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Abstract.  An important aspect of the simulation modelling process is sensitivity 

analysis. In this process, agent-based simulations often require analysis of structurally 

different parameter specifications – the parameters can be represented as objects and the 

object-oriented simulation configuration leads to nesting of simulation parameters. 

The nested parameters are naturally represented as a tree rather than a flat structure. 

The standard tools supporting multi-agent simulations only allow only the representation of 

the parameter space as a Cartesian product of possible parameter values. Consequently, 

their application for the required tree representation is limited. In this paper an approach to 

tree parameter space representation is introduced with an XML-based language. 

Furthermore, we propose a set of tools that allows one to manage parameterization of the 

simulation experiment independently of the simulation model. 
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1. Introduction

The paper deals with the problem of agent-based modeling and simulation (ABMS). 

ABMS
1
 is defined an approach to modeling complex systems composed of autonomous 

interacting agents [12]. It is assumed that the behavior of agents is described by a set of 

rules specifying the interactions between an agent and its environment or other agents.  

In real life, the analysis of complex situations and the design of simulation model 

should be a structured process [7]; [10]. In particular, the authors agree that it should 

include at least the following steps: model validation, verification and sensitivity analysis. 
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ul. Madalińskiego 6/8, 02-513 Warszawa, Poland 
1
 Macal and North [12] note that in the simulation literature two names for simulation of 

complex systems with agents exist: agent-based modeling (ABM) and agent-based 

simulation (ABS). In order to avoid ambiguity they propose a name agent-based modeling 

and simulation (ABMS) [11]. 
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These three steps, and the sensitivity analysis in particular, require evaluation of a model 

with many different parameter sets. In a multi-agent simulation there is often a need to 

analyze model sensitivity with respect to structural changes in its source code. A typical 

structural change in such a case could be evaluating the influence of various agents’ 

decision making algorithms on simulation outcomes. The structural sensitivity analysis 

problem becomes particularly important in simulation models having complex 

parameterization. During the last ten years the complexity of simulation models has rapidly 

increased and this calls for the development of new tools and architectures [21]. 

The simplest approach to simulation model parameterization and parameter space sweep 

is introduction of several nested for-type loops within  source code that executes the 

simulation model for various parameter sets. This solution does not allow the separation of 

the model source code from the runtime environment and is difficult to manage when a 

parameter set dynamically changes during a simulation process. The parameter sweep 

through source code becomes even more complicated when someone other than the 

model’s author wants to change the parameter space – she might even not have the access 

to model’s source code. The source code problems have been noted already at early stages 

of simulation methodology development. Ziegler [23] introduced the concept of 

experimental frame, arising from the need to separate simulation source code from its 

parameterization. Daum and Sargent [5] further developed this idea, where authors pointed 

out the need to manage a model structure from a configuration layer. They also stress out 

the need to provide graphical tools for simulation process management – Visual Interactive 

Modelling (VIM). 

Railsback et al. [16] present an overview of papers on agent-based modeling tools. 

Among other things they stress the role of simulation experiment design. Several popular 

multi-agent simulation environments have functionalities supporting parameter sweep – e.g. 

NetLogo BehaviourSpace [13], Repast Batch Parameters [4]. Another type of simulation 

scenario management is using some external environment (and programming language) to 

launch the simulation process and to manage its parameters. An example is RNetLogo, 

a tool which can be used to start a NetLogo multi-agent simulation and manage its 

parameters from GNU R programming language [18]. 

Each of the above presented approaches enables the consecutive launching of 

simulation models with different parameter values. In BehaviourSpace those parameters are 

presented as global values within a simulation model, while in Repast Batch Parameters 

a configuration is presented as a JavaBean object in an XML file. Finally, running 

a simulation from RNetLogo requires usage of GNU R language to write source code 

responsible for changing the parameter values. 

Another approach is JABM library [15]. The author proposed a new multi-agent 

framework where the simulation configuration can be obtained from the Spring framework 

similarly to the approach proposed in this work. Our paper extends the JABM library in 

several areas: firstly, by providing configurable tools that can be used with various 

simulation platforms; secondly, by supporting parameter sweep and thirdly, by taking into 

consideration a tree parameter structure. 

However, using any of the above tools requires choice of the variables to be 

parameterized ex ante. Moreover, these tools do not offer full control over the simulation 

process and do not provide any simple mechanism to repeat simulation experiments. 

Another issue is integration of a formal simulation experiment description with parameter 
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sweep management. For example Waltemath et al. [20] propose a simulation experiment 

scenario description, but do not consider controlling of parameter space. 

A specific feature of multi-agent simulation is the need to consider the elements of the 

model as independent agents. Usually this is achieved through implementation in object 

oriented language and representation of agents as objects of appropriate classes. The 

approach considered in this paper also allows model parameters to be represented by 

objects. The objects can represent complex model features like decision rules used by a 

particular agent classes. Each of these complex configuration objects can be further 

internally parameterized, leading to parameter nesting that can represented as a tree 

parameter space structure (see Section 2.3). However, currently all leading agent-based 

modeling frameworks operate only on parameter spaces based on a Cartesian product of 

possible parameter values. When a parameter nesting occurs,  the Cartesian product 

approach leads to increased computational complexity of the simulation model. 

In this paper an approach to tree representation of nested parameter space is proposed 

together with a set of tools to process this representation independently of a simulation 

model. In Section 2, a review of existing approaches to simulation model parameter sweep 

is presented. Based on this review, in Section 3 a new approach to solving the problem is 

proposed and an illustrative example is described in Section 4. Discussion of the results is 

given in Section 5. 

2. Management of parameter space in simulation models

In the literature authors agree that each simulation model requires verification and 

validation [10]; [7]. The goal of verification is to check whether a computational model 

behaves along the mathematical expectations – i.e. to verify whether the model has been 

programmed according to formal assumptions. The goal of validation is to check whether a 

simulation model behaves in similar fashion to a real system.  An important tool supporting 

the verification and validation of a simulation model is sensitivity analysis. In this analysis 

it is observed how the model parameters change influences the relation between model 

inputs and outputs. The sensitivity analysis requires the running of a simulation model 

several times (often thousands of times) – with different parameter sets. 

To evaluate existing frameworks and approaches to multi-agent simulation we have 

reviewed existing multi-agent software platforms. The initial list of software programs 

(almost 100 platforms) is based on review papers [14]; [19] and internet sources [22]. 

For the selection we have used the following criteria: 
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1. platforms should be general purpose (not focused on a single application domain) and

provide a full simulation framework;

2. they have to be freely available, still being actively developed (we exclude frameworks

that have not had updates since 2010) and be available for production use (not claim to

be in alpha or beta development stage);

3. as we focus on agent based modeling and simulation in our analysis we do not consider

frameworks aimed at modeling software agents
2
.

The following
3
 frameworks meet all the above criteria: Repast, NetLogo, Mason, and 

Swarm. Our choice of agent-based simulation software is consistent with the literature. The 

ABMS software review papers agree that the above four frameworks are the most important 

software packages for agent-based modeling and simulation [[1]; [3]; [8]; [12]; [16]]. 

Therefore, four software packages will be used in the paper as benchmark agent-based 

simulation platforms, i.e. NetLogo, Repast and Mason and Swarm. The first three are 

written in Java while the last was created in Objective-C.  

Two popular approaches to management of simulation model parameter space can be 

considered: (1) specialized tools such as NetLogo BehaviorSpace or Repast Parameter 

Sweep and (2) writing own code to control the model parameter sweep process, possibly 

through batch or libraries provided with simulation library (e.g.  Swarm Perl libraries). In 

this Section, the selected tools and approaches for both parameter management scenarios 

will be presented. 

2.1. Tools for parameter sweep management in multi-agent simulation 

Configuration of multi-agent simulation process in NetLogo (BehaviorSpace toolset) and 

Repast (Repast Parameter Sweep toolset) can be done simply through a graphic user 

interface (GUI). Moreover, both toolsets allow the replication of simulation results and the 

management of multi-threaded simulation. However, they both have significant drawbacks. 

Firstly, parameters are limited only to numbers; secondly, a parameter sweep is limited to 

the Cartesian product of possible values – no tree parameter structures are supported; 

thirdly, they do not provide full separation between a model and its configuration. 

2.2. Programming parameter space management 

The second approach to model configuration management is based on developing code 

specific to a particular simulation. This can be achieved in several ways:  

 parameter sweep within source code; 

 parameter sweep through batch processing; 

 parameter files; 

 mixes of the above. 

2
 This is the reason why we do not consider frameworks such as JADE [2]. 

3
 In particular we exclude from the list: Janus and MadKit as these are more 

communication-oriented multi-agent frameworks and Ascape as it is only rule-oriented 

simulation engine.  
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The fastest way to implement the parameter sweep is to embed it into source code. 

Usually it takes the form of several nested loops. The main advantage of the source code 

approach is fast implementation and fast code execution. However, this type of 

parameterization requires the integration of the source code for a simulation model with the 

source code responsible for parameter sweep. This leads to a situation where any parameter 

space change requires changes in the model’s source code. Such changes are error prone, 

requiring programming skills and in-depth knowledge of source code – which might turn 

out to be difficult when a different person implements a simulation model and a different 

person executes it. 

Batch processing management of a simulation model is performed by running the 

model with different parameter sets, where configuration of each run is external to the 

model’s source code (e.g. a separate script file is created). A batch executing model with 

different parameter sets can be implemented in scripting and shell languages or using tools 

constructed for simulation processing, such as RNetLogo.  The main advantage of batch 

processing is its flexibility – it can be applied to any parameter set and any combination of 

parameter values. This approach is also present in the Swarm simulation framework where 

tools are provided to create batch scripts in Perl programming language. However, passing 

values as parameters in a batch file can have several disadvantages: it is error prone, 

requires some form of communication between a command shell and  a simulation model, 

and might require more computing power (in case of starting a new process for each 

parameter set). The main disadvantage of the batch approach is that changes in model 

parameter space are usually complicated and hard to control.  

Managing the simulation process through parameter files is achieved by introduction of 

an external flat file containing a set of keys and values. Consequently, the model 

parameterization is strictly separated from model implementation. However, this approach 

does not take into consideration complex data structures and makes it is difficult to include 

additional dimensions (such as time) in a configuration file. Moreover parameter files do 

not provide any tools that would allow validation of model specification. 

The mixed approach is based on combining the former techniques in managing 

simulation with parts of a model  written in dynamic programming languages such as 

Groovy or Jython (assuming that the simulation model is written in Java). The mixed 

approach is used in simulation models constructed with the MASON framework. The main 

advantage of this approach is its flexibility in constructing the various simulation parameter 

sweep scenarios. While its main disadvantage is increasing complexity of the source code 

and its interdependence. 

Having presented various approaches to parameterization of simulation models we them 

compare  in Section 2.4. However, prior to this comparison we describe the need for tree 

representation of parameter space in multi-agent simulations. 

2.3. Tree representation of parameter space 

Assume that an object simC of class SimC represents a configuration of a multi-agent 

simulation model. Let the class SimC have one numerical attribute param1 and one object 

attribute logic.  The numerical attribute param1 can have one of two values: 1 or 2.  

The object attribute logic of an abstract class Logic represents the agent’s decision rule 

Controllling simulation experiment design for agent-based models … 281



algorithm.  Assume that two possible logics are considered – object logicA of class 

LogicA and logicB of class LogicB, where the classes LogicA and LogicB are 

subclasses of Logic. 

When an agent uses logic of class LogicA the model has to be further parameterized 

with parameters paramA1 and paramA2 (the parameters are actually fields of class 

LogicA). When an agent uses logic of class LogicB the model is further parameterized 

with parameter paramB (the parameter is a field of class LogicB). Possible values for 

paramA1 are 3 and 4, possible vales for paramA2 are 5 and 6 and finally possible values 

for paramB are 7 and 8. Thus, the model parameter structure can be represented as the 

following hierarchy: 

 SimC: 

o param1 – {1, 2};

o Logic – {logicA, logicB};

 LogicA: 

o paramA1 – {3, 4};

o paramA2 – {5, 6};

 LogicB: 

o paramB – {7, 8}.

The full parameter space of the presented simulation model is presented in Table 1. 

Notice that in Table 1 some of possible combinations of parameter values have been 

skipped. A full Cartesian product of all possible parameter values would turn 32 possible 

model parameterizations, out of which 20 parameterizations would be redundant. The 

redundancy would arise from the fact that when, for example, a model using logic logicB 

sweeping through parameters paramA1 and paramA2 would not extend parameterization 

space as these parameters would not be used. 

Parameter space redundancy has two disadvantages. Firstly, it leads to unnecessary 

simulation runs which makes a simulation process take more time and resources. Secondly, 

when simulation results are analyzed, duplicated values should be identified and either 

duplication should be considered in the model interpretation or the redundant results should 

be discarded. 

Table 1. Parameter space in an example multi-agent simulation 

No. param1 Logic paramA1 paramA2 paramB 

1 1 logicA 3 5 - 

2 2 logicA 3 5 - 

3 1 logicA 3 6 - 

4 2 logicA 3 6 - 

5 1 logicA 4 5 - 

6 2 logicA 4 5 - 

7 1 logicA 4 6 - 

8 2 logicA 4 6 - 

9 1 logicB - - 7 

10 2 logicB - - 7 

11 1 logicB - - 8 

12 2 logicB - - 8 
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Figure 1. Parameter space of an example multi-agent simulation – tree 

representation 

The solution to the above problems is representing the parameter space of a simulation 

model as a tree, see Figure 1. The nodes represent model parameters with lists of their 

possible values. When parameters are dependent on other parameters (especially when 

parameters’ values are objects that can have their own values) a split in a tree is present. In 

the example considered the value of the logicA parameter determines whether the 

parameters  paramA1 and paramA2 or paramB are used. 

The given tree parameter representation can be further unfolded to consider all possible 

values of a parameter space for the example simulation model. Such an unfolded tree is 

presented in Figure 2. Leaf selection from the tree in Figure 2 unambiguously determines a 

particular point in the example model’s parameter sweep space, where the values of 

particular parameters are represented by nodes on the path from the selected leaf to the root 

node. 

Another advantage of using a tree representation of parameter space is the possibility to 

describe parameter structures in an XML format as proposed in Section 3. 

Parameter space 

param1: {1,2} Logic: 

logicA 

paramA1: {3,4} paramA2: {5,6} 

logicB 

paramB: {7,8} 
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Figure 2. An unfolded parameter value tree for the parameter tree presented in 

Figure 1. The right site of the tree (for the parameter value param1=2) is identical to 

the left part (param1=1) and therefore is not visualized in the figure (marked with 

„[…]”) 

2.4. Comparison of existing methods for parameter sweep management 

In Table 2 several methods for managing parameter sweep in a simulation process have 

been compared. The criteria were selected based on [5] and enhanced using the authors own 

experience in simulation models development. Now we shall describe the exact 

understanding of each criterion presented in Table 2: 

 ease of change of parameter values is understood as the possibility of avoiding source 

code modifications when parameter values or the parameter space are altered; 

 separating the model’s configuration from its implementation means that model 

implementation and its parameterization are independent modules in the simulation 

environment; 

 graphical support for configuration editing is understood as providing a GUI that 

allows the control of parameterization space and parameter values; 

 independence from the parameter sweep algorithm means the possibility of changing 

the parameter space search algorithm (typical algorithms are grid search and ceteris 

paribus search); 

 object configuration of parameters values means that parameters can be represented as 

objects of any class; 

 support for the tree structure of parameter space is understood as defined in Section 

2.3. 

param1 

1 

logic A 

paramA1 

3 

paramA2 

5 6 

4 

paramA2 

5 6 

logic B 

paramB 

7 8 

2 [...] 
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Table 2. Comparison of parameter sweep management methods 
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1 Ease of change of parameter values + + +/- - - - 

2 Separating model’s configuration from 

model’s implementation 

+ + + + - +/- 

3 Graphical support for configuration editing + + - - - - 

4 Independence from parameter sweep 

algorithm 

- - + + + + 

5 Object configuration of model’s parameters 

values 

+/- - - + + + 

6 Support for tree structure of parameter space - - - - + + 

The tools presented in Table 2 that facilitate simple and graphical parameter editing 

have very limited flexibility in experiment design. On the other hand, more flexible 

methods involve programming and thus have poor usability by researchers other than the 

creator of the model. 

In particular, only methods that are based on source code modification (directly or 

mixed) allow one to take into account a tree structure of model parameters. However, it 

requires a separate implementation for every simulation model.   

The above review uncovers a gap in presently available methods and tools for model 

parameterization. An ideal solution should provide a full separation between source code 

and configuration, allow graphical configuration of simulation scenarios and have enough 

flexibility to allow complex parameter structures – particularly structures represented as 

trees. 

In Section 3 a methodology that solves the above problems is described together with a 

prototype implementation called Parameter Sweep Library (PSL). 

3. Representation and management of a tree parameter space

The goal of this Section is to propose a method for representing and processing tree 

parameter spaces of simulation models in object oriented languages – particularly Java
4
. 

4
 Java is currently the most popular language in multi-agent simulation. In particular, it is 

used in simulation libraries Repast and Mason. Moreover, the NetLogo simulation 

environment is also implemented in Java. It is also possible to migrate solutions presented 

in the paper into C# programming language. 
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3.1. Technical assumptions 

As stated earlier in this paper our focus is on the multi-agent simulation. Macal and North 

[12] point out that in the multi-agent approach, agents are represented as objects of any 

kind and as a result agents are usually implemented in object-oriented languages. 

A configuration of a multi-agent simulation model can take into consideration dependency 

between objects (e.g. assigning to some agent group a particular decision rule as it was 

presented in Section 2.3). This leads to the conclusion that a tool for multi-agent model 

configuration should also support object-oriented parameterization of a simulation model. 

Moreover, the review of methods and tools for parameterization management  in 

Section 2.4 leads to the following postulates regarding a tool for simulation scenario 

management: ease of parameter space change, separating parameterization from source 

code, graphical support for configuration editing, independence from parameter space 

search algorithms, object representation of parameters, support for tree parameter structures 

and the possibility of searching tree parameter spaces. On the basis of these assumptions a 

parameter description language was created and is described in Section 3.2. 

3.2. Language for description of tree parameterization structure of 

simulation models 

The need to manage object oriented configuration of information systems was addressed in 

various tools. One of these tools is The Spring Framework [9] that is currently developed as 

an open source project
5
. The framework defines an XML-based language for object 

dependency description and provides an application container based on inversion of control 

(IoC) and dependency injection (DI) design patterns [6]. 

In simulation parameter sweep management the IoC pattern is implemented by giving 

the control of model’s parameter space to an external library rather than managing it within 

the source code of a simulation model. The DI design pattern means that simulation model 

parameterization is done not directly in source code, but through an external XML file. 

Moreover field values that are injected can be both primitive values (such as integer or 

double) as well as complex objects with dependencies.  

Law and Kelton [10] point out that working with a simulation model necessitates 

performing many experiments,. An example scenario of a simulation experiment could 

include achieving a steady state
6
 by a model and subsequently introduction of a shock to 

observe how a simulated system reaches a new steady state level. 

The Spring Framework allows the implementation of object-oriented configurations for 

simulation model parameterization. However, the Spring Framework does not provide any 

tools to manage parameter sweep. This problem is solved in the next Section – an extension 

to the framework is proposed that enables configuration and management of the parameter 

sweep process. 

5
The web page of the open source project Spring Framework is available at 

http://www.springsource.org/. 
6
 A multi-agent simulation model of a dynamic system reaches a steady state after  the 

model has run for a defined time – initial simulations (warm up) are usually discarded. 

286 P. Szufel, B. Kamiński, P. Wojewnik



3.3. Implementation of tree parameterization description language 

The goal of this Section is to present an extension for the Spring framework that will allow 

configuration and management of the parameter space of a multi-agent simulation model. 

The software tools involved will be subsequently referred to as Parameter Sweep Library 

(PSL). 

According to the assumptions presented in Section 3.2, a parameterization of 

a simulation model will be presented as a set of dependent objects. Using the open source 

Spring Framework means that configuration will be presented in the form of an XML file 

and can be edited by graphical tools provided by the Spring project.  

The proposed PSL library extends Spring Framework’s functionality by adding the 

facility to manage parameter space in a simulation model. The PSL library is targeted for 

the Java platform and consists of the following components: 

 classes to define manageable attributes in a simulation model;  

 attributes that can be potentially parameterized, marked by an annotation; 

 classes representing parameter spaces of the simulation model; 

 a value converter for the Spring Framework; 

 an application programming interface (API) for developers for creating simulation 

scenarios and managing parameter spaces. 

The Java language does not provide any tools for managing object pointers (as it is e.g. 

in C++). To provide the means to externally control a model’s configuration, a hierarchy of 

enveloping classes has been created for managing parameter values during a simulation 

process. Appendix 1 presents a class containing a sample simulation configuration for the 

Parameter Sweep Library. The annotations identify the fields that can be parameterized and 

a simulation can be run several times for their different values.  

The information on generic classes (within the diamond <> operator) is in Java 

language removed during the code compilation process. As this information is needed 

during runtime an additional annotation @ManagableValue  has been created to store 

information on a data class for data stored within an attribute, see Appendix 1. 

As mentioned earlier the crucial feature of the PSL library is the independence of model 

parameterization from parameter space search algorithms. It is assumed that any parameter 

search scenario (e.g. grid search or ceteris paribus) can be applied to the same 

parameterization. Each parameter allows one to define information on a parameter search 

algorithm. 

An object of the SimC class presented earlier in Figure 2 and described in Section 2.3 is 

created by the Spring Framework. Figure 3 presents a graphical configuration of a Java 

bean of class SimC. For each model parameter a set of feasible values (values attribute) 

has been assigned as well as the dimension used in parameter sweeping (dimension 

attribute). The PSL library supports the definition of two parameter space search 

algorithms: grid search and ceteris paribus. Grid search means that all possible 

combinations for all values are simulated, while ceteris paribus search is understood as 

analyzing deviation of each single attribute from standard values while leaving default 

values of all other attributes.  
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Source: screenshot from Eclipse IDE 

Figure 3. Graphical configuration of a parameter space of a multi-agent simulation 

model with Spring IDE Eclipse plugin 

Support for multi-value configuration of simulation parameters has been achieved 

through an implementation within the PSL library of a conversion mechanism via the 

Spring Framework API
7
 . During the conversion process the mechanism gathers 

information on simulation model parameterization configuration and search dimensions, 

which later can be used to change the configuration state through the PSL API. 

The use of a PSL library within a simulation model requires fulfilling of two conditions. 

Firstly, some parameters should be marked through annotation as configurable. Secondly, 

simulation managed by the PSL library requires calling the PSL API to create an object 

representing a simulation parameterization state. 

An example of the source code controlling the simulation process can be found in 

Appendix 2. Firstly, a Spring application context is processed (here it contains simulation 

configuration). Secondly, a component managing simulation process is created. Thirdly, the 

component provides objects (here of class SimC) that represent simulation configuration. 

The PSL library calculates the number of possible scenarios (equal to number of leaves) in 

a parameterization tree. Each parameter set (leaf) can be obtained by calling its number. 

The PSL library handles the parameter sweeping process by providing configurations on 

request. The number of available parameter sets is calculated depending on search scenario 

and parameter dimensions. 

The concept of parameterization space management presented above is illustrated in the 

next Section by a typical example in multi-agent simulations of economic systems. 

7
Documentation for the Spring Framework converter mechanism can be reached at 

http://static.springsource.org/spring/docs/3.0.x/javadoc-

api/org/springframework/core/convert/converter/GenericConverter.html 
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4. Example – multi-agent artificial market simulation

The goal of this Section is to present an example usage of tree parameter representation in 

multi-agent artificial market simulation. 

Let us consider a multi-agent model with two agent classes: Customer and Firm. 

Firms supply products at some price while customers observe the prices and present their 

demand. 

Assume that agents – Customers: 

 analyze prices offered by Firms; 

 declare their demand to particular Firms. 

Similarly, let us assume that agents – Firms are characterized by the following 

attributes: 

 price; 

 demand declared for their product (as an aggregated value of all customers interested 

in a firm’s products); 

 marginal_cost. 

Using the information above a Firm can calculate its profit. For the given artificial 

market, rules (logic) for agents can be defined. The Firms can have one of the following 

decision rules: 

1. Firm-ANN – decides on price adjustments based on comparing generated profit

measured in historical prices and potential profit measured in the last transactional

price. The most profitable price becomes a new price of Firm-ANN, but the price is

additionally disturbed (to reflect imperfect market information) with a normally

distributed random value with  standard deviation of Range;

2. Firm-DIF – adjusts prices in similar way to Firm-ANN, but a new price results from

adjustment by the value of Range – the price can be randomly increased or decreased

(with probability 0.5) by this factor.

In the similar fashion Customers can use one of the following possible decision 

making rules: 

1. Customer-IMP – searches an entire market for the lowest offer and chooses it but

her information on market prices is imperfect – the price is a normally distributed

random variable with Randomness  as standard deviation. In the result,

Customer-IMP’s decision is suboptimal and optimality distance depends on value of

the Randomness parameter;

2. Customer-VLT – some group of cases defined by the  Randomness parameter

Customer-VLT chooses a random Firm, and in other cases chooses the cheapest

offer.

It is worth noting that the Range and Randomness parameters have the same name in 

different agent classes but have completely different meaning (and different sets of possible 

values). Such situations are difficult to handle in standard multi-agent frameworks that only 

provide a grid approach to parameter sweep. 

Figure 4 contains a tree representation of parameter space of the given model taking into 

account different possible logics for different agents classes.  
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Figure 4. Tree representation of an example multi-agent artificial market model 

Table 3. Parameter values for Cartesian product parameter sweep in the presented 

artificial market example. The selected rows are values used in tree representation 

Customer Random 

ness

Firm 

Firmy

Range Customer 

Klienta

Random 

ness

Firm 

Firmy

Range 

IMP 0.1 ANN 0.5 IMP 0.1 DIF 0.5 

IMP 0.9 ANN 0.5 IMP 0.9 DIF 0.5 

IMP 1 ANN 0.5 IMP 1 DIF 0.5 

IMP 10 ANN 0.5 IMP 10 DIF 0.5 

IMP 0.1 ANN 1 IMP 0.1 DIF 1 

IMP 0.9 ANN 1 IMP 0.9 DIF 1 

IMP 1 ANN 1 IMP 1 DIF 1 

IMP 10 ANN 1 IMP 10 DIF 1 

IMP 0.1 ANN 10 IMP 0.1 DIF 10 

IMP 0.9 ANN 10 IMP 0.9 DIF 10 

IMP 1 ANN 10 IMP 1 DIF 10 

IMP 10 ANN 10 IMP 10 DIF 10 

VLT 0.1 ANN 0.5 VLT 0.1 DIF 0.5 

VLT 0.9 ANN 0.5 VLT 0.9 DIF 0.5 

VLT 1 ANN 0.5 VLT 1 DIF 0.5 

VLT 10 ANN 0.5 VLT 10 DIF 0.5 

VLT 0.1 ANN 1 VLT 0.1 DIF 1 

VLT 0.9 ANN 1 VLT 0.9 DIF 1 

VLT 1 ANN 1 VLT 1 DIF 1 

VLT 10 ANN 1 VLT 10 DIF 1 

VLT 0.1 ANN 10 VLT 0.1 DIF 10 

VLT 0.9 ANN 10 VLT 0.9 DIF 10 

VLT 1 ANN 10 VLT 1 DIF 10 

VLT 10 ANN 10 VLT 10 DIF 10 

With two possible Customer‘s rule sets (IMP and VLT), two possible Firm‘s rule 

sets (ANN and DIF), four possible values of the Randomness parameter (0.1, 0.9, 1 and 

Model parameters 

Rules 
Customer 

IMP 

Randomness 

{1,10} 

VLT 

Randomness 

{0.1,0.9} 

Rules 
Firm 

ANN 

Range{1,10} 

DIF 

Range {0.5, 1} 
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10) and three levels of the Range parameter (0.5, 1 and 10) we could expect 2x2x4x3=48

market types for Cartesian product parameter space, see Table 3. 

However, the Cartesian product parameter sweep leads to redundant and ambiguous 

parameters in comparison to parameters presented in the parameter tree in Figure 4. For 

example, for Customer-IMP analyzed values include 0.1 and 0.9 for the Randomness 

parameter, while the parameter for this case only makes sense for values between 1 and 10. 

More specifically, in the Cartesian product there are 48 possible parameter sets while in 

the parameter tree there are only 16 ( it is the number of leaves in the tree presented in 

Figure 5). In the presented example the tree parameterization  can decrease the number of 

calculations by three times in comparison to a Cartesian product search. Additionally, it 

allows for proper processing in cases where parameters with the same names but from 

different leaves and of different sets of allowed values exist. 

Example source code for parameter sweep management for the above example has been 

presented in Appendix 3. 

Figure 5 presents a tree parameterization structure of an artificial multi-agent market 

model, where each path from the leaf to the root node represents one complete model 

parameterization. There are 16 leaves in the tree i.e. 16 possible market configurations. 

While the tree presented on Figure 4 presents groups of values in the model, the tree in 

Figure 5  allows one to calculate exactly the number of possible parameterizations. 

Figure 5. Part of a tree representing full parameter space of the example artificial 

market simulation model. Symmetrical parts of the tree which are not visualized have 

been marked with „[…]”   

Customer rules 

IMP 

Randomness 

0 

Company rules 

ANN 

Range 

1 10 

DIF 

Range 

0,5 1 

1 [...] 

VLT [...] 
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Source: generated with Eclipse IDE 

Figure 6. Class diagram for the example parameterization   

The presented parameterization can be described as a set of objects, see Figure 6. This 

means that it can be processed along with the approach presented in Section 3 – i.e. it can 

be represented in the Spring Framework XML and handled by the proposed Parameter 

Sweep Library. 

The approach presented for representing and managing tree parameter structures enables 

the number of simulated scenarios for a parameter sweep to be limited – in the example 

shown from 48 scenarios that would require evaluation when using currently available tools 

to 16 obtainable when using the proposed parameter sweep library. 

5. Discussion

Existing popular agent-based simulation platforms provide tools for managing parameter 

sweep only for grid-structured parameter spaces. In agent-based simulation object-oriented 

simulation configuration leads to a tree parameter representation. The tree parameter 

structure requires either performing redundant simulations, coding the parameter sweep or 

generating batch files. The proposed approach fills this gap by providing description of a 

tree parameter space representation and tools allowing for processing the tree parameter 

space. 

The proposed approach and tools have significant advantages but also present additional 

requirements in terms of the simulation development process. In this Section both the 

advantages and disadvantages of the proposed approach will be discussed.  

The advantages include: (1) universality, (2) standardization, (3) support for  changing 

dimensions and (4) separation of a simulation’s configuration from its implementation.  

Universality is understood as ability of the approach to be used in any simulation model 

written in Java
8
. The library is particularly useful in multi-agent simulations when the 

8
The Spring Framework is also available for C#, so the proposed library can be also 

implemented for the .NET framework. 
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simulation framework is used along library-oriented simulation framework [12]
9
. The 

proposed tree representation of parameter space can be applied to illustrate complex 

parameter sweep scenarios. 

The second advantage is possible standardization of the simulation process.  Integration 

with the Spring Framework allows for a standard XML-based description of simulation 

scenarios.  

The third advantage of the proposed library is support for changing the dimensions of 

parameter sweep space. This is particularly important during the early stages of a 

simulation process where the model needs to be verified and validated, see Law and Kelton 

(2000). During the verification and validation phases different parameter ranges and 

parameter sets are altered several times. Moreover, XML parameter sweep configuration 

files can be generated by other tools which adds another level of configuration. 

The fourth advantage is a complete separation of a simulation’s configuration from its 

implementation. This enables the delivery of simulation models to end users in binary form 

(without source code) while still giving them complete control over model configuration. 

Moreover, simulation scenarios can be processed and stored independently of a model’s 

binaries. 

The framework proposed in the paper also has disadvantages, namely increased memory 

and resource usage, requirements for additional definitions in object-oriented simulation 

model configuration, and programming integration-code to attach the PSL library to a 

simulation model. 

The increased memory usage is caused by the fact that the Spring Framework is a large 

set of libraries that adds a significant memory and start-up time overhead. This means that 

more RAM memory needs to be available to a Java Virtual Machine.  However this 

problem can be overcome as RAM memory is relatively cheap and a single Spring 

container can be responsible for managing several threads, with each thread running several 

simulations in sequence. This means that when running many simulation repetitions in 

parallel threads the Spring overhead can be neglected.  

A need for additional definitions in an object-oriented simulation model configuration 

arises from the fact that the proposed approach requires annotations in fields of Java beans 

that are used to represent the parameter space of a simulation model. The annotations tell 

the environment that a field is part of the parameter space. This is an additional step in 

defining beans representing an object-oriented configuration of a simulation model. The 

additional work makes the framework’s implementation in existing simulation models more 

complicated. However, annotation of the definition process is still relatively little work in 

comparison to creating and updating a parameter sweep mechanism tailored to a particular 

tree-structured simulation model. Moreover, we are working to overcome this problem in 

the future by building a plug-in to the Spring Framework that allows the use of plain Java 

beans (i.e. POJO) for the simulation model’s configuration and simulation scenarios could 

be defined entirely in a Spring XML file.  

9
Macal and North [12] review agent-based simulation tools and define three types of 

frameworks: library-oriented, IDE-oriented and hybrid. Library oriented means that a 

simulation process is managed by an library linked to a simulation code. IDE -oriented 

means that an IDE (Integrated Desktop Environment)  i.e. graphical tools are used to 

construct a simulation model. A hybrid approach is a mix of both previous [12].  
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The PSL library needs to be linked with a simulation’s code. Programming integration-

code to attach the PSL library to a simulation model adds an additional programming 

overhead. However, the code for a parameter sweep is standardized and usually does not 

need be updated when a simulation model changes. 

The advantages described overwhelm the disadvantages, which means that the PSL 

framework can streamline an agent-based simulation process in with popular tools for the 

Java programming language.  It is also worth mentioning that the usability of the proposed 

approach has been verified in multi-agent simulation - in parameter sweep for a multi-agent 

model of educational markets [17]. 

6. Concluding remarks

The paper tackles an issue of managing the parameterization processes in multi-agent 

simulation. The review of existing software shows that the currently available tools are 

incomplete because they do not provide any support for tree parameterization structures. 

Moreover, these approaches exhibit a significant trade-off between configuration flexibility 

and availability of a graphical user interface. 

In this paper a solution to the above problems has been presented. The Spring 

Framework enables the construction of an object-oriented simulation configuration. It has 

graphical tools for configuration editing, while the proposed Parameter Sweep Library 

(PSL) enables simulation process handling. The software has been implemented in Java – 

the most popular language in multi-agent simulation support software.  

The proposed approach allows for construction of hierarchical parameter spaces through 

XML file and provides tools to manage such parameterization in simulation runtime. It also 

supports visualization of object structure in standard tools. A strict separation from a 

simulation source code allows for various parameter sweep strategies. Another advantage 

of the PSL framework is that it allows for standardization in simulation parameterization 

with techniques commonly used in business software – XML and the Spring Framework.  
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Appendix 1 

Source code defining a Java Bean type class that allows to describe parameter space of 

example represented in Section 2.3. 

public class SimC { 

@ManagableValue(clazz=Double.class) 

public Value<Double> param1; 

@ManagableValue(clazz=Logic.class) 

public Value<Logic> logic; 

public Value<Logic> getLogic() { 

return logic; 

} 

public void setLogic(Value<Logic> logic) { 

this.logic = logic; 

} 

public Value<Double> getParam1() { 

return param1; 

} 

public void setParam1(Value<Double> param1) { 

this.param1 = param1; 

} 

} 
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Appendix 2 

An example source code of the PSL library utilization to manage a tree parameter space of 

a multi-agent simulation model.  

//initialization and application context creation 

FileSystemXmlApplicationContext springCtx = new    

  FileSystemXmlApplicationContext("sim.xml"); 

//creation of an object allowing to manage  

//the parameter space 

SimConfigService scs =    

  springCtx.getBean("simConfigService",SimConfigService.class);    

//parameter space managemnt;  

//in case of multi-threaded parrarel simulation each thread 

//is connected to different parameter space 

DynamicSimConfiguration dsc =  

  scs.getNewDynamicSimConfiguration(); 

//acquiring an object representing simulation state 

SimC simC = dsc.getBean("simC", SimC.class); 

//parameter sweep space size 

int paramSweepSize =  

  dsc.getSimulationVariantsSize(dsc.getMetaDimension("PARAM")); 

for (int paramIx=0; paramIx < paramSweepSize; paramIx++) { 

  //setting of a particular parameter combination  

  //can be acquired by givem its number 

  dsc.setSimIx(dsc.getMetaDimension("PARAM"), paramIx); 

  //[model is parametrized and simulation starts] 

} 
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Appendix 3 

An example source code that is processed through the Spring Framework and the PSL 

library. The source code describes parameterization of the example model that was 

presented in Figures 4 and 5.  

298 P. Szufel, B. Kamiński, P. Wojewnik


