
DYNAMIC PROVISIONING AND RESOURCE
MANAGEMENT FOR MULTI-TIER CLOUD BASED

APPLICATIONS

Veena GOSWAMI ∗, S. S. PATRA †, G. B. MUND ‡

Abstract. Dynamic capacity provisioning is a useful technique for handling the
workload variations seen in cloud environment. In this paper, we propose a dynamic
provisioning technique for multi-tier applications to allocate resources efficiently us-
ing queueing model. It dynamically increases the mean service rate of the virtual
machines to avoid congestion in the multi-tier environments. An optimization model
to minimize the total number of virtual machines for computing resources in each
tier has been presented. Using the supplementary variable and the recursive tech-
niques, we obtain the system-length distributions at pre-arrival and arbitrary epochs.
Some important performance indicators such as blocking probability, request waiting
time and number of tasks in the system and in the queue have also been investi-
gated. Finally, computational results showing the effect of model parameters on key
performance indicators are presented.

Keywords: cloud computing, virtual machines, multi-tier web application, queu-
ing, performance modelling.

1 Introduction

Large data centers host many third party web applications providing comprehensive
services. In such systems, there is a decisive need to provide quality-of-service (QoS)
performance guarantees for each class of differentiated services [3]. The QoS of the
hosted applications plays a crucial role in attracting and retaining customers, directly

∗School of Computer Application, KIIT University, Bhubaneswar - 751024, India;
email: veena goswami@yahoo.com

†School of Computer Application, KIIT University, Bhubaneswar - 751024, India; email: sudhan-
shupatra@gmail.com

‡School of Computer Engineering, KIIT University, Bhubaneswar - 751024, India;
email: mundgb@yahoo.com

F O U N D A T I O N S O F C O M P U T I N G A N D D E C I S I O N S C I E N C E S
Vol. 38 (2013) No. 3

DOI: 10.2478/fcds-2013-0008 ISSN 0867-6356
 e-ISSN 2300-3405

impacting on providers profits. Hence, the service providers guarantee a certain level
of QoS for each application. In return, the clients agree to pay the service provider
based on the specified level of QoS. Such issues of QoS requirements are often negoti-
ated based on Service Level Agreements (SLAs), in which the expected performance
level and the cost model involving both revenue and penalty will be clearly defined
[7]. The main issue of preserving the QoS is the high variability of the workload,
which makes it difficult to estimate the resource requirement in advance [8].

Enterprise IT infrastructure customers with virtualized applications require lesser
resource cost, and thus save resource by distributing workload requests to virtualized
multi-tier applications in cloud environment. This creates the need for establishing a
computing atmosphere for dynamically provisioning cloud resources from multi-tier
domains within and across enterprises. Furthermore, there are many open challenges
involved in on-demand resources dynamic provisioning for cloud data centers, such as
the CPU, memory, disk and network bandwidth to be partitioned among the resident
VMs, and optimal configuration for VMs.

In order to efficiently utilize resources while satisfying the SLA under fluctuating
workload and unpredictable failures, adaptive self-managing techniques are required
to dynamically assign resources among applications of different clients on the base
of short-term demand estimates. Since the multi-tier architecture style has become
an industry standard in modern data centers with each tier providing certain func-
tionality, this paper analyzes the performance of the virtual machines (VMs) and
dynamically increases the mean service rate of the VMs to avoid congestion in the
multi-tier environments. The main contribution of this paper is that it proposes an
optimization model to minimize the total number of virtual machines for computing
resources in each tier by dynamically varying the mean service rate of the VMs.

The rest of the paper is organized as follows. Section 2 briefly reviews the related
works. Section 3 presents the system description. Model description and its analy-
sis is carried out in Section 4. Computational algorithm to compute the stationary
system length distribution is presented in Section 5. Various performance measures
are evaluated in Section 6. Section 7 contains computational experiences with a vari-
ety of numerical results in the form of graphs to show the effectiveness of the model
parameters. Section 8 concludes our paper.

2 Related Work

Urgaonkar et al. [10] proposed a model for multi-tier internet applications to provide
the resources to each tier of the application, and combine predictive and reactive
methods. The closed system model of muti-tier business applications based on mean
value analysis (MVA) algorithm to predict performance of multi-tier applications has
been discussed in Chen et al. [4]. A single queue model for all tiers to prevent overload
and maintain absolute client response time has been reported in Kamra et al. [6].
Jung et al. [5] proposed a generating adoption for multi-tier applications in virtual-
ized consolidated server environments. It provides dynamic management method and
optimizes offline resources to generate suitable configurations by evaluating a model

176 V. Goswami, S. S. Patra, G. B. Mund

consisting of multi-tier M/M/n queues. A nonlinear integer optimization model for
determining the number of machines at each tier in a multi-tier server network has
been studied in Zhang et al. [13]. Wang et al. [11] presented a new self-adaptive
capacity management framework for multi-tier virtualized environments. It executes
periodically and reassigns resources by evaluating a model consisting of multi-tier
M/M/1 queues and solves an optimization problem.

A model for dynamic resource provisioning in multi-tier internet applications cap-
tures various characteristics of an arbitrary number of heterogeneous tiers has been
reported in Urgaonkar et al. [9]. Ardagna et al. [1] developed a heuristic solution
for maximization of profits using a cost model for multi-tier data controller center.
They did not distinguish servers in different tiers and allocated physical resources in-
stead of virtual machines. At the same time they adopted a closed queueing network
performance model for the automated system. The above approaches are commonly
based on the provisioning of identical servers as unit, while in our work we adopt full
virtual machines based on an open queueing network model, which supports sharing
of physical infrastructure as well as guarantees the performance isolation of different
virtualized application environments by deploying them on separate virtual machines.

3 System Design

This section presents the architecture of the hosting platform required in our work.

3.1 Architecture Overview

Figure 1 shows the request processing flow of a typical three tier web application
deployed in cloud, in which each circle represents the resource being consumed at
that tier. A request moves through the tiers, may visit a tier multiple times and get
processed at the visited tier. Finally, the processing completes and returns to request
senders from the front tier. Since different tiers are designed to provide different
functionalities, tiers could be clustered by a group of servers with similar resource
characteristics. For example, a middle-tier business logic server would be better to
have fast processing capability, while a backend-tier database server is usually required
to provide high I/O operation rate. Therefore, physical servers are clustered into
different groups, serving different tiers of applications, as represented by the solid
rectangles in Figure 2.

Figure 1. A typical 3-tier application in cloud

Dynamic Provisioning and Resource Management ... 177

Figure 2. Data center architecture

The architecture of a shared data center is shown in Figure 2, which consists of het-
erogeneous physical nodes, shared by multiple independent application environments
(AE), hosting web applications from different companies or organizations. Each AE
may execute several classes of transactions. Modern transactional web applications
are designed using multiple tiers, which are often distributed across different servers.

The Dispatcher dispatches the requests of different applications to the correspond-
ing environment in a shared data center. In each AE, a sentry node receives requests
from the dispatcher, and it will reject excessive requests when the local AE is detected
to be overloaded, in order to meet the desired QoS requirement and to preserve sys-
tem stability. Since the workloads of separate AEs are varying as time goes on, the
global resource manager may decide to change the capacity of different VMs to cap-
ture the varying workload. Each tier holds a virtual machine monitor acting as the
resource allocation actuator, which can assign different amounts of resource capacity
to multiple VMs within the same tier.

3.2 Cloud Computing Infrastructure

The self-managing techniques, such as Supervise, Analyze, Plan and Execute (SAPE)
control loops architecture is needed to dynamically provision the resources for virtu-
alized multi-tier application execution environments (VAEEs) of different customers
[2]. The goal is to meet the virtualized application requirements while adapting IT
architecture to workload variations.

178 V. Goswami, S. S. Patra, G. B. Mund

Figure 3. The dynamic resource provisioning of cloud data center

Figure 3 provides an adaptive self-controlling architecture, in which a common phys-
ical infrastructure is shared by a multiple AEs. After a certain time (i.e. control
interval) elapsed, the whole system will check its own status, judge the overall effi-
ciency, and then adopt itself to the workload variation. The components are organized
according to the Supervise Analyze Plan Execute pattern described in the architec-
tural approach to autonomic computing [12] as follows.
Pool of Resources contains physical resources and virtualized resources. A batch of
VMs hold several VAEEs sharing the capacity of physical resources and can insulate
multiple applications from the hardware.

Self-management community automates the VMs so as to maintain the response
time requirements of the different customers. The components of self-management
community are as follows:

• Supervisor: The supervisor gathers the information about the running states
of all AEs which includes workload intensity, performance levels, current config-
uration, and so on. After receiving the details the load forecaster analyzes the
current workload and forecasts the possible load intensity in the next control
interval.

• Analyze and Plan: The Analyzer analyzes the given load,waiting queue,
present configuration and produces estimates of future performance levels for
each AE. The Service Evaluator estimates the performance level of each AE,
resource usage cost, and then it evaluates the global utility value based on the
SLA. The Optimizer generates a candidate configuration, sends it to the Model

Dynamic Provisioning and Resource Management ... 179

Analyzer, and waits for the evaluated global utility result. Through the opti-
mizing loop, as shown in dashed lines in Figure 3, the Optimizer determines the
best configuration with the highest utility value.

• Virtualized Application Executor: After getting the best configuration
from the Optimizer, the Adaptation Actuator starts to change the allocation of
resources such as the service rate of the AEs.

3.3 Virtualized Multi-tier Application Queueing Model

A virtualized multi-tier application in cloud computing environment is deployed on
multiple virtual machines (VMs), and each tier provides certain functionality to
its preceding tier. Let us consider an online application that consists of n tiers,
T1, T2, . . . , Tn. We assume that there are c parallel identical VMs in each tier of AEs
but they are provisioned when needed. The load balancer distributes the load to dif-
ferent VMs. Through dynamic capacity provisioning proposed in this paper the cloud
system handles the workload variations seen in the cloud environment. Dispatcher
of each tier is used for collecting requests processed in the pre-tier and distributing
them to multiple parallel VMs queueing models of that tier to execute. Each tier is
assumed to employ a perfect load-balancing element for a virtualized application that
is responsible for processing requests at that tier, and each request is forwarded to
its succeeding tier for further processing. Once the result is processed by the final
tier Tn, the results are sent back by each tier in the reverse order until it reaches
T1, which then sends the results to the customer. In complex processing scenarios,
each request at tier Ti can trigger zero, one or multiple requests to tier Ti + 1. For
example, a static web page request is processed by the web tier entirely and will
not be forwarded to the following tiers. On the other hand, a key word search at
a web tier may trigger multiple requests to the next tier. In order to capture the
virtualized multi-tier application for dynamic resources provisioning to improve the
processing efficiency of the request we need to determine the processing speed of the
VMs depending on the waiting queue length. Each tier can be modeled as multiple
GI/M(n)/1/N queuing systems with renewal arrivals in which the interarrival and
service times are respectively, arbitrarily and exponentially distributed. The general
uncorrelated arrival process appears to be more appropriate than the exponential
distribution, as the memoryless property of the arrival process does not always meet
the need of the application and also it can include the special cases of deterministic,
hyperexponential, Erlang, etc.

3.4 Active Monitoring Load Balancer

Active VM Load Balancer maintains an information about each VM along with the
number of requests currently allocated to VMs in a intended tier. When a request to
allocate a new VM arrives, it identifies a least loaded VM. Active VM Load Balancer
returns the VM id to the Data Center Controller. The data Center Controller sends

180 V. Goswami, S. S. Patra, G. B. Mund

the request to the VM identified by that id. Data Center Controller notifies the Active
VM Load Balancer of the new allocation.

4 Model Description and Analysis

We consider a finite buffer renewal input state dependent queue. We assume
that the inter-arrival times of successive arrivals are independent and identically dis-
tributed (i.i.d.) random variables with cumulative distribution function A(u), prob-
ability density function a(u), u ≥ 0, Laplace-Stieltjes transform (LST) A∗(θ) and
mean inter-arrival time 1/λ = −A∗(1)(0), where h(1)(0) denotes the first derivative of
h(θ) evaluated at θ = 0. Service times are assumed to be exponentially distributed
random variables with service rates µn, 1 ≤ n ≤ N , when there are n number of
client requests in the system. When the number of client requests in the system are
relatively few, we set a lower speed operation period in order to economize operation
cost. The traffic intensity is given by ρ = λ/µ, where µ =

∑N
n=1 µn/N is the mean

service rate.

• Ns(t) = Number of client requests present in the system including the one who
is in service,

• U(t) = Remaining inter-arrival time for the next request,

In the steady-state, let us define

πn(u)du = lim
t→∞

P
{
Ns(t) = n, u ≤ U(t) < u+ du

}
, u ≥ 0, 0 ≤ n ≤ N.

We introduce the following Laplace-Stieltjes transforms:

π∗
n(θ) =

∫ ∞

0

e−θuπn(u)du, 0 ≤ n ≤ N.

Let πn ≡ π∗
n(0), 0 ≤ n ≤ N , where πn is the probability that there are n client

requests in the system when the server is at an arbitrary epoch.
To obtain the system length distributions at arbitrary epochs, we develop the differ-
ential difference equations that relate the distribution of number of client requests
in the system at the end of service period. For this we use supplementary variable
technique and relate the state of the system at two consecutive time epochs t and
t + dt. Using probabilistic arguments and taking limit as t → ∞, the steady-state
differential difference equations can be written as

− d

du
π0(u) = µ1π1(u) (1)

− d

du
πn(u) = −µnπn(u) + µn+1πn+1(u) + a(u)πn−1(0), 1 ≤ n ≤ N − 1 (2)

− d

du
πN (u) = −µNπN (u) + a(u) (πN−1(0) + πN (0)) , (3)

Dynamic Provisioning and Resource Management ... 181

where πn(0) are the respective rates of requests. Multiplying (1) to (3) by e−θu and
integrating with respect to u from 0 to ∞, yields

−θπ∗
0(θ) = µ1π

∗
1(θ)− π0(0), (4)

(µn − θ)π∗
n(θ) = µn+1π

∗
n+1(θ) +A∗(θ)πn−1(0)− πn(0), 1 ≤ n ≤ N − 1 (5)

(µN − θ)π∗
N (θ) = A∗(θ) (πN−1(0) + πN (0))− πN (0). (6)

Adding equations (4) to (6) and simplifying yields

N∑
n=0

π∗
n(θ) =

1−A∗(θ)

θ

N∑
n=0

πn(0).

Taking limit as θ → 0 and using the normalization condition, we get

N∑
n=0

πn(0) = λ. (7)

The left hand side denotes the mean number of entrances into the system per unit
time and is equal to mean request rate λ.
Substituting θ = µN in (6), we get

πN−1(0) =
1−A∗(µN)

A∗(µN)
πN (0). (8)

From (6), we have

π∗
N (θ) =

(
A∗(θ)−A∗(µN)

A∗(µN)(µN − θ)

)
πN (0), θ ̸= µN .

Setting θ = µn in (5), we get

πn−1(0) =
πn(0)− µn+1π

∗
n+1(µn)

A∗(µn)
, n = N − 1, . . . , 1

From (5), we obtain

π∗
n(θ) =

µn+1π
∗
n+1(θ) +A∗(θ)πn−1(0)− πn(0)

(µn − θ)
, θ ̸= µN , n = N − 1, . . . , 1. (9)

For θ = µn, π∗
n(θ) are given by

π∗
N (θ) = −A∗(1)(θ) (πN−1(0) + πN (0)) , (10)

π∗
n(θ) = −

(
µn+1π

∗(1)
n+1(θ) +A∗(1)(θ)πn−1(0)

)
, 1 ≤ n ≤ N − 1. (11)

It can be seen from the above set of expressions that we can easily evaluate πn(0) (0 ≤
n ≤ N).

182 V. Goswami, S. S. Patra, G. B. Mund

4.1 Relation between steady-state distribution at arbitrary and
pre-arrival epochs

Let π−
n , 0 ≤ n ≤ N denote the pre-arrival epoch probability, that is, an arrival sees n

client requests in the system at an request epoch. Applying Bayes’ theorem, we have

π−
n = lim

t→∞

P [Ns(t) = n,U(t) = 0]

P [U(t) = 0]
.

Further, using (7) in the above expression, we obtain

π−
n =

πn(0)

λ
, 0 ≤ n ≤ N. (12)

Setting θ = 0 in the equations (5) - (6) and using (12), after simplification we obtain

πn =
λ

µn
π−
n−1, 1 ≤ n ≤ N. (13)

Using the normalization condition,

π0 = 1−
N∑
n=1

πn. (14)

It can be seen from the above set of expressions that once we know the pre-arrival
epoch probabilities, the arbitrary epoch probabilities can be easily computed.

Remark 1: Results for GI/M/c/N from GI/M(n)/1/N can be obtained by tak-
ing µn = nµ, 1 ≤ n ≤ c− 1 and µn = cµ, n ≥ c.
Remark 2: Setting µn = µ, ∀ n = 1, . . . , N , the model reduces to GI/M/1/N queue
and results match with the results available in literature.

5 Computation of state probabilities

In this section, we present a computational algorithm to compute pre-arrival epoch
and the arbitrary epoch probabilities at steady-state. The algorithm is based on the
analysis of Section 4, that is, we compute all probabilities πn(0), 0 ≤ n ≤ N in terms
of πN (0). We determine πN (0) using equation (7). After computing the probabilities
πn(0), we can evaluate pre-arrival epoch and the arbitrary epoch probabilities.
Step 1: For n = 0, 1, . . . , N , calculate πn(0) in terms of πN (0) as follows

πn(0) = ψnπN (0), 0 ≤ n ≤ N, (15)

π∗
n(θ) = ζn,θπN (0), 1 ≤ n ≤ N, (16)

where ψn and ζn,θ are computed as follows.

Dynamic Provisioning and Resource Management ... 183

• Calculate ψn as follows

ψN = 1, ψN−1 =
1−A∗(µN)

A∗(µN)
,

ψn−1 =
ψn − µn+1ζn+1,µn

A∗(µn)
, n = N − 1, . . . , 1. (17)

• Calculate ζn,θ as follows

if n = N then
if θ = µN then
ζN,θ = −A∗(1)(θ) (ψN−1 + ψN)

else
ζN,θ =

A∗(θ)(ψN−1+ψN)−ψN

µN−θ
end if

end if
if 1 ≤ n ≤ N − 1 then

if θ = µn then

ζn,θ = −
(
µn+1ζ

∗(1)
n+1,θ +A∗(1)(θ)ψn−1

)
else
ζn,θ =

µn+1ζn+1,θ+A
∗(θ)ψn−1−ψn

µn−θ
end if

end if

• Calculate ζ
(l)
n,θ as follows

if n = N then
if θ = µN then

ζ
(l)
N,θ = −A∗(l+1)(θ)(ψN−1+ψN)

l+1
else

ζ
(l)
N,θ =

A∗(l)(θ)(ψN−1+ψN)+lζ
(l−1)

N,θ

µN−θ
end if

end if
if 1 ≤ n ≤ N − 1 then

if θ = µn then

ζ
(l)
n,θ = −µn+1ζ

(l+1)

n+1,θ
+A∗(l+1)(θ)ψn−1

l+1
else

ζ
(l)
n,θ =

µn+1ζ
(l)

n+1,θ
+A∗(l)(θ)ψn−1+lζ

(l−1)

n,θ

µn−θ
end if

end if

Step 2: Determine πN (0) from equation (7) as

πN (0) = λ
[∑N

n=0 ψn

]−1

.

Step 3: Compute pre-arrival epoch probabilities π−
n from equation (12) as

π−
n =

1

λ
πn(0), 0 ≤ n ≤ N.

184 V. Goswami, S. S. Patra, G. B. Mund

Step 4: The arbitrary epoch probabilities πn are determined by equation (13).
The computational complexity of the given algorithm is O(N3), where N is the max-
imum capacity of the system.

6 Performance Measures

Performance measures are the means to examine the efficiency of the queueing system
under consideration. As the steady-state probabilities at various epochs are known,
performance measures of the queueing system can be computed. The average number
of requests in the system (Ls) and the average number of requests in the queue (Lq)
respectively, are given by

Ls =
N∑
n=1

nπn; Lq =
N∑
n=2

(n− 1)πn.

The probability of loss or blocking is Ploss=π
−
N . Using Little’s rule, the average

waiting time of a task in the system (Ws) and the average waiting time of a task in
the queue (Wq) respectively, are given by

Ws = Ls/λ
′
, Wq = Lq/λ

′
,

where λ
′
= λ(1− Ploss) is the effective request rate.

Waiting time
We obtain the Laplace-Stieltjes transform (LST) of waiting time distribution of a task
who is accepted in the system. If W (x) be the actual waiting time distribution (in
the system) of a task which is accepted in the system and let W ∗(θ) be its LST then
considering various possible cases, we have

W ∗(θ) =
1

1− Ploss

N−1∑
n=0

π−
n

(
µn+1

µn+1 + θ

)n+1

From this expression one can easily obtain mean waiting time in the system which is
given by

Ws = −W ∗(1)(0) =
1

1− Ploss

N−1∑
n=0

π−
n

(n+ 1

µn+1

)
.

Remark 3: The average number of requests in the system (Ls) is given by

Ls =
N∑
n=1

nπn =
N∑
n=1

n
λ

µn
π−
n−1 = λ

N−1∑
n=0

(n+ 1)

µn+1
π−
n =

λ
′

1− Ploss

N−1∑
n=0

(n+ 1)

µn+1
π−
n = λ

′
Ws

Thus, the Little’s formula Ls = λ
′
Ws is established.

Dynamic Provisioning and Resource Management ... 185

7 Numerical Illustrations

In this section some numerical results are presented. A computational program is
developed by using MATLAB. Figure 4 depicts the mean number of tasks in the
queue (Lq) on request rate λ for the exponential distribution. As can be seen mean
number of tasks in the queue increases smoothly when the buffer size increases. When
the service rate (µi) is fixed the number of tasks in the buffer (Lq) increases more
rapidly as compared to the variable service rate. So one can tune up the service rate
to minimize the waiting of client requests in the finite buffer. We see that it would be
better off by adopting cloud service if its client requests is smaller, thus cloud service
is generally attractive to small to medium businesses.

The impact of buffer size N of the virtual machines on blocking probability (Ploss)
is shown in Figure 5 for various inter-arrival time distributions with same mean. We
observe that for all distributions considered here, the blocking probability decreases
rapidly when the buffer size increases. As can be seen, the blocking probability in the
case of Hyperexponential (HE2) distribution is higher as compared to deterministic,
Erlang-2 (E2) and exponential distributions. Again one may observe that the deter-
ministic distribution yields the lowest blocking probability. From the figure, we can
estimate the minimum buffer size required to keep the blocking probability below a
given threshold value.

4.5 5 5.5 6 6.5 7 7.5 8
2

4

6

8

10

12

14

16

18

λ

L q

µ
i
=i/2.0

µ
i
=5.25

Figure 4. Impact of λ on Lq.

186 V. Goswami, S. S. Patra, G. B. Mund

6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N

P
lo

ss

Deterministic
Erlang2
Exponential
HyperExponential

Figure 5. Effect of N on blocking probability.

Figure 6 depicts the impact of client request λ on the average waiting time of the
client request Wq in the buffer for various inter-arrival time distributions with same
mean. As one would intuitively expect, it is observed that waiting time in the queue
increases as client request increases. Because the more client request will remain in
the queue until all the required servers become idle, consequently the more the client
request is resulted in the longer the response time. It can be seen that the average
waiting time of the client request in the case of Hyperexponential (HE2) distribution
is higher as compared to deterministic, Erlang-2 (E2) and exponential distributions.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

λ

w
q

Exponential
Erlang2
HyperExponential
Deterministic

Figure 6. Impact of λ on Wq.

Dynamic Provisioning and Resource Management ... 187

4.5 5 5.5 6 6.5 7 7.5 8
2

4

6

8

10

12

14

16

λ

L q

µ
i
=i/2

µ
i
=i+2

Figure 7. Impact of λ on Lq.

Figure 7 shows the impact of λ on Lq for various service rates when inter-arrival
time is exponentially distributed. It can be seen that as request rate λ increases the
average number of client requests in the buffer increases. When µi = i+2 the number
of client requests waiting in the buffer is very less as compared to the the number of
client requests waiting in the buffer when the service rate is µi = i/2.

0
2

4
6

8

1

2

3

4

5
0

0.02

0.04

0.06

0.08

λN

W
q

Figure 8. The Wq for different values of N and λ.

The variation in the queueing delay for different values of the request rate and the
buffer size N is shown in Figure 8, when the interarrival time is exponentially dis-
tributed. We varied the request rate λ from 0.1 to 1.4, while the buffer size N is

188 V. Goswami, S. S. Patra, G. B. Mund

varied from 4 to 20 and µ = 0.2. It is observed that for fixed request rate the average
waiting-time increases when the buffer size N increases. Further with fixed buffer size
N , the average waiting-time increases when the request rate increases. Therefore, we
can define an admissible region in terms of the request rate λ and buffer size N so
that an acceptable queueing delay can be guaranteed.

0
2

4
6

8

1

2

3

4

5
0

1

2

3

4

x 10
−3

λN

P
los

s

Figure 9. The blocking probability for different values of N and λ.

Figure 9 illustrates dependence of the blocking probability on the buffer sizeN varying
from 4 to 20 and the request rate λ varying from 0.1 to 1.4. The interarrival time is
assumed to be exponential with µ = 0.2. It is observed that for fixed request rate the
blocking probability increases when the buffer size N increases. Further with fixed
buffer size N the blocking probability increases when the request rate increases. To
accomplish this, we can carefully setup the request rate and the buffer size N in the
system in order to ensure the minimum blocking probability.

8 Conclusion

The dynamic provisioning of virtualized multi-tier applications for cloud environment
is a new challenge which has not been addressed by prior work on provisioning tech-
niques. In this paper, we proposed an optimal autonomic virtual machine provisioning
architecture for cloud data center to minimize the congestion in the network by vary-
ing the service rate of the virtual machines. An analytical model is developed to fit
cloud environment with heterogeneous servers produced by different manufacturers
to minimize the total number of VMs for the requirement of requests. The objective
is to improve the efficiency and flexibility in cloud environment for resource provi-
sioning. We further integrated load prediction method technique to fit our workload
characteristics. To achieve significant performance level, we adopted Service Level

Dynamic Provisioning and Resource Management ... 189

Agreement (SLA) based negotiation of prioritized applications to determine the costs
and penalties.

We have developed a recursive method, using the supplementary variable technique
and treating the remaining inter-arrival time as the supplementary variable, to find
the steady-state system length distributions at pre-arrival and arbitrary epochs. The
recursive method is powerful and easy to implement. Various performance indicators
such as blocking probability, request waiting time and number of tasks in the system
and in the queue have been obtained.

References

[1] Ardagna D., Trubian M., Zhang L., SLA based profit optimization in multi-
tier systems, Proceedings of the 4th IEEE Inyternational Symposium on Network
Computing and Applications, 2005, 263-266.

[2] Bi J.,Zhu Z., Tian R., Wang Q., Dynamic Provisioning Modeling for Virtualized
Multi-tier Applications in Cloud Data Center,Proceedings of the Third IEEE
International Conference on Cloud Computing, 2010, 370-377.

[3] Buyya R., Yeo C. S.,Venugopal S., An architectural approach to autonomic com-
puting, Future Generation Computer Systems, 25, 6, 2009, 599-616.

[4] Chen Y., Iyer S., Liu X., SLA decomposition: Translating service level objectives
to system level thresholds, Proceedings of the 4th International Conference on
Autonomic Computing, 2007, 3-15.

[5] Jung G., Joshi K.R., Hiltunen M.A., Generating adaptation policies for multi-tier
applications in consolidated server environments,Proceedings of the 5th Interna-
tional Conference on Autonomic Computing, 2008, 23-32.

[6] Kamra A.,Misra V., Nahum E., Yaksha: A self-tuning controller for managing
the performance of 3-tiered web sites, Proceedings of International Workshop on
Quality of Service, 2004, 47-58.

[7] Kundu A., Banerjee A.D., Saha P., Introducing New Services in Cloud Comput-
ing Environment, International Journal of Digital Content Technology and its
Applications, 4, 5, 2010, 143-152.

[8] Reddy K.V., Rao B., Reddy L.S.S.,Kiran P.S., Research Issues in Cloud Com-
puting, Global Journal of Computer Science and Technology, 11, 11, 2011, 59-64.

[9] Urgaonkar B., Pacifici G.,Shenoy P., An analyticial model for multi-tier Internet
services and its applications, Proceedings of the 2005 ACM SIGMETRICS Inter-
national Conference on Measurement and modeling of computer systems, 2005,
291-302.

190 V. Goswami, S. S. Patra, G. B. Mund

[10] Urgaonkar B., Shenoy P., Chandra A., Agile dynamic provisioning of multi-tier
Internet application, ACM Transactions on Autonomous and Adaptive Systems,
3, 1, 2008, 1-39.

[11] Wang X., Du Z., Chen Y., Li S., Virtualization based autonomic resource man-
agement for multi-tier Web applications in shared data center, The Journal of
Systems and Software 81, 9, 2006, 1591-1608.

[12] White S.R.,Hanson J.E., Whalley I., An architectural approach to autonomic
computing, Proceedings of the First IEEE International Conference on Auto-
nomic Computing, 2004, 2-9.

[13] Zhang A., Santos P., Beyer D., Optimal server resource allocation using an open
queueing network model of response time, HP Labs Technical Report, 2001, 1-17.

Received December, 2012

Dynamic Provisioning and Resource Management ... 191

