
Applying Message Logging to Support Fault-Tolerance of SOA
Systems

Arkadiusz Danilecki ∗, Mateusz Hołenko †, Anna Kobusińska ‡,
Michał Szychowiak §, Piotr Zierhoffer ¶

Abstract. This paper addresses a problem of increasing fault-tolerance of service-
oriented systems built of RESTful web services. To solve such a problem, rollback-
recovery protocol is proposed. The protocol employs known rollback-recovery tech-
niques, however, it modifies and specially adjusts them for specific characteristics of
the SOA systems. The paper includes a proof of safety property of the proposed
protocol.
Keywords: SOA, fault-tolerance, rollback-recovery protocol, correctness

1 Introduction

In the recent years, the rapid growth of development and deployment of service-
oriented systems (SOA) has been observed. The basic SOA assumption is to create
business applications based on loosely-coupled, autonomous services, which are imple-
mented by software modules that operate accordingly to the established criteria, and
represent the specific functionality [11]. Such an approach allows to create new, com-
plex applications, as well as to integrate the existing systems. In the consequence, in
the SOA, an unprecedented so far flexibility in the design of distributed applications
is achieved.

Although SOA-based applications have many advantages, they are also highly
error-prone. Failures of the SOA components, lead to limitations in the availability of
services, thus affecting the reliability of the whole system. Such a situation is highly
undesirable from the viewpoint of SOA clients, who expect that provided services

∗arkadiusz.danilecki@cs.put.poznan.pl, Poznań University of Technology
†mateusz.holenko@cs.put.poznan.pl, Poznań University of Technology
‡anna.kobusinska@cs.put.poznan.pl, Poznań University of Technology
§michal.szychowiak@cs.put.poznan.pl, Poznań University of Technology
¶piotr.zierhoffer@cs.put.poznan.pl, Poznań University of Technology

F O U N D A T I O N S O F C O M P U T I N G A N D D E C I S I O N S C I E N C E S
Vol. 38 (2013) No. 3

DOI: 10.2478/fcds-2013-0006 ISSN 0867-6356
 e-ISSN 2300-3405

are reliable and available, and assume an uninterrupted business processing. Ensur-
ing reliability of the SOA systems is particularly important, due to their practical
applications in various domains, among which are tele-medicine systems, real-time
traffic information and navigation systems, mobile Internet stock trading systems,
and many others. In such systems the loss of data or the suspension of the system
functionality is unacceptable, as it may lead to the financial loss of companies, result
in the loss of life or contribute to lower company’s reputation in the market. There-
fore, design of mechanisms increasing the SOA systems’ fault-tolerance, and enabling
the consistent continuation of the processing despite failures, is a very important and
current research objective, motivated by both a great market potential and by many
challenging research problems.

There are many mechanisms increasing the reliability of general distributed sys-
tems proposed in the literature, among which one of the most important, and fre-
quently used is the backward-recovery approach [4]. Unfortunately, the direct use of
known rollback-recovery mechanisms in the context of SOA systems faces a number
of problems arising from the SOA specificity. They include the autonomy of the ser-
vices, dynamic nature of the interaction; longevity of interaction; and the inherent
constant interaction with the outside world, among the others. For example, the
classical solutions using the mechanisms of checkpointing [4] require either to control
when checkpoints are taken, or the appropriate choice of the checkpoint used during
the process recovery. In the case of the SOA systems such solutions cannot be applied,
due of the autonomy of services, which is expressed among the others in the imple-
mentation of services’ own fault-tolerant policies. In the result a service sometimes
cannot be forced to take a checkpoint, or to rollback, as well as it may refuse to inform
other services on checkpoints it has taken. Another limitation, which arises from the
fact that every service invocation may result in irrevocable changes, is the necessity of
applying so-called output-commit protocols [4], in which checkpoints are taken every
time when the external interaction is performed. The assumed SOA model imposes
also certain restrictions on the rollback-recovery of services. The failure of one service
can not affect the availability of other services taking part in the processing. This
means that the rollback-recovery of one service neither should cause the cascading
rollback of other services, nor influence their state.

Consequently, the existing solutions have to be revised, and specially profiled for
the SOA environments to efficiently meet their requirements, and to take advantage of
their specifics. Therefore in this paper a rollback-recovery protocol for SOA systems
based on the REST paradigm is proposed. The proposed protocol ensures that in the
case of failure of one or more system components (i.e., web services or their clients), a
coherent state of distributed processing is automatically recovered. While the protocol
can be used in any SOA environment, it is particularly well-suited for processing,
which does not have the transactional character, and where clients applications do
not use the business process engines.

The paper is structured as follows. The related work is characterized in Sec-
tion 2. System model and basic definitions are presented in Section 3. Section 4
and 5 describe general idea of the proposed rollback-recovery protocol, and present

146 A. Danilecki, M. Hołenko, A. Kobusińska, ...

its implementation respectively. The proof of safety follows in Section 6. Finally,
Section 7 concludes the paper.

2 Related Work

To improve reliability of SOA-based systems, transaction processing, and a mecha-
nism of compensations is commonly used [3]. The compensation of operations, is
realized in the SOA as the invocation of compensation services. A limitation of this
approach is the necessity of providing all compensation services in advance, and the
proper integration of the compensation invocations into processing, to ensure that the
intended purpose of the rollback has been actually achieved. Compensation mecha-
nism can be also employed when transactions are rolled back for reasons not related
to the failures of the system components (e.g., in the case of failures at the business
logic level). Since the transactional approach [8] is burdened with high costs of main-
tenance transactions’ properties, its use is not viable in applications that only require
reliability.

Mechanisms improving reliability are to some extent implemented by many busi-
ness processes engines (e.g., BPEL engines [7]). A common approach used by such
engines is the forward recovery, mostly reduced to partially automatic retry of the
failed operations. The use of BPEL engines, and mechanisms they offer, cannot solve
all the problems related to the issues of ensuring system reliability. Existing solutions
increase the reliability of only a single component, which is a local instance of a busi-
ness process implemented by the engine, without taking into account the potential
dependencies between a nested services. As a result, such engines do not guarantee
the preservation of exactly-once semantics for non-idempotent requests, unless addi-
tional protocols are employed (such as WS-ReliableMessaging [9]). They also do not
provide a fully automated and transparent recovery.

3 System Model

Throughout this paper a distributed service-oriented system is considered. The
system consists of a number of autonomous, loosely-coupled RESTful web services
[5, 11, 10], exposed as resources, and identified by a uniform resource identifiers upon
which a fixed set of HTTP operations is applied. Thus, a client who wants to use a
service communicates with it via a standardized interface, e.g., GET, PUT, POST
and DELETE methods [10], and exchanges representations of resources. It is as-
sumed that both, clients and services are piece-wise deterministic, i.e., they generate
the same results (in particular, the same URIs for new resources) in the result of a
multiple repetition of the same requests, assuming the same initial state. Services can
concurrently process only clients’ requests that do not require access to the same or
interacting resources. Otherwise, the existence of a mechanism serializing access to
resources, which uniquely determines the order of operations, is assumed.

The communication model used in the paper is based on a request-response ap-
proach, and does not guarantee the correct delivery of messages (they may be lost or

Applying Message Logging to Support ... 147

duplicated). The considered communication channels do not provide FIFO property.
Additionally, the crash-recovery model of failures is assumed, i.e., system components
may fail and recover after crashing a finite number of times [1]. Failures may happen
at arbitrary moments, and we require any such failure to be eventually detected, for
example by a Failure Detection Service [2].

We assume that each service provider may have its own reliability policy, and
may use different local mechanisms that provide fault tolerance. Therefore, in the
paper, by a recovery point we denote an abstraction describing a consistent state of
the service, which can be correctly reconstructed after a failure, but we do not make
any assumptions on the how and when such a recovery points are made (to make a
recovery point logs, checkpoints, replicas and other mechanisms may be used). It is
assumed that each service takes recovery points independently (and has at least one
recovery point, representing it’s initial state). Similarly, the client may also provide
its own fault tolerance techniques to save its state.

4 General Idea of Rollback-Recovery Protocol

Due to the fact that processing in the SOA is based on the processing of messages,
and the communication in systems based on the REST paradigm is stateless (each
message sent by a client does not depend on the message preceding it, and contains
all the necessary information required by a service to perform it), it can be observed
that if the business process participants are piece-wise deterministic, their states are
reflected in the history of their communication. This means that after the failure of
any client or service, the reprocessing of their messages in the same order as before
the failure leads to the consistent system state (i.e., one that could be achieved during
the failure-free processing). Based on this observation, we propose a protocol that
adopts the well-known technique of message logging [4] to increase the reliability of
processing in SOA systems.

The proposed protocol logs messages sent between business process participants
during the failure-free processing, to be able in the case of failure of one or more system
components to recover a consistent state of processing by resending saved messages
in a specified order. However, since in the SOA participants of business processing
may have their private mechanisms providing reliability, after the failure occurrence
the state of processing participants may be partially reconstruct with the use of these
local mechanisms. The recovery of a local state may include the reprocessing of some
messages belonging to the history of global communication. Therefore, only those
messages, the processing of which was not reflected in services’ (clients’) recovered
state, should be processed again. Such messages have to be found and performed,
which is the task of the proposed rollback-recovery protocol.

The proposed protocol introduces three types of components: Recovery Manage-
ment Units (RMU), Client Intermediary Modules (CIM), and Service Intermediary
Modules (SIM). RMU stores the requests and responses send among business pro-
cess participants in the Stable Storage able to survive all failures. The saved history
of communication is then used during rollback and recovery of processing system
state. Since there are many RMUs, the history of communication is dispersed among

148 A. Danilecki, M. Hołenko, A. Kobusińska, ...

RMUN

RMU1

Client B

SIM

CIM

CIM

...

Client A

Service X

Service Y

SIM/CIM
12

2

6

4
10

7

3

9

5

11

8

1

Figure 1: Diagram of failure-free processing

them. When the processing starts, each of its participants registers itself in the se-
lected RMU . Each service is registered in one RMU , but the single RMU can be
used by many services. In turn, the client can be registered simultaneously in many
RMUs, but always one of them (called also a master RMU) stores information on
other RMU ’s used by the client.

CIMs and SIMs hide the details of rollback-recovery protocol to clients and
services respectively. For this purpose, both modules intercept messages issued by
clients and servers, so they allow to fully control the flow of messages in the system.
In fact, CIM and SIM serve as proxies for clients and servers. Additionally, SIMs
monitor the service status and react in the case of its eventual failure by initiating
and managing the service rollback-recovery procedure.

Fig. 1 presents the subsequent steps realised by the proposed rollback-recovery
protocol. The request issued by a client to a chosen service is intercepted by the
client’s CIM , and forwarded to the client’s master RMU . If the required service is
registered in the RMU , the request is saved in the RMU ’s stable storage and then
forwarded to the service through its SIM . Otherwise, client’s master RMU obtains
the URI of requested service RMU from its SIM , and sends back this information to
the CIM , which reissues the request to a proper URI. The service performs request
and sends the response back to RMU . The response is saved in the stable storage
and forwarded to the client through its CIM . Fig. 1 illustrates the idea of the
proposed protocol. Client A and services X, Y are registered in RMU1, while client
B is registered in RMUN . The request submitted by client A to service Y follows
steps (1) and (2), and after being proceeded the response is sent back to the client —
steps (3) and (4). In turn, if client B submits the request to server X, it is received by
RMUN (5), the URI of RMU1is obtained by RMUN from SIM of requested service
(6,7), and forwarded to CIMB (8). Then, the request is resubmitted through RMU1

(9). Further processing is carried out analogously — steps (10,11,12).
Actions taken in the case of client’s or service’s failure are presented in Fig. 2 and

Fig. 3, respectively. It is assumed that due to the HATEOAS principle of Resource
Oriented Architecture, in order to recover client’s state, the last response obtained by
the client before the failure occurrence should be resent. Since, in general the client
communicates with many RMUs , such a last response should be chosen on the basis
of information received from each of RMUs, the client contacted before its failure
(the list of such RMUs is stored by the client’s master RMU). The client’s CIM

Applying Message Logging to Support ... 149

1

2

4

9
10

RMUMASTER

RMU1

RMUN

3

5
6

78

9 Message-Id = 6

10 Message-Id = 8

5

7 Message-Id = 8

Message-Id = 2

Client A
CIM

Figure 2: Client rollback-recovery

ServiceRMU

3

SIM

4

7

1

2

5

6
8

9

N M

Figure 3: Service rollback-recovery

gathers informations from RMUs , and sends a response with the highest identifier to
the client. The client then proceeds with the execution. To demonstrate the client’s
recovery let us consider Fig.2. The CIM of client A obtains a list of RMUs from
RMUMASTER (1). CIM requests all RMUs from the obtained list to send it the
identifier of the last saved response sent to client A (2,3,4). When all RMUs respond
(5,6,7), CIM selects message with the highest identifier and sends it to client.

When the service fails, its SIM starts the rollback-recovery process. First it finds
the recovery point to which the service has to be rolled back (the one that contains
only the responses not later, than the last one stored in the RMU), what is depicted
by (1) in Fig. 3. The response contains the information on recovery points and
identifiers of the last responses stored in each of them (2). Then SIM obtains from
RMU the identifier of last response saved in its stable storage (3,4), and determines
which recovery point contains messages not later then the last one saved in the RMU .
The service state is rolled back to the chosen recovery point (5). When the rollback
is finished (6), SIM requires RMU to resubmit all requests performed by the service
before the failure, and not saved in the chosen recovery point (7). RMU acknowledges
how many requests will be resubmitted (8). When SIM confirms that it’s ready to
begin the recovery process (9), all requests chosen in step (7) are sent again by the
RMU (N) and re-executed by the service, in the same order as before the failure (M).

Beside failures of services and clients, also the components of infrastructure used
by the rollback-recovery protocol can crash. Let us first consider the RMU ’s fail-
ure. During the failure-free work, RMU first records the obtained data in its Stable
Storage, and afterwards it continues processing. All data vital to recovery (i.e., re-
quests, responses and metadata) is recovered from the RMU ’s Stable Storage. Since
it is highly undesirable to suspend business processes execution because of the RMU
failure, the failure detection service is used to monitor state of RMU and to automat-
ically start its recovery when the failure occurs. This service also notifies all services
that RMU is restarted. Services registered in restarted RMU before its failure, have
to register themselves again. Because the RMU failure causes all active connections
to be closed, the registration process entails the rollback-recovery of services, in order
to reissue all requests that might have been lost in the result of failure.

Failures of SIM and CIM do not affect the correctness of processing. All infor-
mation required for the proper functioning of both modules are contained in their
configuration files or received from the RMU during SIM and CIM initialization.

150 A. Danilecki, M. Hołenko, A. Kobusińska, ...

CIM ClientId :: Client identifier
int MsgId :: Message identifier
int IncId :: Identifier of consecutive client’s sessions
int EpochId :: Identifier of consecutive service’s sessions
SIM ServId :: Service identifier
URI ServURI,ResURI :: URI of the service, resource
int RespId :: Order identifier of responses,given by the service
set¡Request¿ SavedReqs :: Set of saved requests
set¡Response¿ SavedResps :: Set of saved responses
{Normal — Recovery} Mode :: Current mode of SIM
int SyncPts :: Set of response id of repeated messages without group IDs
int MsgToRsnd :: Number of messages to be repeated during recovery

Figure 4: Symbols used in rollback-recovery protocol

Therefore in the case of the failure of these modules no important data is lost. How-
ever, as it was in the case of RMU, all active connections processed before the failure
are lost. Therefore on every restart of SIM, the service recovery process is started to
recover the processing closed due to the error. CIM failure affects only clients that
use it directly. In case of failure it is enough to restart CIM process.

Finally, let us consider the communication failures. The situation when the failure
occurs before the client’s request reaches RMU is indistinguishable (from the per-
spective of RMU and service) from the situation when no message was sent. In such
case the client has to send a request again. Also the case, when communication fail-
ure occurs after RMU has processed the request does not affect the correctness and
consistency of processing. RMU is able to determine if the request has been already
processed and reject duplicate requests assuming that the response is saved in Stable
Storage. In the result, the proposed protocol ensures that requests are processed ex-
actly once by services. The problem, however, arises when the failure occurs during
communication between RMU and a service. In such case it cannot be verified if the
request has been obtained and processed by the service or not. Resending request in
the first case would lead to an inconsistent state (where the request was processed
twice). Therefore, to ensure that the final state of processing is always consistent, the
worst case is assumed and request cannot be resend. Instead the service is rolled-back
and recovered.

5 Protocol Implementation

Below, we describe the proposed rollback-recovery protocol, executed by CIMs,
SIMs and RMUs. For the clarity of presentation, we omitted some details. In
the presented pseudocodes we use the symbols presented in Fig. 4

Fig. 5 presents basic actions taken by the CIM . The request issued by the client
is augmented by CIM with the required identifiers (l. 1-2). If CIM possesses in its

Applying Message Logging to Support ... 151

Upon receiving request req of type
Request from client Ci at module
CIMi

1: req .ClientId ← CIMi

2: req .IncId ← IncId
3: if ∃ce ∈ ServiceCache :

ce.ServURI = req .ServURI then
4: send req to ce.RMU
5: else
6: send req to MasterRMU
7: end if

Upon receiving response res of
type Response from RMUk module
to client Ci at module CIMi

8: send res to Ci

Upon receiving request req of type
GetLastResponse from client Ci

at module CIMi

9: foreach distinct RMU ∈
{ServiceCache ∪ {MasterRMU }} do

10: send req to RMU
11: end for
12: await all responses of type

LastResponse
13: MaxMsgId ←max(r .MsgId :

r ∈ ReceivedResps)
14: send (r : r ∈ ReceivedResps ∧

r .MsgId = MaxMsgId) to Ci

Figure 5: Rollback-recovery protocol - module CIM

cache the information on RMU of requested service, then it redirects the submitted
request to such an RMU (l. 3-4).

Otherwise, the request is forwarded to the client’s master RMU (l. 6). The
response to request sent by client is obtained by CIM from RMU , and is transmitted
to the client (l. 8).While performing a recovery of client’s state, CIM asks all RMUs
it cooperated with (l. 9-11) for the latest response sent to it (l. 9-13). From the set
of obtained responses the one with the highest identifier is chosen (l. 14-15). Such a
response is sent to the client (l.17).

In Fig. 6 actions taken by the RMU are discussed. First, the way in which RMU
handles requests submitted by clients to services is described in lines 1-20.The RMU
supports only requests that are submitted to services registered in it. If the requested
service is registered in different RMU , the client is redirected to the proper RMU ’s
URI. (l. 4-8). RMU performs only requests, which IncID (specifying the identifier of
session to which the request belongs), corresponds to the current session identifier (l.1-
3). If the response to request issued by the client has already been saved in the RMU ,
then there is no need to send this request to the service once again, as the already
saved response can be sent to the client immediately (l. 9-14). With this solution, the
same message (i.e., the message with the same identification number) may be sent
by the client many times, without the danger of multiple service invocations. Hence,
the idempotence of all requests is ensured. Otherwise, the request is saved in the
Stable Storage and forwarded with the necessary information to the service (l.16-19).
The response from the service to the client is suspended by RMU until all previous
responses generated by the service (with lower RespId) are saved in the Stable Storage
(l. 21-23). Then the considered response is saved in Stable Storage and forwarded to
CIM (l.24-29). The exact steps taken during client’s rollback-recovery are shown in

152 A. Danilecki, M. Hołenko, A. Kobusińska, ...

Upon receiving request req of type
Request from CIMi directed
to SIMj at module RMUk

1: if Inc[CIMi] 6= req .IncId then
2: discard req and exit
3: end if
4: if SIMj 6∈ RegServices then
5: r ← RMU of the service SIMj

6: Redir [CIMi]← Redir [CIMi] ∪ {r}
7: send Redir 〈r〉 to CIMi and exit
8: end if
9: if req ∈ SavedReqs then

10: if ∃ r ∈ SavedResps : r .Req = req
then

11: send r to CIMi

12: else
13: send TryAgain to CIMi

14: end if
15: else
16: req .ServId ← SIMj

17: SavedReqs ← SavedReqs ∪ {req}
18: req .EpochId ← Epoch[SIMj]
19: send req to ServiceURI
20: end if

Upon receiving an error while
waiting for response res of type
Response from SIMj

directed to CIMi at module RMUk

21: send StartRecovery to SIMj

Upon receiving request last
of type GetLast from SIMj

at module RMUk

22: LastRespId ← max(resp.RespId : r ∈
SavedResps ∧ r .Req .ServId = SIMj)

23: send LastSaved 〈LastRespId〉

Upon receiving response res of
type Response for request req of
type Request from SIMj

at module RMUk

24: if res.RespId 6= null then
25: await res.RespId =
max(r .RespId : r ∈ SavedResps
∧ r .Req .ServId = SIMj) + 1

26: end if
27: res.Req ← req
28: SavedResps ← SavedResps ∪ {res}

29: if req was not send in recovery process
and is directed to CIMi then

30: send res to CIMi

31: end if

Upon receiving request resend
of type ResendMsgs 〈LowestRespId〉
from SIMj at module RMUk

32: rec ← new StartRecovery
33: Epoch[SIMj]← Epoch[SIMj] + 1
34: rec.EpochId ← Epoch[SIMj]
35: ReqsToRep ← {r .Req :

r ∈ SavedResps ∧
r .Req .ServId = SIMj ∧
r .RespId ≥ resend .LowestRespId} ∪
{req ∈ SavedReqs : req .ServId = SIMj

∧(6 ∃rsp ∈ SavedResps : rsp.Req = req)}
36: rec.MsgToRsnd ← |r ∈ ReqsToRep :
∃rsp ∈ SavedResps ∧ rsp.Req = r |

37: rec.SyncPts ← {req .RespId : req ∈
ReqsToRep ∧ req .GroupId = null}

38: map¡Name, Value¿ G
39: foreach req ∈ ReqsToRep do
40: foreach grp ∈ req .GroupId do
41: if (grp.Name 6∈ G.Names) ∨

G[grp.Name] > grp.Value then
42: G[grp.Name]← grp.Value
43: end if
44: end for
45: end for
46: rec.Groups ← G
47: send rec to SIMj

48: foreach req ∈ ReqsToRep do
49: req .EpochId ← Epoch[SIMj]
50: send req to SIMj

51: end for

Upon receiving request req
of type GetLastResp from
client CIMi at module RMUk

52: last ← new LastResp
53: last .MsgId ← minimal integer value
54: foreach r ∈ SavedResp :

r .Req .ClientId = CIMi do
55: if r .Req .MsgId > last .MsgId then
56: last .MsgId ← r .Req .MsgId
57: last .OrignalResp ← r
58: end if
59: end for
60: send last to CIMi

Figure 6: Rollback-recovery protocol - module RMU

Applying Message Logging to Support ... 153

lines 31-39. If client contacted with many RMU s, they all take part in its recovery
and inform the client’s CIM about the last response sent to the client, before the
failure occurrence (l. 40-41).

In turn, while the service recovery SIM gets from RMU the information on the last
response obtained from the given service, and on this basis it distinguishes the set of
requests that have to be resubmitted to the service (l. 42-61). Finally, in a Figure 7
the actions taken by SIM are presented. SIM works in two modes: normal and
recovery. Requests obtained in the normal mode, after verification of the EpochId,
are immediately delivered to the service (l. 21-25). In turn, in the recovery mode
(l. 27-38) first the request type is checked. Normal requests (i.e., requests that are
not resend by the RMU) are suspended until the end of the recovery process (l. 21-26).
Resent requests are queued according to their RespId and suspended until all previous
requests are not processed by the service. When all resent requests are processed SIM
returns to the normal mode (l. 40).

6 Safety of the protocol

Lemma 1. All requests received by the service S and responses received from services
by the client C are stored in the Stable Storage.

Proof. Let us consider a request req submitted by client Ci to service Sj , and response
res returned by the service to the client. From the algorithm, all messages sent
between services and clients are intercepted by their CIM and SIM modules, and
are forwarded to RMU (Fig. 5, l. 4,6 and Fig. 7, l. 4). RMU , before sending req to
SIM of S, and before forwarding res to CIM of C, saves them in the stable storage
(Fig. 6, l. 19, 28).

Lemma 2. All requests submitted by clients to service S, and performed by S before
a failure, are reflected in the recovered service state.

Proof. In the result of assumption on service determinism and isolation of requests,
the recovery points made by a service accordingly to its local fault-tolerant policy,
correspond to consistent service states that actually occurred during the failure-free
processing of requests. Therefore, such recovery points may be used as an initial
states while applying rollback-recovery.

Accordingly to the protocol, SIM and RMU negotiate to which recovery point
the service will be rolled back, and which requests were performed after the chosen
recovery point and thus have to be resubmitted (Fig. 6. l. 22-23, 35, and Fig. 7,
l. 6-17). Since every request obtained by the service before the failure is also saved
in the RMU (Lemma 1), all requests from the negotiated set may be resubmitted by
the RMU (Fig. 6 , l. 48-50). Due to the fact, that the order of resubmitted requests
corresponds to the order in which requests were performed before the failure (Fig. 7,
l. 27-36), the recovered service state is the same as the state before the failure. The
recovered client state is consistent with the state of client occurring in the failure-free
processing. The recovery of the client differs depending on the client’s requirements.
For some clients, the last response from the service may be enough for recovery.

154 A. Danilecki, M. Hołenko, A. Kobusińska, ...

Upon receiving request req
of type Request from RMU
while Mode = Normal at SIMj

1: if req.EpochId = EpochId then
2: send req to Service
3: await resp of type Response
4: send resp to RMU
5: end if

procedure StartRecoveryProcess
6: send GetCheckpoints to Service
7: await ckpt of type Checkpoints
8: send GetLast to RMU
9: await last of type LastSaved

10: RbCkpt ← Ckpti ∈ ckpt .Ckpts :
Ckpti .LastRespId ≤ last .RespId
∧∀j>iCkptj .LastRespId > last .RespId

11: send to Service
Rollback 〈RbCkpt.CkptId〉

12: send to RMU
ResendMsgs 〈RbCkpt.LastRespId+ 1〉

13: await recov of type StartRecovery
14: MsgToRsnd ← recov .MsgToRsnd
15: SyncPts ← recov .SyncPoints
16: EpochId ← recov .EpochId
17: CurGroups ← recov .Groups
end procedure

Upon receiving request req
of type Request from RMU
while Mode = Recovery
18: if req .EpochId 6= EpochId then

19: discard req and exit
20: end if
21: if req .RespId = null then
22: wait until Mode = Normal
23: send req to Service
24: await resp of type Response
25: send resp to RMU
26: else
27: wait until (6 ∃ sync ∈ SyncPts :

sync < req .RespId)
∧∀g∈req.GroupId (CurGroups[g.Name] 6=
null
∧ g .Value = CurGroups[g .Name] + 1)

28: send req to Service
29: await resp of type Response
30: if ∃ p ∈ SyncPts: p = res.RespId
then

31: SyncPts←SyncPts \ {p}
32: else
33: foreach g ∈ resp.GroupId do
34: CurGroups[g .Name]←g .Value
35: end for
36: end if
37: MsgToRsnd ← MsgToRsnd − 1
38: send resp to RMU
39: end if

When MsgToRsnd = 0
40: Mode←Normal

Figure 7: Rollback-recovery protocol - module SIM

Applying Message Logging to Support ... 155

According to the protocol, such clients contact the RMU , get the last response they
obtained before the failure and then directly proceed with the execution (Fig. 5 l. 12-
14, Fig. 6, l. 52-60). If the last response is not sufficient for client’s recovery, the client
first recovers using its own local checkpoints or logs. Next the client proceeds with
processing, sending requests to the CIM , which then forwards them to the RMU
(Fig. 5, l. 1-7), like during the failure-free processing. If the RMU already has the
response for the request, such a response is sent to the client (Fig. 6, l. 9-11). Since
the client is piece-wise deterministic, its state is reconstructed up to the point of the
last request sent before the failure.

Lemma 3. Requests resubmitted by a client to a service do not lead to the inconsistent
service state.

Proof. By assumption, if the resubmitted client’s request is obtained by RMU , which
had already processed such a request (the request with the same identifier), the request
is not handled by the RMU (Fig. 6, l. 9-14). Therefore, such a request will not be
sent to the service, and thus will not influence the service’s state.

Theorem 1. The proposed rollback-recovery protocol for service-oriented systems pro-
vides, in the case of failure of one or more system components, a recovery of a con-
sistent system state.

Proof. The system state consists of states of its individual elements: clients, services,
RMUs, CIMs and SIMs. According to Lemma 2, the recovered service state, and
its state before the failure are indistinguishable. Since when failures do not occur,
the service’s state is consistent, thus also the recovered state is consistent. Moreover,
the rollback and recovery of one service never requires rollback of any other service,
since the rollback-recovery protocol recovers services’ states independently from each
other, so the rollback-recovery of a service will not influence other services states.

According to the Lemma 2, clients also possess mechanisms to correctly recover
their states. Moreover, as stated by Lemma 3, the rollback-recovery of client’s pro-
cessing does not lead to inconsistency on the service side.

Due to the fact that RMU possesses stable storage, after the failure its state
is easily reconstructed and will not influence the processing correctness. In turn,
CIMs and SIMs do not have information vital to the consistency of services that
needs to survive failures. They obtain all the data from RMUs or in the course of
requests’ processing. Thus, the failure either of SIM or of CIM does not influence
the consistency, as they are always able to recover by resubmitting requests. The
system state reached during the failure-free processing is consistent. In case of failure
of clients or services, and after applying the proposed rollback-recovery protocol,
their recovered state corresponds to the state before the failure. Thus, the proposed
rollback-recovery protocol leads to the consistent recovery of processing in the service-
oriented systems, despite failures of system components.
Full versions of the theorems and proofs can be found in [6].

156 A. Danilecki, M. Hołenko, A. Kobusińska, ...

7 Conclusions

This paper has dealt with a problem of increasing the fault-tolerance of SOA systems.
The rollback-recovery protocol, ensuring the recovery of a coherent state of SOA
distributed processing in the case of failure of one or more system components (i.e.,
web services or their clients), has been proposed. Although our implementation of
the protocol is based on the known technique of operation logging, it is nevertheless
unique in exploiting properties of SOA while applying these solutions. Our future
work encompasses the integration of the proposed rollback-recovery protocol with the
consistency protocols, in order to relax the consistency model provided during the
recovery. Simultaneously, the work to increase the efficiency of the proposed protocol
is underway, and the appropriate simulation experiments to quantitatively evaluate
the overhead of the presented rollback-recovery protocol are being carried out.

References

[1] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Ba-
sic concepts and taxonomy of dependable and secure computing. IEEE Trans-
actions on Dependable and Secure Computing, 1(1):11–33, January 2004.

[2] Jerzy Brzeziński, Dariusz Dwornikowski, and Jacek Kobusiński. FADE: RESTful
service for failure detection in SOA environment. In Victor Malyshkin, editor,
Parallel Computing Technologies, volume 6873 of Lecture Notes in Computer
Science, pages 238–243, Kazan, Russia, September 2011. Springer Berlin.

[3] J.-Y. Chen, Y.-J. Wang, and Y. Xiao. SOA-based service recovery framework. In
Proceedings of the 9th International Conference on Web-Age Information Man-
agement, pages 629–635, July 2008.

[4] N. Elmootazbellah, Elnozahy, A. Lorenzo, Yi-Min Wang, and D.B. Johnson. A
survey of rollback-recovery protocols in message-passing systems. ACM Comput-
ing Surveys, 34(3):375–408, September 2002.

[5] Roy T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000.

[6] Mateusz Hołenko and Piotr Zierhoffer. Protokoły odtwarzania stanu w systemach
zorientowanych na usługi. Master’s thesis, Poznań University of Technology,
Poznań, September 2011.

[7] Jim Lau, Lau C. Lung, Joni da S. Fraga, and Giuliana Santos Veronese. De-
signing fault tolerant web services using BPEL. In Proceedings of the Seventh
IEEE/ACIS International Conference on Computer and Information Science
(ICIS 2008), pages 618–623, Washington, DC, USA, 2008. IEEE Computer So-
ciety.

Applying Message Logging to Support ... 157

[8] Alexandros Marinos, Amir R. Razavi, Sotiris Moschoyiannis, and Paul J. Krause.
RETRO: A consistent and recoverable RESTful transaction model. In ICWS,
pages 181–188, 2009.

[9] OASIS. Web services reliable messaging (WS-ReliableMessaging) version 1.1,
January 2008.

[10] Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly Media,
2007.

[11] Erl Thomas. SOA Principles of Service Design. Prentice Hall PTR, 2007.

Received December, 2012

158 A. Danilecki, M. Hołenko, A. Kobusińska, ...

