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Abstract. A new, primal-dual type approach for derivation of Pareto front ap-
proximations with evolutionary computations is proposed.

At present, evolutionary multiobjective optimization algorithms derive a discrete
approximation of the Pareto front (the set of objective maps of efficient solutions)
by selecting feasible solutions such that their objective maps are close to the Pareto
front. As, except of test problems, Pareto fronts are not known, the accuracy of such
approximations is known neither.

Here we propose to exploit also elements outside feasible sets with the aim to
derive pairs of Pareto front approximations such that for each approximation pair the
corresponding Pareto front lies, in a certain sense, in-between. Accuracies of Pareto
front approximations by such pairs can be measured and controlled with respect to
distance between such approximations.

A rudimentary algorithm to derive pairs of Pareto front approximations is pre-
sented and the viability of the idea is verified on a limited number of test problems.

Keywords: Evolutionary Multiobjective Optimization, lower and upper Pareto
front approximation.

1 Introduction

Evolutionary multiobjective optimization (EMO) algorithms (Deb 2001, Coello Coello
et al. 2002, Talbi 2009) derive finite approximations of Pareto fronts. Those approx-
imations can be regarded as lower approximations (we assume all objectives are max-
imised), because all their elements are feasible. As, except of test problems, Pareto
fronts are in general not known, the exact accuracy of such approximations is known
neither and in consequence the accuracy cannot be controlled.

∗ Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland.
∗ Treeffect Co, Gdów 1028, 32-420 Gdów, Poland.

F O U N D A T I O N S   O F   C O M P U T I N G   A N D   D E C I S I O N   S C I E N C E S
Vol. 38 (2013) 

DOI: 10.2478/fcds-2013-0013

        No. 4 

ISSN 0867-6356
e-ISSN 2300-3405 



To heal this, we propose to work with elements outside the feasible solution set
(infeasible solutions), with the objective to provide upper approximations of Pareto
fronts. A pair of a lower and an upper approximation forms an approximation of
the Pareto front, which accuracy can be controlled by distance between the lower
and the upper approximation. Thus, the approach proposed realizes the principle of
primal-dual optimization, an old concept of classical (single objective) optimization
used to control accuracy with which the incumbent approximates (in the sense of the
objective function value) an optimal solution in case optimization computations are
stopped before reaching optimality. No such concept is present as yet in the literature
on EMO. Exploiting explicitly infeasible solutions to provide better approximations
of Pareto fronts offers a new turn in research in the field.

The outline of the paper is as follows. In Section 2 we provide necessary def-
initions, in particular we define lower and upper shells which yield specific lower
and upper approximations of Pareto fronts. Next, in Section 3, we propose an ap-
proximation accuracy measure and give a relaxation of the definition of upper shell,
which gives rise to a construct more suitable for computations than upper shell itself.

In Section 4 we present a rudimentary evolutionary algorithm for approximating
Pareto fronts with given accuracy. An illustrative example is solved in Section 5.
Section 6 concludes.

2 Definitions and notation

Mulicriteria Optimization (MO) problem is formulated as:

′′max′′f(x)
x ∈ X0 ⊆ Rn,

(1)

where f : Rn → Rk; f = (f1, . . . , fk), fi : Rn → R, i = 1, . . . , k, k ≥ 2, are
objective (criteria) functions; ′′max′′ denotes the operator of deriving all efficient
elements (see the definition below). We assume that X0 is infinite. We also assume
that X0 ⊂ XDEC , where XDEC (the decision space) is bounded and such that f is
meaningful on it.

The dominance relation ≺ is defined on XDEC as

x′ ≺ x ⇔ f(x′)� f(x),

where� denotes fi(x′) ≤ fi(x), i = 1, ..., k, and fi(x′) < fi(x) for at least one i.
If x ≺ x′ then x is dominated by x′ and x′ is dominating x.
An element x of X0 is called efficient if

¬∃x′∈X0
x ≺ x′.

We denote the set of efficient elements by N and set f(N) (the Pareto front) by P ,
P ⊆ f(X0).

Lower shell is a finite nonempty set SL ⊆ X0, elements of which satisfy

∀x∈SL
¬∃x′∈SL

x ≺ x′, (2)
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(thus no element of SL is dominated by another element of SL).
We define nadir point ynad as

ynadi = minx∈Nfi(x), i = 1, ..., k.

Upper shell is a finite nonempty set SU ⊆ Rn \X0 , elements of which satisfy

∀x∈SU
¬∃x′∈SU

x′ ≺ x, (3)

∀x∈SU
¬∃x′∈N x ≺ x′, (4)

∀x∈SU
ynad � f(x). (5)

3 Approximations of P

Our aim is to approximate P with given accuracy.
To derive SL which is ”close” toN we can use any EMO algorithm (cf. Michalewicz

1996, Deb 2001, Coello Coello et al. 2002, Hanne 2007).
Since the definition of upper shell involves N , this construct is not a suitable

approximation of N . A more suitable construct, referring to SL instead to N , namely
upper approximation AU , is obtained by replacing:
condition (3) by

∀x∈AU
¬∃x′∈AU

x′ ≺ x, (6)

condition (4) by
∀x∈AU

¬∃x′∈SL
x ≺ x′ , (7)

condition (5) by
∀x∈AU

ynad(SL)� f(x), (8)

where ynad(SL) denotes an element ofRk such that

ynadi (SL) = minx∈SL
fi(x), i = 1, ..., k,

(ynad(SL) varies with SL).
By definition, upper approximation AU can contain elements which are domi-

nated by some elements of N , as shown in Figure 1, and certainly such elements are
undesirable for the purpose. Condition (8) is meant to limit the domain for such el-
ements. However, as SL gets ”closer” to N and ynad(SL) gets ”closer” to ynad, the
chance for such elements being included in AU gets lower.

With SL and AU derived, the accuracy of approximation of P can be measured as

accP = max
x∈SL

min
x′∈AU

||f(x)− f(x′)||,

where || · || is a norm. In numerical experiments and applications a form of normal-
ization of accP is advisable, cf. Section 5.

In the next section we propose an algorithm for approximating P .
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Figure 1: An example where element x dominated by some element of N belongs to
AU .

4 An algorithm for approximating P

The algorithm we propose approximates P within given accuracy.
Let αP denote the desired value of accP .
We limit the domain of searching in Rn \X0 to some set XDEC = {x ∈ Rn |XL

i ≤
xi ≤ XU

i , i = 1, ..., k} such that X0 ⊆ int(XDEC).
To ensure that elements ofXDEC generated randomly belong toX0 with nonzero

probability we assume also that set X0 is k-dimensional.

Algorithm EMO-APPROX
1. j := 0, Sj

L := ∅, Aj
U := ∅.

2. Select randomly η elements of X0 and derive Sj
L .

3. Select randomly element x of Sj
L and:

3.1. derive element x′ ∈ XDEC such that x′ 6≺ x,
3.2. if x′ ∈ X0 then update Sj

L and Aj
U with S′ = Sj

L ∪ {x′}, go to 3.4,
3.3. update Aj

U with A′ = Aj
U ∪ {x′},

3.4. if accN ≤ αN or j = jmax then STOP,
3.5. j := j + 1, go to 3.

In Step 2 η is a parameter and derivation of SL means that selected elements
which do not satisfy condition (2) are to be removed.

In substep 3.1 to derive element x′ of the required properties, components of x are
mutated till x ∈ XDEC and x′ 6≺ x holds. Mutations with probability 0.5 can increase
or decrease the value of a randomly selected component. The range of mutations
decreases with increasing j. If a mutation increases the i-th component of x then the
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value of this component after mutation is

xi + (XU
i − xi)× (1− rnd(0, 1)2(1−

j
jmax )),

and if this mutation decreases the component then the value of this component after
mutation is

xi − (xi −XL
i )× (1− rnd(0, 1)2(1−

j
jmax )).

Function rnd(0, 1) returns a random number from the range [0,1] with uniform prob-
ability. The presented method of mutation and the strategy of decreasing mutation
range have been taken from the literature (cf. eg. Michalewicz 1996).

In substep 3.2 the update of Sj
L means that elements of S′ = Sj

L ∪ {x′} which do
not satisfy condition (2) are to be removed from S′ and only then Sj

L := S′. Deriva-
tion ofAj

U means that elements ofAj
U which do not satisfy condition (7) with respect

to updated Sj
L are to be removed.

In substep 3.3 the update of Aj
U means that elements of A′ = Aj

U ∪ {x′} which
do not satisfy conditions (6), (7) and (8) are to be removed from A′ and only then
Aj

U := A′.
There is no guarantee that by each iteration of EMO-APPROX algorithm the ap-

proximation accuracy monotonously improves (i.e. on i+ 1-th iteration accP takes a
smaller value than on iteration i). The phenomenon is illustrated in Figure 2. Indeed,
suppose that SL = {a, b},AU = {c, d}. Clearly, acc1P = max{||a−c||, ||b−d||} (the su-
perscript indicates the iteration). Including e into SL causes b to be eliminated from
SL (for e dominates b - condition (2)). Now we have acc2P = max{||a − c||, ||e − d||}
and clearly acc2P ≥ acc1P , which means that the approximation accuracy has deteri-
orated. However, it can be expected that in successive iterations mutations of e or d
that local loss of accuracy will be recovered.
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Figure 2: Illustration to possible non-mononotonous behaviour of the algorithm.
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5 An illustrative example

We illustrate the behavior of EMO-APPROX algorithm with computations for the
test problem taken from Kita et al (1996) (see the references for the link to down-
load)). The problem is as follows

′′max′′(f1(x), f2(x)), where f1(x) = −x21 + x2, f2(x) =
1
2x1 + x2 + 1,

subject to
1
6x1 + x2 − 13

2 ≤ 0,

1
2x1 + x2 − 15

2 ≤ 0,

5
x1

+ x2 − 30 ≤ 0,

0 ≤ xi ≤ 7 for i = 1, 2.

We normalized accuracy accP as follows

accP = max
x∈SL

min
x′∈AU

 k∑
i=1

(
fi(x)− fi(x′)

sfi

)2
 1

2

,

where sfi = maxx∈SL
fi(x)−minx∈SL

fi(x), i = 1, ..., k.
We run the algorithm on the test problem with jmax = 9000, η = 100, taking three

shots of the algorithm behavior and the results it provided at j = 3000 and j = 6000
and finally at j = 9000. As we had no clue what values of parameter αP to use, we
set it to zero and we stopped algorithms after iteration count reached jmax. XDEC

was assumed to be [−0.2, 1.2]× [−0.2, 1.2]× . . .× [−0.2, 1.2].
Table 1 shows for each shot values of accP , where # f – the number of function f

evaluations, ||AU ||, ||SL|| and ||AU || + ||SL|| – cardinality of, respectively, AU , SL and
AU ∪ SL.

In all three shots no element of AU was dominated by an element of N .

Table 1: Test results.
Shot j accP # f ||SL|| ||AU || ||SL|| + ||AU ||

1 3000 0.905 4598 79 63 142
2 6000 0.116 9082 117 86 203
3 9000 0.076 13189 148 91 239

Figure 3 and Figure 4 present, respectively, elements of SL, AU and f(SL), f(AU )
derived for j = 9000.

6 Concluding remarks and directions for further research

As said in the Introduction, the approach proposed realizes the principle of primal-
dual optimization. However, in contrast to the classical (single objective) optimiza-

272 I. Kaliszewski, J. Miroforidis



Figure 3: Elements of SL and AU .

Figure 4: Elements of f(SL) and f(AU ).
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tion, here we do not offer any dual problem. Instead, we offer constructive duality, i.e.
a construct – upper shell – and its operational counterpart – upper approximation,
which can be used, in place of the unknown Pareto front, as a reference to measure
the accuracy with which lower shells approximate the Pareto front.

The problem of providing tight approximations of P , being of interest in itself,
has an immediate application in Multiple Criteria Decision Making, where accuracy
needs to be controlled only locally, as directed by decision maker’s preferences (cf.
Kaliszewski et al. 2010, Kaliszewski et al. 2012).

Throughout the paper we have assumed that an upper shell exists. It may exists,
as in our example, but it may not exist as well (cf. Kaliszewski, Miroforidis 2012).
An upper shell does not exist if for no x′ ∈ X0 there exists x ∈ Rn \ X0 such that
x′ ≺ x.

If an upper shell does not exist, it can be replaced by upper shell-like construct
built in the objective space Rk, cf. Kaliszewski, Miroforidis 2012.
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