicA and LogicB are

subclasses of Logic.

When an agent uses logic of class LogicA the model has to be further parameterized

with parameters paramA1 and paramA2 (the parameters are actually fields of class

LogicA). When an agent uses logic of class LogicB the model is further parameterized

with parameter paramB (the parameter is a field of class LogicB). Possible values for

paramA1 are 3 and 4, possible vales for paramA2 are 5 and 6 and finally possible values

for paramB are 7 and 8. Thus, the model parameter structure can be represented as the

following hierarchy:

 SimC:

o param1 – {1, 2};

o Logic – {logicA, logicB};

 LogicA:

o paramA1 – {3, 4};

o paramA2 – {5, 6};

 LogicB:

o paramB – {7, 8}.

The full parameter space of the presented simulation model is presented in Table 1.

Notice that in Table 1 some of possible combinations of parameter values have been

skipped. A full Cartesian product of all possible parameter values would turn 32 possible

model parameterizations, out of which 20 parameterizations would be redundant. The

redundancy would arise from the fact that when, for example, a model using logic logicB

sweeping through parameters paramA1 and paramA2 would not extend parameterization

space as these parameters would not be used.

Parameter space redundancy has two disadvantages. Firstly, it leads to unnecessary

simulation runs which makes a simulation process take more time and resources. Secondly,

when simulation results are analyzed, duplicated values should be identified and either

duplication should be considered in the model interpretation or the redundant results should

be discarded.

Table 1. Parameter space in an example multi-agent simulation

No. param1 Logic paramA1 paramA2 paramB

1 1 logicA 3 5 -

2 2 logicA 3 5 -

3 1 logicA 3 6 -

4 2 logicA 3 6 -

5 1 logicA 4 5 -

6 2 logicA 4 5 -

7 1 logicA 4 6 -

8 2 logicA 4 6 -

9 1 logicB - - 7

10 2 logicB - - 7

11 1 logicB - - 8

12 2 logicB - - 8

282 P. Szufel, B. Kamiński, P. Wojewnik

Figure 1. Parameter space of an example multi-agent simulation – tree

representation

The solution to the above problems is representing the parameter space of a simulation

model as a tree, see Figure 1. The nodes represent model parameters with lists of their

possible values. When parameters are dependent on other parameters (especially when

parameters’ values are objects that can have their own values) a split in a tree is present. In

the example considered the value of the logicA parameter determines whether the

parameters paramA1 and paramA2 or paramB are used.

The given tree parameter representation can be further unfolded to consider all possible

values of a parameter space for the example simulation model. Such an unfolded tree is

presented in Figure 2. Leaf selection from the tree in Figure 2 unambiguously determines a

particular point in the example model’s parameter sweep space, where the values of

particular parameters are represented by nodes on the path from the selected leaf to the root

node.

Another advantage of using a tree representation of parameter space is the possibility to

describe parameter structures in an XML format as proposed in Section 3.

Parameter space

param1: {1,2} Logic:

logicA

paramA1: {3,4} paramA2: {5,6}

logicB

paramB: {7,8}

Controllling simulation experiment design for agent-based models … 283

Figure 2. An unfolded parameter value tree for the parameter tree presented in

Figure 1. The right site of the tree (for the parameter value param1=2) is identical to

the left part (param1=1) and therefore is not visualized in the figure (marked with

„[…]”)

2.4. Comparison of existing methods for parameter sweep management

In Table 2 several methods for managing parameter sweep in a simulation process have

been compared. The criteria were selected based on [5] and enhanced using the authors own

experience in simulation models development. Now we shall describe the exact

understanding of each criterion presented in Table 2:

 ease of change of parameter values is understood as the possibility of avoiding source

code modifications when parameter values or the parameter space are altered;

 separating the model’s configuration from its implementation means that model

implementation and its parameterization are independent modules in the simulation

environment;

 graphical support for configuration editing is understood as providing a GUI that

allows the control of parameterization space and parameter values;

 independence from the parameter sweep algorithm means the possibility of changing

the parameter space search algorithm (typical algorithms are grid search and ceteris

paribus search);

 object configuration of parameters values means that parameters can be represented as

objects of any class;

 support for the tree structure of parameter space is understood as defined in Section

2.3.

param1

1

logic A

paramA1

3

paramA2

5 6

4

paramA2

5 6

logic B

paramB

7 8

2 [...]

284 P. Szufel, B. Kamiński, P. Wojewnik

Table 2. Comparison of parameter sweep management methods

No Criteria

N
et

L
o

g
o

B
eh

a
v

io
rS

p
a

ce

R
ep

a
st

P
a

ra
m

et
er

 S
w

ee
p

B
a

tc
h

 F
il

e

P
a

ra
m

et
er

 f
il

e

S
o

u
rc

e
 c

o
d

e

M
ix

ed

1 Ease of change of parameter values + + +/- - - -

2 Separating model’s configuration from

model’s implementation

+ + + + - +/-

3 Graphical support for configuration editing + + - - - -

4 Independence from parameter sweep

algorithm

- - + + + +

5 Object configuration of model’s parameters

values

+/- - - + + +

6 Support for tree structure of parameter space - - - - + +

The tools presented in Table 2 that facilitate simple and graphical parameter editing

have very limited flexibility in experiment design. On the other hand, more flexible

methods involve programming and thus have poor usability by researchers other than the

creator of the model.

In particular, only methods that are based on source code modification (directly or

mixed) allow one to take into account a tree structure of model parameters. However, it

requires a separate implementation for every simulation model.

The above review uncovers a gap in presently available methods and tools for model

parameterization. An ideal solution should provide a full separation between source code

and configuration, allow graphical configuration of simulation scenarios and have enough

flexibility to allow complex parameter structures – particularly structures represented as

trees.

In Section 3 a methodology that solves the above problems is described together with a

prototype implementation called Parameter Sweep Library (PSL).

3. Representation and management of a tree parameter space

The goal of this Section is to propose a method for representing and processing tree

parameter spaces of simulation models in object oriented languages – particularly Java
4
.

4
 Java is currently the most popular language in multi-agent simulation. In particular, it is

used in simulation libraries Repast and Mason. Moreover, the NetLogo simulation

environment is also implemented in Java. It is also possible to migrate solutions presented

in the paper into C# programming language.

Controllling simulation experiment design for agent-based models … 285

3.1. Technical assumptions

As stated earlier in this paper our focus is on the multi-agent simulation. Macal and North

[12] point out that in the multi-agent approach, agents are represented as objects of any

kind and as a result agents are usually implemented in object-oriented languages.

A configuration of a multi-agent simulation model can take into consideration dependency

between objects (e.g. assigning to some agent group a particular decision rule as it was

presented in Section 2.3). This leads to the conclusion that a tool for multi-agent model

configuration should also support object-oriented parameterization of a simulation model.

Moreover, the review of methods and tools for parameterization management in

Section 2.4 leads to the following postulates regarding a tool for simulation scenario

management: ease of parameter space change, separating parameterization from source

code, graphical support for configuration editing, independence from parameter space

search algorithms, object representation of parameters, support for tree parameter structures

and the possibility of searching tree parameter spaces. On the basis of these assumptions a

parameter description language was created and is described in Section 3.2.

3.2. Language for description of tree parameterization structure of

simulation models

The need to manage object oriented configuration of information systems was addressed in

various tools. One of these tools is The Spring Framework [9] that is currently developed as

an open source project
5
. The framework defines an XML-based language for object

dependency description and provides an application container based on inversion of control

(IoC) and dependency injection (DI) design patterns [6].

In simulation parameter sweep management the IoC pattern is implemented by giving

the control of model’s parameter space to an external library rather than managing it within

the source code of a simulation model. The DI design pattern means that simulation model

parameterization is done not directly in source code, but through an external XML file.

Moreover field values that are injected can be both primitive values (such as integer or

double) as well as complex objects with dependencies.

Law and Kelton [10] point out that working with a simulation model necessitates

performing many experiments,. An example scenario of a simulation experiment could

include achieving a steady state
6
 by a model and subsequently introduction of a shock to

observe how a simulated system reaches a new steady state level.

The Spring Framework allows the implementation of object-oriented configurations for

simulation model parameterization. However, the Spring Framework does not provide any

tools to manage parameter sweep. This problem is solved in the next Section – an extension

to the framework is proposed that enables configuration and management of the parameter

sweep process.

5
The web page of the open source project Spring Framework is available at

http://www.springsource.org/.
6
 A multi-agent simulation model of a dynamic system reaches a steady state after the

model has run for a defined time – initial simulations (warm up) are usually discarded.

286 P. Szufel, B. Kamiński, P. Wojewnik

3.3. Implementation of tree parameterization description language

The goal of this Section is to present an extension for the Spring framework that will allow

configuration and management of the parameter space of a multi-agent simulation model.

The software tools involved will be subsequently referred to as Parameter Sweep Library

(PSL).

According to the assumptions presented in Section 3.2, a parameterization of

a simulation model will be presented as a set of dependent objects. Using the open source

Spring Framework means that configuration will be presented in the form of an XML file

and can be edited by graphical tools provided by the Spring project.

The proposed PSL library extends Spring Framework’s functionality by adding the

facility to manage parameter space in a simulation model. The PSL library is targeted for

the Java platform and consists of the following components:

 classes to define manageable attributes in a simulation model;

 attributes that can be potentially parameterized, marked by an annotation;

 classes representing parameter spaces of the simulation model;

 a value converter for the Spring Framework;

 an application programming interface (API) for developers for creating simulation

scenarios and managing parameter spaces.

The Java language does not provide any tools for managing object pointers (as it is e.g.

in C++). To provide the means to externally control a model’s configuration, a hierarchy of

enveloping classes has been created for managing parameter values during a simulation

process. Appendix 1 presents a class containing a sample simulation configuration for the

Parameter Sweep Library. The annotations identify the fields that can be parameterized and

a simulation can be run several times for their different values.

The information on generic classes (within the diamond <> operator) is in Java

language removed during the code compilation process. As this information is needed

during runtime an additional annotation @ManagableValue has been created to store

information on a data class for data stored within an attribute, see Appendix 1.

As mentioned earlier the crucial feature of the PSL library is the independence of model

parameterization from parameter space search algorithms. It is assumed that any parameter

search scenario (e.g. grid search or ceteris paribus) can be applied to the same

parameterization. Each parameter allows one to define information on a parameter search

algorithm.

An object of the SimC class presented earlier in Figure 2 and described in Section 2.3 is

created by the Spring Framework. Figure 3 presents a graphical configuration of a Java

bean of class SimC. For each model parameter a set of feasible values (values attribute)

has been assigned as well as the dimension used in parameter sweeping (dimension

attribute). The PSL library supports the definition of two parameter space search

algorithms: grid search and ceteris paribus. Grid search means that all possible

combinations for all values are simulated, while ceteris paribus search is understood as

analyzing deviation of each single attribute from standard values while leaving default

values of all other attributes.

Controllling simulation experiment design for agent-based models … 287

Source: screenshot from Eclipse IDE

Figure 3. Graphical configuration of a parameter space of a multi-agent simulation

model with Spring IDE Eclipse plugin

Support for multi-value configuration of simulation parameters has been achieved

through an implementation within the PSL library of a conversion mechanism via the

Spring Framework API
7
 . During the conversion process the mechanism gathers

information on simulation model parameterization configuration and search dimensions,

which later can be used to change the configuration state through the PSL API.

The use of a PSL library within a simulation model requires fulfilling of two conditions.

Firstly, some parameters should be marked through annotation as configurable. Secondly,

simulation managed by the PSL library requires calling the PSL API to create an object

representing a simulation parameterization state.

An example of the source code controlling the simulation process can be found in

Appendix 2. Firstly, a Spring application context is processed (here it contains simulation

configuration). Secondly, a component managing simulation process is created. Thirdly, the

component provides objects (here of class SimC) that represent simulation configuration.

The PSL library calculates the number of possible scenarios (equal to number of leaves) in

a parameterization tree. Each parameter set (leaf) can be obtained by calling its number.

The PSL library handles the parameter sweeping process by providing configurations on

request. The number of available parameter sets is calculated depending on search scenario

and parameter dimensions.

The concept of parameterization space management presented above is illustrated in the

next Section by a typical example in multi-agent simulations of economic systems.

7
Documentation for the Spring Framework converter mechanism can be reached at

http://static.springsource.org/spring/docs/3.0.x/javadoc-

api/org/springframework/core/convert/converter/GenericConverter.html

288 P. Szufel, B. Kamiński, P. Wojewnik

4. Example – multi-agent artificial market simulation

The goal of this Section is to present an example usage of tree parameter representation in

multi-agent artificial market simulation.

Let us consider a multi-agent model with two agent classes: Customer and Firm.

Firms supply products at some price while customers observe the prices and present their

demand.

Assume that agents – Customers:

 analyze prices offered by Firms;

 declare their demand to particular Firms.

Similarly, let us assume that agents – Firms are characterized by the following

attributes:

 price;

 demand declared for their product (as an aggregated value of all customers interested

in a firm’s products);

 marginal_cost.

Using the information above a Firm can calculate its profit. For the given artificial

market, rules (logic) for agents can be defined. The Firms can have one of the following

decision rules:

1. Firm-ANN – decides on price adjustments based on comparing generated profit

measured in historical prices and potential profit measured in the last transactional

price. The most profitable price becomes a new price of Firm-ANN, but the price is

additionally disturbed (to reflect imperfect market information) with a normally

distributed random value with standard deviation of Range;

2. Firm-DIF – adjusts prices in similar way to Firm-ANN, but a new price results from

adjustment by the value of Range – the price can be randomly increased or decreased

(with probability 0.5) by this factor.

In the similar fashion Customers can use one of the following possible decision

making rules:

1. Customer-IMP – searches an entire market for the lowest offer and chooses it but

her information on market prices is imperfect – the price is a normally distributed

random variable with Randomness as standard deviation. In the result,

Customer-IMP’s decision is suboptimal and optimality distance depends on value of

the Randomness parameter;

2. Customer-VLT – some group of cases defined by the Randomness parameter

Customer-VLT chooses a random Firm, and in other cases chooses the cheapest

offer.

It is worth noting that the Range and Randomness parameters have the same name in

different agent classes but have completely different meaning (and different sets of possible

values). Such situations are difficult to handle in standard multi-agent frameworks that only

provide a grid approach to parameter sweep.

Figure 4 contains a tree representation of parameter space of the given model taking into

account different possible logics for different agents classes.

Controllling simulation experiment design for agent-based models … 289

Figure 4. Tree representation of an example multi-agent artificial market model

Table 3. Parameter values for Cartesian product parameter sweep in the presented

artificial market example. The selected rows are values used in tree representation

Customer Random

ness

Firm

Firmy

Range Customer

Klienta

Random

ness

Firm

Firmy

Range

IMP 0.1 ANN 0.5 IMP 0.1 DIF 0.5

IMP 0.9 ANN 0.5 IMP 0.9 DIF 0.5

IMP 1 ANN 0.5 IMP 1 DIF 0.5

IMP 10 ANN 0.5 IMP 10 DIF 0.5

IMP 0.1 ANN 1 IMP 0.1 DIF 1

IMP 0.9 ANN 1 IMP 0.9 DIF 1

IMP 1 ANN 1 IMP 1 DIF 1

IMP 10 ANN 1 IMP 10 DIF 1

IMP 0.1 ANN 10 IMP 0.1 DIF 10

IMP 0.9 ANN 10 IMP 0.9 DIF 10

IMP 1 ANN 10 IMP 1 DIF 10

IMP 10 ANN 10 IMP 10 DIF 10

VLT 0.1 ANN 0.5 VLT 0.1 DIF 0.5

VLT 0.9 ANN 0.5 VLT 0.9 DIF 0.5

VLT 1 ANN 0.5 VLT 1 DIF 0.5

VLT 10 ANN 0.5 VLT 10 DIF 0.5

VLT 0.1 ANN 1 VLT 0.1 DIF 1

VLT 0.9 ANN 1 VLT 0.9 DIF 1

VLT 1 ANN 1 VLT 1 DIF 1

VLT 10 ANN 1 VLT 10 DIF 1

VLT 0.1 ANN 10 VLT 0.1 DIF 10

VLT 0.9 ANN 10 VLT 0.9 DIF 10

VLT 1 ANN 10 VLT 1 DIF 10

VLT 10 ANN 10 VLT 10 DIF 10

With two possible Customer‘s rule sets (IMP and VLT), two possible Firm‘s rule

sets (ANN and DIF), four possible values of the Randomness parameter (0.1, 0.9, 1 and

Model parameters

Rules
Customer

IMP

Randomness

{1,10}

VLT

Randomness

{0.1,0.9}

Rules
Firm

ANN

Range{1,10}

DIF

Range {0.5, 1}

290 P. Szufel, B. Kamiński, P. Wojewnik

10) and three levels of the Range parameter (0.5, 1 and 10) we could expect 2x2x4x3=48

market types for Cartesian product parameter space, see Table 3.

However, the Cartesian product parameter sweep leads to redundant and ambiguous

parameters in comparison to parameters presented in the parameter tree in Figure 4. For

example, for Customer-IMP analyzed values include 0.1 and 0.9 for the Randomness

parameter, while the parameter for this case only makes sense for values between 1 and 10.

More specifically, in the Cartesian product there are 48 possible parameter sets while in

the parameter tree there are only 16 (it is the number of leaves in the tree presented in

Figure 5). In the presented example the tree parameterization can decrease the number of

calculations by three times in comparison to a Cartesian product search. Additionally, it

allows for proper processing in cases where parameters with the same names but from

different leaves and of different sets of allowed values exist.

Example source code for parameter sweep management for the above example has been

presented in Appendix 3.

Figure 5 presents a tree parameterization structure of an artificial multi-agent market

model, where each path from the leaf to the root node represents one complete model

parameterization. There are 16 leaves in the tree i.e. 16 possible market configurations.

While the tree presented on Figure 4 presents groups of values in the model, the tree in

Figure 5 allows one to calculate exactly the number of possible parameterizations.

Figure 5. Part of a tree representing full parameter space of the example artificial

market simulation model. Symmetrical parts of the tree which are not visualized have

been marked with „[…]”

Customer rules

IMP

Randomness

0

Company rules

ANN

Range

1 10

DIF

Range

0,5 1

1 [...]

VLT [...]

Controllling simulation experiment design for agent-based models … 291

Source: generated with Eclipse IDE

Figure 6. Class diagram for the example parameterization

The presented parameterization can be described as a set of objects, see Figure 6. This

means that it can be processed along with the approach presented in Section 3 – i.e. it can

be represented in the Spring Framework XML and handled by the proposed Parameter

Sweep Library.

The approach presented for representing and managing tree parameter structures enables

the number of simulated scenarios for a parameter sweep to be limited – in the example

shown from 48 scenarios that would require evaluation when using currently available tools

to 16 obtainable when using the proposed parameter sweep library.

5. Discussion

Existing popular agent-based simulation platforms provide tools for managing parameter

sweep only for grid-structured parameter spaces. In agent-based simulation object-oriented

simulation configuration leads to a tree parameter representation. The tree parameter

structure requires either performing redundant simulations, coding the parameter sweep or

generating batch files. The proposed approach fills this gap by providing description of a

tree parameter space representation and tools allowing for processing the tree parameter

space.

The proposed approach and tools have significant advantages but also present additional

requirements in terms of the simulation development process. In this Section both the

advantages and disadvantages of the proposed approach will be discussed.

The advantages include: (1) universality, (2) standardization, (3) support for changing

dimensions and (4) separation of a simulation’s configuration from its implementation.

Universality is understood as ability of the approach to be used in any simulation model

written in Java
8
. The library is particularly useful in multi-agent simulations when the

8
The Spring Framework is also available for C#, so the proposed library can be also

implemented for the .NET framework.

292 P. Szufel, B. Kamiński, P. Wojewnik

simulation framework is used along library-oriented simulation framework [12]
9
. The

proposed tree representation of parameter space can be applied to illustrate complex

parameter sweep scenarios.

The second advantage is possible standardization of the simulation process. Integration

with the Spring Framework allows for a standard XML-based description of simulation

scenarios.

The third advantage of the proposed library is support for changing the dimensions of

parameter sweep space. This is particularly important during the early stages of a

simulation process where the model needs to be verified and validated, see Law and Kelton

(2000). During the verification and validation phases different parameter ranges and

parameter sets are altered several times. Moreover, XML parameter sweep configuration

files can be generated by other tools which adds another level of configuration.

The fourth advantage is a complete separation of a simulation’s configuration from its

implementation. This enables the delivery of simulation models to end users in binary form

(without source code) while still giving them complete control over model configuration.

Moreover, simulation scenarios can be processed and stored independently of a model’s

binaries.

The framework proposed in the paper also has disadvantages, namely increased memory

and resource usage, requirements for additional definitions in object-oriented simulation

model configuration, and programming integration-code to attach the PSL library to a

simulation model.

The increased memory usage is caused by the fact that the Spring Framework is a large

set of libraries that adds a significant memory and start-up time overhead. This means that

more RAM memory needs to be available to a Java Virtual Machine. However this

problem can be overcome as RAM memory is relatively cheap and a single Spring

container can be responsible for managing several threads, with each thread running several

simulations in sequence. This means that when running many simulation repetitions in

parallel threads the Spring overhead can be neglected.

A need for additional definitions in an object-oriented simulation model configuration

arises from the fact that the proposed approach requires annotations in fields of Java beans

that are used to represent the parameter space of a simulation model. The annotations tell

the environment that a field is part of the parameter space. This is an additional step in

defining beans representing an object-oriented configuration of a simulation model. The

additional work makes the framework’s implementation in existing simulation models more

complicated. However, annotation of the definition process is still relatively little work in

comparison to creating and updating a parameter sweep mechanism tailored to a particular

tree-structured simulation model. Moreover, we are working to overcome this problem in

the future by building a plug-in to the Spring Framework that allows the use of plain Java

beans (i.e. POJO) for the simulation model’s configuration and simulation scenarios could

be defined entirely in a Spring XML file.

9
Macal and North [12] review agent-based simulation tools and define three types of

frameworks: library-oriented, IDE-oriented and hybrid. Library oriented means that a

simulation process is managed by an library linked to a simulation code. IDE -oriented

means that an IDE (Integrated Desktop Environment) i.e. graphical tools are used to

construct a simulation model. A hybrid approach is a mix of both previous [12].

Controllling simulation experiment design for agent-based models … 293

The PSL library needs to be linked with a simulation’s code. Programming integration-

code to attach the PSL library to a simulation model adds an additional programming

overhead. However, the code for a parameter sweep is standardized and usually does not

need be updated when a simulation model changes.

The advantages described overwhelm the disadvantages, which means that the PSL

framework can streamline an agent-based simulation process in with popular tools for the

Java programming language. It is also worth mentioning that the usability of the proposed

approach has been verified in multi-agent simulation - in parameter sweep for a multi-agent

model of educational markets [17].

6. Concluding remarks

The paper tackles an issue of managing the parameterization processes in multi-agent

simulation. The review of existing software shows that the currently available tools are

incomplete because they do not provide any support for tree parameterization structures.

Moreover, these approaches exhibit a significant trade-off between configuration flexibility

and availability of a graphical user interface.

In this paper a solution to the above problems has been presented. The Spring

Framework enables the construction of an object-oriented simulation configuration. It has

graphical tools for configuration editing, while the proposed Parameter Sweep Library

(PSL) enables simulation process handling. The software has been implemented in Java –

the most popular language in multi-agent simulation support software.

The proposed approach allows for construction of hierarchical parameter spaces through

XML file and provides tools to manage such parameterization in simulation runtime. It also

supports visualization of object structure in standard tools. A strict separation from a

simulation source code allows for various parameter sweep strategies. Another advantage

of the PSL framework is that it allows for standardization in simulation parameterization

with techniques commonly used in business software – XML and the Spring Framework.

References

[1] Allan R.J., Survey of Agent Based Modelling and Simulation Tools, Technical Report,

DL-TR-2010-007, Science and Technology Facilities Council, 2010.

[2] Bellifemine F. L., Caire G., Greenwood D., Developing Multi-Agent Systems with

JADE, John Wiley & Sons, 2007.

[3] Berryman M., Review of Software Platforms for Agent Based Models, Land Operations

Division, Defence Science and Technology Organisation, Edinburgh, Australi, 2008.

[4] Bragen M., Altaweel M., Repast Parameters Sweeps Getting started,

http://repast.sourceforge.net/docs/RepastParameterSweepsGettingStarted.pdf, accessed

on 2012-03-12, 2012.

[5] Daum T., Sargent R.G., Experimental frames in a modern modeling and simulation

system, IIE Transactions 33, 2001, 181-192.

[6] Fowler M., Containers and the Dependency Injection Pattern,

http://martinfowler.com/articles/injection.html, accessed on 2012-04-14, 2004.

294 P. Szufel, B. Kamiński, P. Wojewnik

[7] Gilbert N., Troitzsch K.G., Simulation for the Social Scientist, 2nd Edition, Open

University Press, Berkshire, 2005.

[8] Gilbert N. Agent-based models, in: T. F. Liao (ed.) Quantitative Applications in the

Social Sciences 153, SAGE, 2008.

[9] Johnson R., Hoeller J., Expert One-on-One J2EE Development without EJB, Wiley

Publishing, Indianapolis, 2004.

[10] Law A. M., Kelton W. D., Simulation Modeling and Analysis, McGraw-Hill, Boston,

2000.

[11] Macal C., North M., Tutorial on Agent-based Modeling and Simulation, in: Kuhl M.

E., Steiger N.M., Armstrong F.B., Joines J.A. (eds.), Proc. 2005 Winter Simulation

Conference, Orlando, FL, 2005, 2-15.

[12] Macal C.M., North M.J., Tutorial on agent-based modelling and simulation, Journal of

Simulation, 4, 2010, 151-162.

[13] NetLogo, NetLogo BehaviorSpace Guide,

http://ccl.northwestern.edu/netlogo/docs/behaviorspace.html, 2012.

[14] Nikolai C., Madey G., Tools of the Trade: A Survey of Various Agent Based

Modelling Platforms, Journal of Artificial Societies and Social Simulation, 12, 2,

http://jasss.soc.surrey.ac.uk/12/2/2.html, 2009.

[15] Phelps S., Applying dependency injection to agent-based modelling: the JABM

framework, CCFEA Working Paper #WP056-12, 2012.

[16] Railsback S.F., Lytinen S.L., Jackson S.K., Agent-based Simulation Platforms: Review

and Development Recommendations, Simulation, 82, 2006, 609-623.

[17] Szufel P., On educational process cost efficiency, doctoral thesis, The Collegium of

Economic Analysis, Warsaw School of Economics, 2011.

[18] Thiele J.C., Kurth W., Grimm V., RNetLogo: an R package for running and exploring

individual-based models implemented in NetLogo, Methods in Ecology and Evolution,

British Ecological Society, Early Preview, 2012.

[19] Tobias R., Hofmann C., Evaluation of free Java-libraries for social-scientific agent

based simulation, Journal of Artificial Societies and Social Simulation 7, 1,

http://jasss.soc.surrey.ac.uk/7/1/6.html, 2004.

[20] Waltemath D., Bergmann F.T., Adams R., Le Novere N., Simulation Experiment

Description Markup Language (SED-ML): Level 1 Version 1, http://sed-ml.org/, 2011.

[21] Wainer G.A., Dalle O., Software Tools, Techniques and Architectures for Computer

Simulation, Simulation, 86, 2010, 267-269.

[22] Wikipedia, Comparison of agent based modelling software,

http://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software,

accessed 2012-08-20, 2012.

[23] Zeigler B.P., Theory of Modelling and Simulation, Wiley, New York, 1976.

Presented at the XII Conference: Systems and Operational Research – BOS 2012,

17-19 September 2012, Warsaw, Poland

Controllling simulation experiment design for agent-based models … 295

Appendix 1

Source code defining a Java Bean type class that allows to describe parameter space of

example represented in Section 2.3.

public class SimC {

@ManagableValue(clazz=Double.class)

public Value<Double> param1;

@ManagableValue(clazz=Logic.class)

public Value<Logic> logic;

public Value<Logic> getLogic() {

return logic;

}

public void setLogic(Value<Logic> logic) {

this.logic = logic;

}

public Value<Double> getParam1() {

return param1;

}

public void setParam1(Value<Double> param1) {

this.param1 = param1;

}

}

296 P. Szufel, B. Kamiński, P. Wojewnik

Appendix 2

An example source code of the PSL library utilization to manage a tree parameter space of

a multi-agent simulation model.

//initialization and application context creation

FileSystemXmlApplicationContext springCtx = new

 FileSystemXmlApplicationContext("sim.xml");

//creation of an object allowing to manage

//the parameter space

SimConfigService scs =

 springCtx.getBean("simConfigService",SimConfigService.class);

//parameter space managemnt;

//in case of multi-threaded parrarel simulation each thread

//is connected to different parameter space

DynamicSimConfiguration dsc =

 scs.getNewDynamicSimConfiguration();

//acquiring an object representing simulation state

SimC simC = dsc.getBean("simC", SimC.class);

//parameter sweep space size

int paramSweepSize =

 dsc.getSimulationVariantsSize(dsc.getMetaDimension("PARAM"));

for (int paramIx=0; paramIx < paramSweepSize; paramIx++) {

 //setting of a particular parameter combination

 //can be acquired by givem its number

 dsc.setSimIx(dsc.getMetaDimension("PARAM"), paramIx);

 //[model is parametrized and simulation starts]

}

Controllling simulation experiment design for agent-based models … 297

Appendix 3

An example source code that is processed through the Spring Framework and the PSL

library. The source code describes parameterization of the example model that was

presented in Figures 4 and 5.

298 P. Szufel, B. Kamiński, P. Wojewnik

