
INCREMENTAL RULE-BASED LEARNERS
FOR HANDLING CONCEPT DRIFT: AN OVERVIEW

Magdalena DECKERT ∗

Abstract. Learning from non-stationary environments is a very popular research
topic. There already exist algorithms that deal with the concept drift problem.
Among them there are online or incremental learners, which process data instance
by instance. Their knowledge representation can take different forms such as decision
rules, which have not received enough attention in learning with concept drift. This
paper reviews incremental rule-based learners designed for changing environments. It
describes four of the proposed algorithms: FLORA, AQ11-PM+WAH, FACIL and
VFDR. Those four solutions can be compared on several criteria, like: type of pro-
cessed data, adjustment to changes, type of the maintained memory, knowledge rep-
resentation, and others.

Keywords: data mining, decision rules, rule-based classifiers, incremental learn-
ing, online learning, data streams, concept drift, non-stationary environment, overview

1 Introduction

Data mining is a relatively young and interdisciplinary field of computing science. It
is one of the steps in the Knowledge Discovery in Databases (KDD) process that tries
to discover patterns and dependencies in large data sets. One subtask of data min-
ing is the classification problem. It identifies class labels to which a new observation
belongs using knowledge extracted from labeled training examples. Most of the exist-
ing classifiers are created statically. They receive the whole learning set, from which
knowledge is extracted. The knowledge is obtained only once and is not updated in
the future. Those standard classifiers fail to answer modern challenges like processing
streaming data.

∗Institute of Computing Science, Poznań University of Technology, 60-965 Poznań, Poland

F O U N D A T I O N S O F C O M P U T I N G A N D D E C I S I O N S C I E N C E S
Vol. 38 (2013) No. 1

 DOI: 10.2478/v10209-011-0020-y

Data streams are characterized by the large size of data, probably infinite. Pro-
cessing streaming data may be very expensive due to multiple data access. That
is why many classifiers try to minimize the number of reads. The second problem
with data streams is how many examples to remember. Classifiers may have a full
memory—they remember all training data, a partial memory—they memorize some
important learning examples, or no memory. Some of the algorithms remember only
meta data connected with learning examples. Data streams can be processed by
online classifiers. Those classifiers should have the following qualities [28]:

• Single pass through the data. The classifier reads each example only once.

• Limited memory and processing time. Each example should be processed very
fast and in a constant period of time.

• Any-time learning. The classifier should provide the best answer at every mo-
ment of time.

Processing of data streams is a very popular and interesting research topic. An
example of system designed for stream analysis can be found in [30]. While processing
streaming data a problem can be encountered that the environment and the classifi-
cation task may change in time. The concepts of interest may depend on some hidden
context [44], which is unknown. Changes in the hidden context can induce more or
less radical changes in target concepts, producing what is generally known as concept
drift [37]. One of the common examples of changing environments is spam detection.
The description of assignment to different groups of e-mails changes with time. They
depend on user preferences and active spammers, who invent new solutions to trick
the up-to-date classifier. The problem with concept drift is real and has a wide range
of applications. According to Zliobaite [45] applications’ domains can be divided into
4 main groups: Monitoring and control, Assistance and information, Decision making,
and AI and robotics. One of the typical monitoring problems is intrusion detection.
The attackers try to invent new ways of overcoming current security systems, which
is a source of concept drift. Other examples of occurrence of concept drift from Moni-
toring and control group are fraud detection in financial sector or traffic management.
Applications from Assistance and information domain mainly organize and/or per-
sonalize the flow of information. The cost of mistake is relatively low. An example
of such an application is customer profiling and direct marketing, where customer’s
needs and interests change with time. Also smart home systems should adapt to the
changing environment and user’s needs. This is an example of application from the
AI and robotics domain. A wide range of occurrences of the concept drift problem
was presented in [19, 45]. Systems designed for specific applications like food sales or
CFB Boilers were described in [3, 46, 47].

A more formal definition of the concept drift may be as follows. In each point of
time t every example is generated by source St, which is a distribution over the data.
Concepts are stable if all examples are sampled by the same source, otherwise concept
drift exists [45].

Two main types of concept drift may be distinguished: sudden (abrupt) and grad-
ual (incremental) [42]. In case when a source at time t is suddenly replaced with

36 M. Deckert

another one a sudden concept drift occurs. For example, John was listening to pop
music his whole teenage life but when he graduated from university he changed his
preferences and started to listen only to classical music. A gradual drift would occur
if John started to listen to classical music while he was still enjoying pop music but
the interest in pop decreased with time. In this case, the probability of sampling
from the first source decreases with time, while the probability of sampling from the
second source increases. In some domains previously seen concepts may reappear
after some period of time. This type of change is known as a recurring context or re-
curring concept. Periodic seasonality is not considered to be a concept drift problem.
Reoccurring concepts differ from common seasonality because it is not known when
they may reappear [45]. Other examples of change worth mentioning are noise and
blips [29]. Noise is a non-significant change and a good online classifier should not
react to it. A blip represents a rare event that should be treated as an outlier and
should be discarded.

Mining data streams in the presence of concept drift is rather a new topic in the
machine learning world but there already exist algorithms that attempt to solve this
problem. For a taxonomy of available concept drift learners see [45]. In general, they
can be divided into two main groups: trigger-based and evolving.

The trigger-based model contains a change detector that indicates a need for model
change. The change detection process is separate from classification. Standard actions
of classifiers equipped with a detector are as following: the classifier predicts a label
for received example e; then the true label and the predicted label are submitted to
the change detector; if the detector detects a change, the feedback is passed to the
classifier; then the classifier is retrained according to the level of change [29]. One of
the most popular drift detection methods is DDM proposed by Gama et al. in [17].
This approach detects changes in the probability distribution of examples. The main
idea of this method is to monitor the error-rate produced by a classifier. Statistical
theory affirms that the error decreases if the distribution is stable [17]. When the error
increases, it signifies that the distribution has changed. DDM operates on labeled
data that arrive one at a time. Another interesting detector that performs better
than DDM for a slow gradual drift is EDDM proposed in [2]. It uses the distance
between classification errors in order to detect a change. There is also a solution that
detects change from data arriving in batches, called Batch Drift Detection Method
(BDDM). It was proposed in [10] and improved in [11].

Evolving methods operate in a different way than trigger-based solutions. They
try to build the most accurate classifiers at each moment of time without explicit
information about the occurrence of a change. The most popular evolving technique
for handling concept drift is an ensemble of classifiers [45]. An example of such an
ensemble is Accuracy Weighted Ensemble (AWE) [43]. It is the best representative of
block-based ensembles, where component classifiers are constructed from sequential-
coming blocks of training data. When a new block is available, a new classifier is built
from it and already existing component classifiers are evaluated. The new classifier
usually replaces the worst component in the ensemble. For an overview of available
complex methods see [18, 28, 29, 42, 45].

There also exist hybrid methods that incorporate explicit drift detector with an

Incremental Rule-Based Learners for Handling Concept Drift: An Overview 37

ensemble of classifiers. An example of such an approach is Batch Weighted Ensemble
(BWE) introduced in [10] and improved in [11]. BWE uses Batch Drift Detection
Method (BDDM) to detect an occurrence of change and updates its ensemble accord-
ing to the type of change. Another block ensemble that is combined with an online
drift detector is Adaptive Classifiers Ensemble (ACE) proposed in [36]. This system
besides a drift detection mechanism and many batch learners contains also an online
learner.

This paper focuses on incremental or online learning. A learning task is incremen-
tal if the training examples become available over time, usually one at a time [20].
In this case learning may need to last indefinitely. This type of learning is similar to
a human’s acquisition of knowledge. People learn all the time and their knowledge
is constantly revised based on newly gathered information. The term ”incremental”
is also applied to learning algorithms. An algorithm is online if, for given train-
ing examples, it produces a sequence of hypotheses such that the current hypothesis
depends only on the previous one and on the current learning example e [20]. All
learning algorithms are applicable to all learning tasks. However, the most natural
and flexible way to handle incremental learning tasks is to use incremental learners.
Unfortunately, incremental learning is a rather forgotten area in the machine learning
world [20]. Nevertheless, there exist many incremental learning algorithms inducing
different types of knowledge. An example of an incremental classifier inducing de-
cision rules was described in [21]. However most of the existing solutions are not
applicable for processing data streams.

One of the most popular incremental method for mining data streams is Very Fast
Decision Trees (VFDT) proposed in [12]. It is a anytime system that builds decision
trees using constant memory and constant time per example. VFDT uses Hoeffding
bound to guarantee that its output is asymptotically nearly identical to the result
obtained by a batch learner. VFDT was improved in [25] to deal with the concept
drift problem. CVFDT uses a sliding window on incoming data and old data, which
fall outside the window, is forgotten.

Another knowledge representation that was adjusted to processing data streams
are decision rules. Decision rules can provide descriptions that are easily interpretable
by a human. They are also very flexible and can be quickly updated or removed when
a change occurs. Decision rules cover selected parts of the space, so if they become
out-of-date there is no need to learn from scratch—only the rules that cover regions
with the change should be revised. However, according to Gama [19], they have not
received enough attention in the stream mining community so far.

Decision rules can be more effective for mining data streams than other methods.
In case of algorithms based on Hoeffding Trees, the adaptation to change is performed
via incremental growth of a tree. However, for sudden change the reaction might be
to slow due to the fact that it might require rebuilding the whole tree structure. This
might be very inefficient. Decision rules are more flexible than trees. A set of decision
rules take advantage of individual rules that can be managed independently [27].
Therefore, they can be altered more easily if change occurred or even removed if
necessary. For gradual concept drift, the adaptation to change has probably similar
complexity for both knowledge representations. Next, decision trees split the data

38 M. Deckert

space, where decision rules cover parts of the data space. While processing data
instance by instance, a tree might need more changes in global model, while decision
rules are updated independently. On the other hand, the process of incremental
rule induction is more sophisticated than induction of decision tree. This may be the
reason why decision rules are not as popular as decision trees for mining data streams.

According to the author’s best knowledge, there does not exist any survey of
incremental rule-based classifiers learning from non-stationary environments. The
goal of this paper is to present the key online algorithms proposed for mining data
streams in the presence of concept drift. It describes four of the proposed algorithms:
FLORA, AQ11-PM+WAH, FACIL and VFDR. Those are the only purely incremental
rule-based classifiers mining data streams in the presence of concept drift. First, the
FLORA framework is described—a first family of algorithms that flexibly react to
changes in concepts, can use previous knowledge in situations when contexts reappear
and is robust to the noise in data [44]. Then, algorithms from the AQ family are
presented with their modifications. AQ-PM [31] is a static learner that selects extreme
examples from rules’ boundaries and stores them in the partial memory for each
incoming batch of data. AQ11-PM [32] is a combination of the incremental AQ11
algorithm with a partial memory mechanism. AQ11-PM+WAH [33] is extended with
a heuristic for flexible size of the window with stored examples. The FACIL algorithm
behaves similarly to AQ11-PM [13]. However, it differs in a way that examples stored
in the partial memory do not have to be extreme ones. Those three main algorithms
were not tested on massive datasets. The newest proposal called VFDR [19] was
tested on huge data streams. It induces ordered or unordered sets of decision rules
that are efficient in terms of memory and learning times.

This paper is organized as follows. The next section presents the basics of rule
induction. Section 3 describes the first incremental rule-based learners for a concept
drift problem—the FLORA family. Section 4 is devoted to the AQ family algorithms,
e.g., AQ11-PM+WAH. Section 5 familiarizes with the FACIL algorithm. Section 6
reveals the newest algorithms VFDR and AVFDR. Section 7 concludes this paper.

2 Basics of the Rule Induction

A classification problem relates to an exploration of hypotheses describing so-called
concepts. The term concept denotes a set of objects with some common characteristics
that distinguish it from other concepts. In order to describe similar features the
terms category or class are also used. Hypotheses are results of supervised learning.
They are functions which best describe concepts from the supplied learning examples.
Generally, hypotheses assign examples to the appropriate category (class). Those
functions can be expressed in different forms. One of the most popular methods of
knowledge representation are decision rules. There exist many algorithms that induce
decision rules. For reviews see [15, 16, 23]. Most of the existing classifiers extract
knowledge from static data. As input they obtain the whole learning set, from which
hypotheses are found.

The set of learning examples may be represented in several ways, most com-

Incremental Rule-Based Learners for Handling Concept Drift: An Overview 39

mon is a decision table. A decision table DT is a data structure of the form:
DT = (U,A ∪ {d}). Elements of A are called conditional attributes, where d
is a decision attribute. U is a set of learning examples representing different concepts.
The collection of objects U can be divided with respect to concept Ck into positive
E+

Ck
= ECk and negative examples E−Ck = U\ECk .

Decision rule r for concept Ck is defined as an expression taking the form:

if P then Q.

P is the conditional part of the rule (premise; antecedent). For conditional part the
term description item or description can also be used. Q is the decision part of
the rule (conclusion; label) indicating affiliation to concept Ck. In the literature, a
decision rule can also take the form:

P → Q.

Conditional part P of a rule r is a conjunction of elementary conditions and is rep-
resented in the form of:

P = condition1 ∧ ... ∧ conditionl,

where l is the number of conditions known as the length of the rule. A single elemen-
tary conditioni (selector) is represented as:

ati rel vi,

where ati is a conditional attribute i and vi is a value from the domain of attribute
ati. rel is a relation operator from the set of relations {=, 6=, <,≤, >,≥,∈} [40].

Rule r covers an example when attributes of the example match the rule’s con-
ditions. Rules can cover both positive and negative examples. Examples from the
learning set that fulfill conditional part P of rule r are called coverage and are indi-
cated by [P]. Rule r is discriminant or certain, when it covers only positive examples
(no negative examples covered). Thanks to this the rule distinguishes examples be-
longing to the class indicated by the rule’s decision part. A discriminant rule r is
minimal, if removing of one of its selectors results in negative examples being cov-
ered. There also exist other types of decision rules like probabilistic rules. They do
not indicate a single category but return probabilities connected with every decision
class’ label. Probability estimation techniques for rule learners are considered in [41].

The problem of finding a minimal set of rules covering learning examples is NP-
complete. Many heuristic algorithms exist that induce decision rules. One of the
most popular techniques is sequential covering. In general, it relies on learning a
single rule for a given concept, removing examples covered by the rule and repeating
this process for other examples from the same concept. Next, rules for other concepts
are generated sequentially. The pseudocode of a sequential covering mechanism is
presented as Algorithm 1.

The function LearnSingleRule (line 5) depends on the used algorithm—sample
realizations can be found in [6, 8, 9, 22, 34, 35]. In most of these algorithms, the

40 M. Deckert

Algorithm 1: Sequential Covering algorithm

Input : U—a set of learning examples;
A—conditional attributes

Output: RS—a set of induced rules

1 RS = ∅;
2 foreach different concepti do
3 Ui = U ;
4 while all examples for concepti from Ui are not covered do
5 r = LearnSingleRule(concepti, A, Ui);
6 RS = RS ∪ r;
7 Ui = Ui\[RS];

8 Return RS

initial candidate for the conditional part of the rule covers the set of all learning ex-
amples including the negative ones. Then the rule is specialized by adding elementary
conditions until the acceptance threshold is reached. Candidates for the elementary
conditions of a rule are evaluated with respect to different measures depending on the
algorithm. The most commonly used criteria are as follows [39]:

• Maximizing the number of positive examples covered by the conjunction of
elementary conditions in P .

• Maximizing the ratio of covered positive examples to the total number of ex-
amples covered.

• Minimizing the number of elementary conditions in P—minimizing the length
of the rule.

Other algorithms use an entropy of information to evaluate the conditional part of
the rule. It was introduced by Shannon in [38]. The entropy of information of given
learning set S is defined as:

Ent(S) = −
nc∑
i=1

pi ∗ log2pi, (2.1)

where pi is the probability of class C in the set of examples S and nc is the number
of different class labels. The entropy is a cost type measure—the smaller the value is,
the better is the conjunction in P .

Another important measure of evaluating the dependence of P and Q is the m-
estimate proposed by Cestnik in [7]. The definition of m-estimate is:

m-estimateCk(P) =
np +m ∗ pi
n+m

, (2.2)

where np is the number of positive examples covered by P , n is the total number of all
examples covered by P , pi is the prior probability of the class Ck and m is a constant
depending on the data.

Incremental Rule-Based Learners for Handling Concept Drift: An Overview 41

A special case of m-estimate is the Laplace estimate defined as:

L-estimate(P) =
np + nc − 1

n+ nc
, (2.3)

where nc is the number of different class labels. More about these measures can be
found in [40, 41].

One of the first algorithms basing on the sequential covering idea is AQ, proposed
by Michalski [35]. It operates as follows. At the beginning of each iteration, the
currently processed decision class is chosen. Next, sets with positive and negative
examples are created with respect to the given class label. Then, a seed is selected
randomly from the positive examples. In the next step, a star is generated. A star is
a set of all rules that cover the seed and does not cover any of the negative examples.
Extending the seed against all negative examples is a multistep procedure. While the
star covers negative examples, select one of them. Then, all maximally general rules
that cover the seed and exclude the negative example are found. The resulting set is
called a partial star of the seed against the negative example. Next, a new partial star
is generated by intersecting the initial star with the partial star of the seed against
the negative example. In the end, a new partial star is trimmed if the number of
rules exceeds the user defined threshold and the new partial star becomes a star.
This threshold was introduced in order to limit the search space, which would grow
rapidly with the number of negative examples and with the number of attributes. A
typical criterion for trimming is the number of positive examples covered. In case of
a tie, the minimum number of selectors is preferred. The procedure of star extension
is repeated until the star no longer covers any negative examples. After the star is
created, the best rule from the star is chosen according to the user-defined criteria.
The rule is added to the current set of rules. This mechanism iteratively induces
decision rules until all positive examples from the given decision class are covered.
The whole process is rerun for every label of the decision class. For details see [35].

Another algorithm—CN2, proposed in [9], modifies the AQ algorithm in a way that
it removes the dependence on specific examples and increases the space of searched
rules. Unlike the AQ-based system, which induces an unordered set of decision rules,
CN2 produces an ordered list of if-then rules. CN2 works in an iterative fashion. In
each iteration, it searches for a rule that covers a large number of examples of the
single class Ck and few of other classes. When the best rule according to the entropy
measure is found, the algorithm removes the covered examples from the training set
and adds the rule to the end of the rule list. This process is repeated until no more
satisfactory rules can be found. CN2 searches for new rules by performing a general-
to-specific search. At each stage, CN2 retains a size-limited set or star S of the best
rules found so far. The system examines only specializations of this set, performing
a beam search of the space of rules. A rule is specialized by either adding a new
elementary condition or removing disjunctive values from one of its selectors. Each
rule can be specialized in several ways—CN2 generates and evaluates all of them. In
the end, star S is trimmed by removing rules with the lowest ranking values measured
by given evaluation function—the likelihood ratio statistic. For more details see [9].

Another representative of the rule-based algorithms is MODLEM, which was orig-
inally introduced by Stefanowski in [39]. Generally, it is based on the scheme of

42 M. Deckert

sequential covering and it generates an unordered minimal set of rules for every deci-
sion concept. It is particularly well-suited for analyzing data containing a mixture of
numerical and qualitative attributes, inconsistent descriptions of objects, or missing
attribute values. Searching for the best single rule and selecting the best condition is
controlled by a criterion based on an entropy measure. For more details see [39].

Induced set of decision rules can be used for classification of new incoming exam-
ples. Those new examples were not used during the learning phase. Their description
of conditional attributes is known and the goal is to determine the correct decision
class label. A classification of the new examples is based on matching the description
of the new object to the conditional part of a decision rule. Two main matching types
can be distinguished: full or strict and partial or flexible matching. Full matching
takes place, when all elementary conditions of a rule match the example’s attributes.
In case of partial matching there must exist at least one elementary condition of a
rule that does not match the new object’s description.

Classification strategy is performed in a different way depending on whether the
decision rules are sorted to form a list or create a random set of rules. In case of an
unordered list of decision rules, only the first rule that matches the example is fired
and the label associated with the rule determines the example’s class label. When
the first rule covering the example is found, the rest of the rules are not visited. In
case when none of the rules match the example, the default rule is used. Generally,
the default rule indicates the majority class in the training set—the largest class in
the training set.

In case of an unordered set of decision rules using full or strict matching three
situations are possible: a unique match (to one or more rules from the same class);
matching more rules from different classes or not matching any rules at all. In both
latter situations the suggestion is ambiguous, thus, a proper resolution strategy is
necessary. One of the solutions is the strategy introduced by Grzymala-Busse [24]. It
has been successfully applied in many experiments. Generally, it is based on a voting
of matching rules with their supports. The total support for class Ck is defined as:

sup(Ck) =

nr∑
i

sup(ri), (2.4)

where ri is a matched rule that indicates class Ck, nr is the number of these rules and
sup(ri) is the number of learning objects satisfying both condition and decision parts
of the rule ri. A new object is assigned to the class with the highest total support. In
the case of not-matching, so called partial matching or flexible matching is considered,
where at least one of the rule’s conditions is satisfied by the corresponding attributes in
the new object’s description x. In this case, a matching factor match(r,x) is introduced
as the ratio of conditions matched by object x to all conditions in rule r. The total
support is modified to:

sup(Ck) =

p∑
i

match(r, x) ∗ sup(ri), (2.5)

where p is the number of partially-matched rules, and object x is assigned to the class
with the highest value of sup(Ck).

Incremental Rule-Based Learners for Handling Concept Drift: An Overview 43

Another example of classification strategy is the proposal of Aijun Ann in [1]. It
uses a rule quality measure different than rule support, i.e., a measure of discrimina-
tion:

QMD = log
P (r|Ck) ∗ (1− P (r|¬Ck)

P (r|¬Ck) ∗ (1− P (r|Ck))
, (2.6)

where P denotes probability. For more technical details of estimating probabilities
and adjusting this formula to prevent zero division see [1]. Its interpretation says that
it measures the extent to which rule r discriminates between positive and negative
objects of class Ck. The only difference between these two described classification
strategies is choosing another rule quality measure—putting QMD in place of sup(r).

Moreover, classification strategies can be adopted to abstaining from a class pre-
diction when the final decision is uncertain. This modification can influence the final
accuracy of classification of an ensemble consisting of rule-based component classifiers.
This idea was inspected by B laszczyński et al. in [5].

Because of the natural and easy form of representation, decision rules can be
inspected and interpreted by a human. They are also more comprehensive than any
other knowledge representation. Generally, they provide good interpretability and
flexibility for data mining tasks. They take advantage of not being hierarchically
structured, so hypotheses can be easily updated when becoming out-of-date without
significant decrease in performance. However, they have not received enough attention
in mining data streams.

3 FLORA

Effective learning in environments with hidden contexts and concept drifts requires a
learning algorithm which fulfills certain conditions [44]:

• it can detect context changes without being explicitly informed;

• it can quickly recover from a concept change and adjust its hypotheses;

• it can make use of previous descriptions when concepts reappear.

One of the possible solutions is to trust only the latest examples—this is known as
the windowing mechanism. The window of examples may be of a fixed or a flexible
size. New examples are added to the window as they arrive and the old ones are
removed, when appropriate conditions are fulfilled. Those activities in window trigger
modifications of current hypotheses in order to be consistent with the examples held
in the window. This idea is widely used and states the main essence of the FLORA
framework proposed in [44].

The FLORA framework is restricted to processing data containing only nominal
attributes and can only solve the binary classification problem. In the FLORA frame-
work each concept is represented by three sets comprising rules’ antecedents: ADES
(Accepted DEScriptors), NDES (Negative DEScriptors) and PDES (Potential DE-
Scriptors). ADES contains descriptions covering only positive examples, and NDES

44 M. Deckert

only negative examples. PDES consists of descriptions that match both positive and
negative examples. ADES is used to classify new incoming examples, while NDES
is used to prevent the over-generalization of ADES. PDES acts as a storage for de-
scriptions that might become relevant in the future [44]. Every description item has
corresponding counters, which indicate how many positive or negative examples from
current window are covered by the given description. The counters are updated with
every modification of the learning window (addition or deletion of a learning exam-
ple). A description item is held in memory as long as it covers at least one example
from the window. The simple FLORA framework is presented as Algorithm 2.

The FLORA framework operates as follows. When a new positive example is added
to the learning window, three situations are possible: a new description item is added
to ADES, descriptions existing in ADES are generalized to match the new example,
or/and existing items are moved from NDES to PDES (lines 1–17). First, the ADES
set is tested in order to find a description covering the incoming positive example
(lines 3–6). If there does not exist such an item, a generalization of descriptions from
ADES is performed (lines 7–8). If there is no covering item in ADES and there does
not exist any generalization that matches the example, the example’s full description
is added to the ADES set (lines 9–10). Then, the PDES set is searched and counters
of positive examples are incremented for the description items that cover the example
(lines 11–13). In the end, the NDES set is visited. Descriptions that match the new
positive example are moved to PDES and their counters are updated (lines 14–17).
In case when the incoming example is negative—same situations are possible but in
respect to the NDES set (lines 18–34). First, the NDES set is tested in order to find
a description covering the incoming negative example (lines 20–23). If there does not
exist such an item, a generalization of descriptions from NDES is performed (lines 24–
25). If there is no covering item in NDES and there does not exist any generalization
that matches the example, the example’s full description is added to the NDES set
(lines 26–27). Then, the PDES set is searched and counters of negative examples are
incremented for the description items that cover the example (lines 28–30). In the
end, the ADES set is visited. Descriptions that match the new negative example are
moved to PDES and their counters are updated (lines 31–34). When an example is
deleted from the learning window, appropriate counters are decreased (lines 35–59).
This may result in a removal of a description or its migration from PDES to ADES
or NDES, with respect to the type of example: negative or positive. If the example to
be deleted is positive, first the ADES set is visited. Counters of positive examples are
decremented for the description items that match the example. If the counter is equal
to 0, then the description from ADES is dropped (lines 38–42). Then the PDES set is
tested. Counters of positive examples are decremented for the description items that
match the example. If the counter equals 0, then the description is moved from PDES
to NDES (lines 43–47). If the example to be deleted is negative, first the NDES set
is visited. Counters of negative examples are decremented for the description items
that match the example. If the counter is equal to 0, then the description from
NDES is dropped (lines 49–53). Then the PDES set is tested. Counters of negative
examples are decremented for the description items that match the example. If the
counter equals 0, then the description is moved from PDES to ADES (lines 54–58).

Incremental Rule-Based Learners for Handling Concept Drift: An Overview 45

Algorithm 2: simple FLORA algorithm
Input : E—incoming example;

ADES—a set with accepted descriptors;
PDES—a set with potential descriptors;
NDES—a set with negative descriptors

Output: ADES,PDES,NDES—modified description sets

1 if E is positive example then
2 boolean match = false;
3 foreach i = 1 .. |ADES| do
4 if ADESi covers E then
5 increment i-th descriptor’s counter for positive examples;
6 match = true;

7 if match == false then
8 find generalization in ADES with respect to PDES and NDES;
9 if (match == false) and (generalization does not exist) then

10 add full example’s description to ADES;
11 foreach i = 1 .. |PDES| do
12 if PDESi covers E then
13 increment i-th descriptor’s counter for positive examples;

14 foreach i = 1 .. |NDES| do
15 if NDESi covers E then
16 increment i-th descriptor’s counter for positive examples;
17 move i-th descriptor from NDES to PDES;

18 else if E is negative example then
19 boolean match = false;
20 foreach i = 1 .. |NDES| do
21 if NDESi covers E then
22 increment i-th descriptor’s counter for negative examples;
23 match = true;

24 if match == false then
25 find generalization in NDES with respect to PDES and ADES;
26 if (match == false) and (generalization == null) then
27 add full example’s description to NDES;
28 foreach i = 1 .. |PDES| do
29 if PDESi covers E then
30 increment i-th descriptor’s counter for negative examples;

31 foreach i = 1 .. |ADES| do
32 if ADESi covers E then
33 increment i-th descriptor’s counter for negative examples;
34 move i-th descriptor from ADES to PDES;

35 if learning window is full then
36 delete the oldest example Eold from the learning window;
37 if Eold is positive example then
38 foreach i = 1 .. |ADES| do
39 if ADESi covers Eold then
40 decrement i-th descriptor’s counter for positive examples;
41 if i-th descriptor’s counter for positive examples == 0 then
42 delete i-th descriptor from ADES;

43 foreach i = 1 .. |PDES| do
44 if PDESi covers Eold then
45 decrement i-th descriptor’s counter for positive examples;
46 if i-th descriptor’s counter for positive examples == 0 then
47 move i-th descriptor from PDES to NDES;

48 else if Eold is negative example then
49 foreach i = 1 .. |NDES| do
50 if NDESi covers Eold then
51 decrement i-th descriptor’s counter for negative examples;
52 if i-th descriptor’s counter for negative examples == 0 then
53 delete i-th descriptor from NDES;

54 foreach i = 1 .. |PDES| do
55 if PDESi covers Eold then
56 decrement i-th descriptor’s counter for negative examples;
57 if i-th descriptor’s counter for negative examples == 0 then
58 move i-th descriptor from PDES to ADES;

59 Return ADES;PDES;NDES

46 M. Deckert

Transitions among the description sets are shown in Figure 1.

Figure 1: Transitions among the description sets

The ADES, NDES, and PDES sets are kept non-redundant and consistent with
respect to the examples in the window. FLORA does not implement any specialization
operator. If a new example cannot be covered by any description or generalization
its full description is added to ADES or NDES, with respect to the type of example:
positive or negative. The new incoming example acts as a specific seed, which may be
generalized in the future. FLORA uses a generalization operator known as dropping
condition rule, which removes attribute-value pairs from a single description item.

The simple FLORA framework assumes that only the latest fixed number of ex-
amples are relevant and should be kept in the window. However the question arises
of how many examples are sufficient to describe current concepts. The authors ex-
panded FLORA with a heuristic for flexible windowing in the FLORA2 algorithm.
The motivation for this improvement were the effects of an inappropriate window
size: too small a window will not contain a sufficient number of examples to describe
a stable concept. On the other hand, too large a window will slow down reaction to a
concept drift. A good heuristic for flexible windowing should shrink the window when
a concept drift seems to occur and keep the window size fixed in case when concepts
are stable. Meanwhile the window size should grow until concepts are stabilized.
FLORA2’s heuristic called Window Adjustment Heuristic (WAH) meets the above
requirements. The pseudocode of WAH is presented as Algorithm 3. If a concept
drift was detected, the WAH decreases the window size by 20% (lines 1–2). In case
of extremely stable concepts the WAH decreases window size by 1 unit (lines 3–4).
If the current concepts seems stable the window size remains unchanged (lines 5–6).
In the other case, when the algorithm assumes that more examples is necessary, the
window size is incresed by 1 unit (lines 7–8).

FLORA2 was tested on an artificial learning problem used by Schlimmer and
Granger in [37]—STAGGER concepts. The example space is defined by three at-
tributes: size ∈ {small, medium, large}, color ∈ {red, green, blue}, and
shape ∈ {square, circle, triangle}. There also exists a sequence of three target
concepts: (1) size = small ∧ color = red, (2) color = green ∧ shape = circle, and
(3) size = medium ∨ size = large. FLORA’s authors randomly generated 120 train-
ing examples and labeled them according to some hidden context. After processing
each example, the accuracy of the classification was tested on a separate testing set

Incremental Rule-Based Learners for Handling Concept Drift: An Overview 47

with 100 examples. The concept was changed after every 40 examples. The obtained
results showed that after a sudden change the total accuracy suddenly decreases but
FLORA2 quickly adjusts to the new concepts and approaches 100% accuracy. WAH
behaves as expected. Sudden change leads to a short increase in window size, followed
by narrowing the window size and forgetting irrelevant examples.

Algorithm 3: Window Adjustment Heuristic

Input : N—number of positive examples covered by ADES;
S—number of descriptions in ADES;
Acc—current classification accuracy;
W—size of the learning window;
lc—threshold for low coverage of ADES;
hc—threshold for high coverage of ADES;
p—threshold for an acceptable accuracy of classification

Output: W ′—new size of learning window

1 if (N
S < lc) or ((Acc < p) and (Acc is decreasing)) then /* drift */

2 W ′ = W − 20% ∗W ;

3 else if (N
S > 2 ∗ hc) and (Acc > p) then /* high stability */

4 W ′ = W − 1;

5 else if (N
S > hc) and (Acc > p) then /* stability */

6 W ′ = W ;
7 else /* more information needed */

8 W ′ = W + 1;
9 Return W ′

Previous versions of FLORA irreversibly drop their old descriptions. However,
there exists many natural domains, where a concept may reappear. In such a case,
it would be a waste of time and effort to relearn an old concept from scratch. This
was the reason for inventing the FLORA3 algorithm, which introduces a mechanism
for a previous concept’s storage and recall. The mechanism is tightly associated with
the WAH heuristic. FLORA3 differs from FLORA2 behavior in a way that after
every stage of learning it checks the current state of hypotheses in order to decide
whether some old concept’s descriptions are useful. The main idea assumes that when
a change occurs the system should check which descriptions better explain the exam-
ples currently in the window: new concepts or some old ones. On the other hand, in
case of stability periods it may be worth to store the current descriptions for future
reuse. WAH decides when to store or reexamine the old concepts. If WAH signals a
drift, the system examines its storage of old descriptions in order to find the one that
fits the current state of the learning window. If one is found that is more appropriate
than the current description, it replaces the current one. The procedure for reeval-
uating old concepts consists of three steps. First, the best candidate is found from
all stored concepts that are consistent with the current examples in the window. It
is the one with the highest ratio of positive to negative examples matched from the
learning window. Then, the best candidate’s counters are recalculated to reflect the

48 M. Deckert

examples from the learning window. In the last step, the updated best candidate is
compared with the current concept description on a measure of fitness. In FLORA3
the measure of fitness is estimated by the relative complexity of the descriptions—the
more compact the ADES is, the better. To maintain the efficiency of the learning
algorithm, the old concepts are not checked after every new training example. They
are only retrieved when WAH suspects a concept drift. Moreover, the best candidate
is determined by a simple heuristic measure. For more details see [44]. FLORA3
was tested on an artificial situation of recurring context. The dataset consisted of
three STAGGER concepts repeated three times in cyclic order: 1–2–3–1–2–3–1–2–3.
Training and testing examples were created using the same procedure as for FLORA2.
Results showed that storing and reusing old concepts leads to a noticeable improve-
ment in reaction time to the reappearing concepts. In most of the cases FLORA3
relearns faster and obtains higher accuracy levels than the simpler FLORA2.

Previous versions of FLORA deal with the main types of concept drift and recur-
ring concepts. However they were not robust to noise. This is one of the difficulties
in incremental learning—to distinguish between real concept drift and slight irregu-
larities that may be treated as noise in the data. Methods that react quickly to every
sign of change may overreact to noise. This may result in instability and low accu-
racy of classification. An ideal learner should combine stability and robustness with
flexible and effective tracking of concept change [44]. That is why FLORA4 replaces
the strict consistency condition, inherited from FLORA2 and FLORA3 with a softer
notion of reliability. In FLORA4 for every description item statistical confidence
intervals around its classification accuracy are calculated. Decisions when to move
descriptions between sets are made based on the relation between these confidence
intervals and observed class frequencies. Transitions among the description sets are
as follows [44].

• A description item is kept in ADES if the lower endpoint of its accuracy confi-
dence interval is greater than the class frequency interval’s upper endpoint.

• A description item from ADES is moved to PDES, when its accuracy interval
overlaps with the class frequency interval.

• A description item is dropped from ADES if the upper endpoint of its accuracy
interval is lower than the class frequency interval’s lower endpoint.

• Description items in NDES are kept as long as the lower endpoint of its accuracy
confidence interval is greater than the class frequency interval’s upper endpoint
computed over negative examples in the window.

• There is no migration between NDES and PDES. Unacceptable hypotheses from
NDES are deleted.

The main effect of this strategy is that generalizations in ADES and NDES may cover
some negative or positive examples, respectively. PDES acts as a buffer for descrip-
tions that cover too many negative examples or their absolute number of covered
examples is too small. The rest of the algorithm’s mechanisms remain unchanged.
FLORA4 was also tested on STAGGER concepts and was compared with FLORA3

Incremental Rule-Based Learners for Handling Concept Drift: An Overview 49

and FLORA2. In noise-free environment FLORA4 is initially a bit slower in reacting
to a change than its predecessors. However, eventually it gains higher accuracy of clas-
sification faster than the previous versions. For a different amount of noise FLORA4
is again a bit slower in reaction to a change than the predecessors but then soon
outperforms them. However, the difference in the classification accuracy is greater
than for the noise-free data. FLORA4 was also compared with the IB3 algorithm.
For more details see [44].

4 AQ11-PM+WAH

The FLORA framework memorizes only a window of the most recent learning exam-
ples. There also exist other algorithms that memorize the selected learning examples
instead of the last examples for the future usage. This kind of memory is called a
partial instance memory. Selected examples may be extreme, which means that they
enforce, map, and strengthen boundaries of induced concept descriptions. For this
reason they are the most relevant examples. That is why in each learning phase these
examples are combined with the current learning examples to induce the most ac-
curate set of decision rules. Thanks to this mechanism the new set of rules is well
adjusted to the previous and current examples. This may also lead to less overtraining
while learning from changing environments [31]. Maloof and Michalski proposed the
AQ-PM system in [31]. They came up with a general algorithm for inductive learning
with the partial instance memory presented as Algorithm 4.

Algorithm 4: General algorithm with partial memory

Input : Si—current set of learning examples;
previousRS—previous set of rules;
previousPM—previous partial memory

Output: RS—a set of rules;
PM—partial memory

1 if Si 6= ∅ then
2 misclassified = FindMisclassifiedExamples(previousRS, Si);
3 currentTrainingExamples = previousPM ∪misclassified;
4 RS = InduceDecisionRules(currentTrainingExamples, previousRS);
5 PM = SelectExtremeExamples(currentTrainingExamples,RS);
6 PM = ForgetUnnecessaryExamples(PM,RS);

7 Return RS,PM

As an input the algorithm obtains a data set containing learning examples that
may consist of both nominal and numerical attributes. There are no restrictions on
the cardinality of the data set. Initially, the learner starts with an empty set of rules
and an empty partial memory. In the first iteration (for the first set of examples), the
learner operates as a batch classifier. Since the set of rules and partial memory are
nonexistent, the current training set consists of all available examples (line 3). The

50 M. Deckert

algorithm uses this set to induce a set of decision rules (line 4). Next, the system must
choose examples to be stored in the partial memory (line 5). In the end, examples
that are too old or do not enforce the concepts’ boundaries are forgotten (line 6).
In next iterations, the system checks which of the examples from current set Si are
misclassified (line 2). They are combined with the ones in the partial memory to form
the current training set, from which hypotheses are induced (line 3). The rest of the
steps are the same as for the first iteration.

The first proposal, called AQ-PM [31], uses the AQ covering algorithm to learn
a set of decision rules. AQ randomly selects a positive training example, called ”the
seed”. Then, the algorithm generalizes the seed as much as possible, with respect to
the constraints from the negative examples and a single decision rule is induced. In
the default mode, the algorithm uses a standard sequential covering mechanism—the
positive examples from current learning set Si covered by the rule are removed from
the current training set and the whole process is repeated until all positive examples
from Si are covered. Decision rules obtained from AQ are complete and consistent—it
means that the rules for given class cover all of the examples of the class and do not
cover any differently labeled examples.

AQ-PM operates as follows. First, it finds misclassified training examples by
classifying the new training set using a flexible matching strategy (line 2). These
difficult examples are combined with the examples held in the partial memory (line
3). The newly created training set is then passed to the learning algorithm (line 4).
AQ-PM operates in a temporal batch-mode. That means that the set of decision
rules is induced with the static AQ algorithm from the new training set. Each AQ-
PM decision rule describes a hyperrectangle in a discreet m-dimensional space, where
m is the number of attributes [31]. Thanks to this notation, the extreme examples
for the partial memory could be those that can be found on the surfaces, the edges
or in the corners of the hyperrectangle covering them. Authors focused only on that
examples which lie on the edges. In the next step of the AQ-PM algorithm, content
of the partial memory is formed (line 5). The algorithm for finding extreme examples
is presented as Algorithm 5.

Algorithm 5: Method for finding extreme examples

Input : Si—current set of learning examples;
CR—characteristic rules

Output: See—a set of extreme examples;

1 See = ∅;
2 foreach ruler ∈ CR do
3 minMaxRule = SelectMinMaxV aluesForAttributesInRule(r);
4 foreach selector ∈ minMaxRule do
5 intervalRule = CreateIntervalSelectors(selector,minMaxRule);
6 matchedExamples = PerformStrictMatching(Si, intervalRule);
7 See = See ∪matchedExamples;
8 Return See

Incremental Rule-Based Learners for Handling Concept Drift: An Overview 51

In order to discover the extreme examples, AQ-PM uses characteristic rules. Those
rules specify common features of examples belonging to the same class. These rules
form the tightest possible hyperrectangle around examples from the same decision
class. They consist of selectors for every conditional attribute. AQ-PM modifies the
set of characteristic rules to match the examples that lie on the rules’ boundaries.
For each characteristic rule, the algorithm finds minimum and maximum values for
each attribute, forgetting intermediate values (line 4). In this step, each selector of
the characteristic rule is visited. Only the first and the last value existing in the char-
acteristic rule are left—the intermediate attribute’s values are removed. Then, each
selector in such a specialized rule is modified to form an interval between selector’s
minimum and maximum values (line 5). Next, the new extreme examples are selected
using the strict matching strategy (line 6). The transformed rule is applied on the
current training set. The examples that match the edges of the transformed rule
using the strict matching strategy are the extreme ones. In the end, current extreme
examples are combined with previously obtained ones (line 7). AQ-PM is equipped
in implicit forgetting—examples from partial memory are forgotten when no longer
force a boundary.

AQ-PM was tested on three problems: STAGGER concepts, blasting cap detec-
tion and computer intrusion detection. The algorithm was compared with a simpler
version of AQ-PM (baseline), with partial memory mechanism disabled, and IB2.
The STAGGER concepts dataset consisted of 120 examples with sudden changes af-
ter every 40 examples. At each time step, a single training example and 100 testing
examples were randomly generated. AQ-PM obtained higher results on total accuracy
of classification than its opponents. The values of accuracy are comparable to those
obtained by the FLORA system. The size of the memory held by AQ-PM was com-
pared with the FLORA2’s requirements. Over the entire learning phase, FLORA2
kept 15 examples, while AQ-PM maintained on average 6.6 examples in the partial
memory. Blasting cap detection and computer intrusion detection was not evaluated
by other researchers, so for the results and more details on these problems see [31].

AQ-PM was extended by combining the method for selecting extreme examples
with the incremental learning system AQ11. The resulting AQ11-PM algorithm was
described in [32]. The AQ11 learning system does not operate in batch mode but
incrementally generates new rules from the existing rules and new training examples.
The standard AQ11 algorithm has no instance memory. It reads each example only
once and drops it after the learning phase. The AQ11’s learning process consists of
three main steps. In the first phase, the algorithm searches for difficult examples in
the new training set—the ones that are misclassified. If a rule covers a new negative
example, then in the second step, the rule is specialized to be consistent using the
AQ11 covering algorithm. In the end, the specialized positive rule is combined with
the new positive training examples and AQ is used to generalize them as much as pos-
sible without intersecting any of the negative rules and without covering any of the
new negative examples. AQ11 uses this same procedure to learn rules incrementally
for both the positive and negative class. Furthermore, this process can be adjusted
to processing multiple classes. In this case, one class is selected and treated as the
positive one, while other labels are treated as negative. The learning process is per-

52 M. Deckert

formed on such partitions. This division is performed for each class present in the new
training set. Because AQ11 has no instance memory, it relies solely on its current set
of rules. Its rules are complete and consistent with respect to the current examples
only. Like every incremental learner it can be susceptible to the ordering effect. This
can be weakened using a partial instance memory. However, certain applications may
require an additional mechanism to remove examples from the partial memory when
they become too old.

AQ11-PM was also tested on three problems: STAGGER concepts, blasting cap
detection and computer intrusion detection. For STAGGER concepts, the algorithm
was compared with the unmodified version of AQ11 and AQ-PM. STAGGER concepts
dataset was the same as the one created for the AQ-PM evaluation. At each time
step, accuracy of classification and the number of examples in partial memory were
recorded. AQ11-PM stores more examples than AQ-PM. However, it was able to
achieve higher predictive accuracy on all the target concepts than its predecessor.
AQ11-PM outperformed FLORA2 on accuracy of classification on the second and
third context, but was weaker on the first one. Regarding memory requirements,
both of the AQ family algorithms stored fewer examples during the evaluation than
FLORA2. Blasting cap detection and computer intrusion detection was not evaluated
by other researchers, so for the results and more details on these problems see [32].

The AQ11-PM algorithm was combined with FLORA’s window adjustment heuris-
tic (Algorithm 3) to adjust dynamically the window over which it retains and forgets
examples. This mechanism will help to deal with changing concepts. The proposal
was described in [33]. AQ11-PM+WAH was evaluated using STAGGER concepts.
It was compared on total accuracy of classification and the number of maintained
examples with AQ11, AQ11-PM and AQ-PM. The results suggest that the partial-
memory classifiers learn faster than do simple incremental systems. AQ11-PM and
AQ11-PM+WAH outperformed AQ-PM on all three concepts. Moreover, AQ-PM,
AQ11-PM and AQ11-PM+WAH are competitive with FLORA2 in terms of predic-
tive accuracy. In addition the AQ systems store fewer examples in the memory. For
more details see [33].

5 FACIL

Previous solutions were not designed to process high-rate data streams. In this en-
vironment classifiers have to operate continuously, processing each item in real time
only once. This forces memory and time limitations. Moreover, real data streams are
susceptible to changes in contexts, so proposed methods should track and adapt to
the underlying modifications. The new incremental algorithm—FACIL was proposed
in [13]. FACIL is an acronym of the words Fast and Adaptive Classifier by Incremen-
tal Learning. It induces a set of decision rules from numerical data streams. This
approach allows the rule to be inconsistent by storing positive and negative examples
covered by it. Those examples lie very near one another—they are border examples.
A rule is inconsistent when it covers both positive and negative examples. The aim
of this system is to remember border examples until a minimum purity of the rule

Incremental Rule-Based Learners for Handling Concept Drift: An Overview 53

is reached. The purity of the rule is defined as a ratio between number of positive
examples covered by the rule to the total number of covered examples. When the
value of purity falls below the minimum threshold, the examples associated with the
rule are used to create new consistent rules. This approach is similar to AQ11-PM
system, however it differs in the way that a rule stores two positive examples for
a negative one. This guarantees that an impure rule is always modified from both
positive and negative examples. Nevertheless, the examples held in memory are not
necessary extreme. Despite the fact that this proposal suffers from the ordering effect,
it does not weaken the learning process.

The initial proposal of FACIL operates on m numerical attributes. Every learning
example is described by a normalized vector [0, 1]m and a discrete value of a class
label. Decision rule r is given by a set of m closed intervals [Ijl, Iju], where l stands
for a lower bound, and u—upper bound [13]. Rules are separated among different
sets according to the appropriate class label. FACIL does not maintain any global
window but each rule has a different set of associated examples. Each rule has its
own window of border examples. Each rule stores a number of positive and negative
examples and also an index of the last covered example. The model is updated every
time a new example becomes available. The pseudocode of FACIL is presented as
Algorithm 6.

FACIL operates as follows. When a new example arrives, the rules associated with
the example’s class label are checked (lines 1–9) and the generalization necessary to
describe the new example is calculated according to the formula (line 2):

Growth(r, xi) =
m∑
j=1

(gj − rj), (5.1)

where gj = max(xij ; Iju) − min(xij ; Ijl) and rj = Iju − Ijl. The measure of
growth favors the rule that involves the smallest changes in the minimum number
of attributes. A rule with the minimum value of growth becomes a candidate (lines
3–4). However, the rule is taken into account as a possible candidate only if the
new example can be seized with a moderate growth (lines 3–4). It occurs when
∀ j ∈ {1..m} : gj − rj ≤ κ, where κ ∈ (0; 1] [13]. If the first rule covering
the new example is found, then the number of positive examples covered by the rule
is increased and the rule’s last-covered-example index is updated (lines 5–7). The
example is added to the rule’s window, if the number of negative examples covered
by the rule increased by one unit (lines 8–9). If any of rules associated with the
example’s class label does not fire for the example (line 10), the rest of the rules with
different class labels are visited (lines 11–21). If a rule with a different label does not
cover the example, the intersection with the candidate is checked (line 21). If there
exists such an intersection, the candidate is rejected (line 24). When the different-
labeled rule covers the example (line 12), its negative support is increased (line 13).
Additionally, the example is added to the rule’s window of examples (line 14). If the
purity of the rule dropped below the minimum value given by the user (line 15), new
consistent rules are created from examples associated with the initial rule and added
to the model (lines 16–17). The old rule is marked as unreliable (line 18) and cannot
be used in the generalization process, even for rules with different labels. A window

54 M. Deckert

Algorithm 6: FACIL algorithm

Input : e—a new learning example;
pmin—a minimum purity of a rule;
κ—a moderate growth threshold;
RS—current set of rules

Output: RS′—modified set of rules

1 foreach rule rp with same class label as example e do
2 G = compute Growth(rp, e);
3 if (G is minimum) and (G is moderate) then
4 candidate = rule rp;
5 if rule rp covers example e then
6 increase positive support of rule rp;
7 update rule’s rp index of last covered example;
8 if rule’s rp negative support has increased then
9 add example e to rule’s rp window of examples;

10 if example e is not covered by a rule from positive class label then
11 foreach rule rn with different class label as example e do
12 if example e is covered by a rule rn from negative class label then
13 update negative support of the rule rn;
14 add example e to the negative rule’s rn window;
15 if purity of the rule rn < pmin then
16 Rc = induce new consistent rules from rn;
17 RS′ = RS ∪Rc;
18 mark rule rn as unreliable;
19 reset rule’s rn window of examples;

20 else
21 intersection = calculate intersection of rule rn with the candidate;

22 if example e is not covered by a rule from negative class label then
23 if intersection 6= ∅ then
24 reject candidate;
25 Re = generate maximally specific rule to describe example e;
26 RS′ = RS ∪Re;

27 else if intersection = ∅ then
28 G = generalize candidate with respect to example e;
29 RS′ = RS ∪G;

30 remove unnecessary rules from RS′;
31 update window with learning examples for each rule in RS′;
32 Return RS′

Incremental Rule-Based Learners for Handling Concept Drift: An Overview 55

of examples connected with the unreliable rule is reset (line 19). Afterwards, if the
intersection of the candidate with different labeled rules is empty, then the candidate
rule is generalized (lines 27–29). If there exists no rule that covers the example and
there is no candidate for generalization, then a maximally specific rule to describe the
new example is added to the appropriate set of rules (lines 22–26). Rules can also be
deleted from the appropriate sets (line 30). A rule is removed if it is unreliable with a
support smaller than the support of any rule generated from it. The second condition
for rule removal is when the number of times the rule prevented generalization of a
different label rule is greater than its support. FACIL is also equipped in a forgetting
mechanism for dropping learning examples (line 31). This mechanism can be either
explicit or implicit. Examples which are older than a user’s defined threshold are
deleted—this is explicit forgetting. Implicit forgetting takes place when examples are
no longer relevant—they no longer lie on any of the rules boundary.

Like every rule-based classifier, FACIL is supplemented with a classification strat-
egy. A new test example is classified by rules that cover it. Unreliable rules that cover
the example are rejected. Reliable rules are used to classify the test example. Con-
sistent rules classify new examples by strict matching. Inconsistent rules acts like the
nearest neighbor algorithm and classify the new example by its distance. The authors
do not explain how exactly it is performed. Probably, they calculate the Euclidean
distance between the test example and the rule’s boundaries. In the case when no
rule covers the example, it is classified to the label associated with the reliable rule
with the minimal value of growth and an empty intersection with any other different
label rules.

The initial version of FACIL was evaluated on 12 real datasets from the UCI
repository1 and on a synthetic data stream generated from a moving hyperplane.
In case of real data, a concept drift is not present. During the experiments the
total accuracy of classification, the learning time and the number of induced rules
was recorded. FACIL was compared with the C4.5Rules algorithm. In half of the
real problems, FACIL obtains better results on the classification accuracy. Because
FACIL is a single-pass solution, the processing time is always significantly shorter
than for multi-pass C4.5Rules. For the hyperplane data stream, authors evaluated
the computational cost as a function of the number of attributes. FACIL was not
compared with any other existing stream mining solution. For detailed results see [13].

The initial version of FACIL was extended to process symbolic attributes in [14].
The formula for calculating the growth of a rule was changed in a way to process
nominal attributes: Growth(r, x) =

∑m
j=1 ∆(Tj , xj), where for numeric attributes:

∆(Tj , xj) = min(|Ijl − xj |; |xj − Iju|) and for nominal attributes: if example’s
attribute value xi is covered by the rule then ∆(Tj , xj) = 0, in the opposite case—
∆(Tj , xj) = 1

|Domain(attributej)| .

The extension of FACIL was tested on a moving hyperplane problem. Again, the
authors focused on evaluating the computational cost as a function of the number of
attributes. The total accuracy of classification drops with the number of attributes.
The processing time increases with the growth of the hyperplane problem. For detailed
results see [14].

1see http://archive.ics.uci.edu/ml/

56 M. Deckert

6 VFDR

The Very Fast Decision Rules (VFDR) algorithm proposed by Gama and Kosina
in [19] was also designed for high-speed massive data streams. It reads every learning
example only once and induces an ordered or an unordered list of rules. VFDR enables
processing both nominal and numeric attributes. The algorithm starts with an empty
rule set RS and an empty default rule {} → L. L is a data structure that contains
the necessary information for classification of new examples and includes the statistics
used for extending the rule. Each rule r is associated with the corresponding data
structure Lr. Every Lr (also L) stores: the number of examples covered by rule r,
a vector to calculate the probability of observing examples of class ci, a matrix to
calculate the probability of observing value vi of a nominal attribute ati per class
and a b-tree to compute the probability per class of observing values greater than
vj for a numerical attribute ati [19]. In general, Lr accumulates sufficient statistics
to compute the entropy for every label of a decision class. Lr is updated when its
corresponding rule covers a labeled example. The pseudocode of VFDR is presented
as Algorithm 7.

VFDR operates as follows. When a new learning example e is available all decision
rules are visited (lines 1–15). If rule r covers example e (line 2), its corresponding
structure Lr is updated (line 3). The Hoeffding bound states the number of examples
after which a rule set RS should be updated either by extending some existing rule
or inducting a new rule (line 4). The Hoeffding bound guarantees that with the
probability 1 − δ the true mean of a random variable x with a range R will not
differ from the estimated mean after n independent observations by more than ε =√

R2∗ln(1
δ)

2∗n [19]. In the next step, the initial value of the entropy is calculated from

the statistics gathered in Lr (line 5). If the value of entropy exceeded the Hoeffding
bound, then a rule should be enhanced (line 7). The rule is extended as follows. For
each attribute and for each of this attribute’s values that were observed in more than
10% of examples, the value of the split evaluation function is computed (lines 8–13).
If the value of the interesting measure for the best split is better than for not splitting,
the rule is extended with a new selector obtained from the best split (lines 12–13).
The selector that minimizes the entropy of the class labels of the examples covered
by the rule is added to the previous elementary conditions of the rule. The class label
of the rule is then assigned according to the majority class of observations. VFDR
can learn an ordered or unordered set of decision rules. In the former case, every
labeled example updates the statistics of the first rule that covers it (line 14–15). For
the latter—every rule that covers the example is updated. Those sets of rules are
learned in parallel. In case when none of the rules cover example e (line 16), the
default rule is updated (line 17). Then, if the number of examples in L exceeds the
minimum number of examples obtained from the Hoeffding bound, new decision rules
are induced from the default rule—using the same mechanism of a rule’s growth as
described earlier (lines 18–19).

VFDR, as every rule-based classifier, is equipped with a classification strategy. The
simplest strategy uses the stored distribution of classes—an example is classified to
the class with the maximum value of probability. A more sophisticated strategy bases

Incremental Rule-Based Learners for Handling Concept Drift: An Overview 57

Algorithm 7: Very Fast Decision Rules algorithm

Input : e—a new learning example;
RS—current set of rules;
ordered—flag indicating induction of ordered set of rules;
Smin—a minimum number of examples from Hoeffding bound;
δ—threshold for probability used in Hoeffding bound;
SEF—a split evaluation function;

Output: RS′—modified set of decision rules

1 foreach rule r ∈ RS do
2 if r covers e then
3 update statistics in Lr;
4 if number of examples in Lr > Smin then
5 ent0 = calculate the entropy from Lr;
6 compute Hoeffding bound;
7 if ent0 >Hoeffding bound then
8 foreach attribute ati do
9 entij - the best split from SEF on attribute ati and value vj ;

10 if (entij < entbest) and (vj observed > 10% examples) then
11 entbest = entij ;

12 if (ent0 − entbest) >Hoeffding bound then
13 r = r ∪ {ati = vj};
14 if ordered == true then
15 break;

16 if none of the rules covers e then
17 update statistics L of the default rule;
18 if number of examples in L > Smin then
19 RS′ = RS ∪ a rule induced from default rule;

20 Return RS′

58 M. Deckert

on the Bayes rule with the assumption of attribute independence for the class. The
Naive Bayes strategy uses the prior distribution of the classes and also the conditional
probabilities of the attribute-value pairs given the class. As a result, for each testing
example e = (v1, ..., vj), the probability that example e belongs to decision class ck
is P (ck|e) ∝ P (ck)

∏
jP (vj |ck) [19]. Thanks to using this strategy more information

available with each rule is exploited. An example is classified to the class with the
maximum value of the posteriori probability. In case of the ordered set of rules only
the first rule that covers an example is fired. Using the unordered set of rules—results
returned by all rules that match the example are combined using weighted voting.
This type of voting assumes that not all voters are equal. Instead, they are diversified
by giving them different amounts of weights. The authors did not provide information
on how weights are assigned to each of the decision rules.

VFDR was tested on six different data streams: disjunctive concepts, hyperplane,
LED, SEA, STAGGER, and Waveform. The authors tested two different classification
strategies. Usage of the Bayes theorem improves the predictive capabilities of the
algorithm. Authors also compared an ordered versus an unordered set of rules. The
experimental evaluation showed that unordered rule set is more competitive than the
ordered one with respect to the accuracy of classification. In the end, VFDR (with
the Bayes classification strategy and an unordered set of rules) was compared with
VFDT and C4.5Rules. VFDR is much more efficient than C4.5Rules in terms of
memory and processing time. It also obtained competitive results against VFDT. For
more details see [19].

The initial version of VFDR was extended to deal with multi-class problems in [26].
The proposed algorithm VFDR-MC decomposes a multi-class problem into a set of
two-class problems and induces a set of discriminative rules for each binary problem.
VFDR-MC applies one versus all strategy in which examples of one class are positive
and other are negative. It considers a rule expansion for each of the classes observed
with current rule. The expansion of a rule is different for the default rule and for
the already existing rule. It also depends on the type of generated rule set: ordered
or unordered. The default rule is expanded to a new rule with a literal for which
a gain function, adopted from FOIL classifier, obtains the best value. The rule’s
decision class is indicated by the class with minimum frequency among those that
satisfy the Hoeffding bound condition. The ordered strategy stops after finding the
first candidate rule that is better than the previous one. The unordered strategy
checks all possible expansions for every decision class. In case of extending a rule
that already exists, the procedure also depends whether the ordered or unordered set
of decision rules is induced. In case of ordered set only literals for positive class are
tested. For unordered set the decision rules the class of expanded rule is maintained
as positive for the first calculations of the gain measure. Next, computations for other
classes set as positive ones are performed. This allows to produce more than one rule
but not always for all the available decision classes. For more details see [26].

VFDR-MC was tested on six different data streams: KDDCup99, covtype, hy-
perplane, SEA, LED, and Random Tree. The authors observed that the unordered
version obtained generally better results of classification accuracy than the ordered
one. Moreover, unordered VFDR-MC mostly outperforms base version of VFDR on

Incremental Rule-Based Learners for Handling Concept Drift: An Overview 59

multi-class data sets. Learning time for ordered rule set is almost the same as in
case of creation of the Hoeffding Tree. In case of unordered set of decision rules the
learning time grows with the number of rules. For more details see [26].

VFDR was also improved in order to handle time changing data. The resulting
algorithm Adaptive Very Fast Decision Rules (AVFDR) was described in [27]. AVFDR
extends VFDR-MC with explicit drift detection. Each rule in the set of decision rules
is equipped in a drift detection method, which tracks the performance of the rule
during learning. Applied drift detector is presented as Algorithm 8. For every learning
example covered by the rule, the rule updates its error of classification. Moreover,
the drift detector manages two additional statistics: errormin and stddevmin. Those
registers are updated if for given learning example e errore + stddeve < errormin +
stddevmin. The flag indicating type of change for given rule can take one of three
values: None, Warning or Drift. If the rule achieved warning level, then the rule’s
learning process is stopped until the flag is set to None again. In case of Drift level,
the rule is so weak that it is removed from the set of decision rules. This helps to
keep the final set of decision rules effective and up-to-date. For more details see [27].

Algorithm 8: AVFDR Drift Detection Method

Input : r—tested decision rule;
e—current learning example;

Output: flag ∈ {None,Warning,Drift}—flag indicating type of change

1 flag = None;
2 compute error of classification errore for given learning example e with its

standard deviation stddeve.;
3 if (errore + stddeve) < (errormin + stddevmin) then
4 errormin = errore;
5 stddevmin = stddeve;

6 if (errore + stddeve) ≥ (errormin + 3 ∗ stddevmin) then
7 flag = Drift;
8 else if (errore + stddeve) ≥ (errormin + 2 ∗ stddevmin) then
9 flag = Warning;

10 Return flag

AVFDR was tested on five artificial data streams: Hyperplane, SEA, LED, RBF,
and Waveform and six real datasets: KDDCup99, Covtype, Elec, Airlines, Connect-4,
and Activity. The results obtained on artificial data show that AVFDR works best
for changing environments. The accuracy of classification of VFDR’s base version
decreases with time. In case of real datasets, AVFDRu obtains competitive results on
the accuracy of classification with a lower size of the induced model. For more details
see [27].

60 M. Deckert

7 Conclusions

Mining data streams recently became a very popular topic of research. Data streams
are susceptible to changes in the hidden context, producing what is generally known
as concept drift. There exist two main types of concept drift: sudden and gradual.
However, there are also other types like recurring context and two cases, to which a
good classifier should be resistant: blips and noise. Learning from non-stationary en-
vironments is rather a new discipline, but there already exist algorithms that attempt
to solve this problem. They can be divided into two main groups: trigger-based and
evolving methods. In this paper four key rule-based online algorithms proposed for
mining data streams in the presence of concept drift were presented. First, FLORA
was described—a first family of algorithms that flexibly react to changes in concepts,
can use previous hypotheses in situations when context reappears and are robust to
noise in data [44]. Then, algorithms from the AQ family were presented with their
modifications. AQ-PM [31] is a static learner that selects extreme examples from
rules’ boundaries for each incoming batch of data and stores them in the partial
memory. AQ11-PM [32] is a combination of the incremental AQ11 algorithm with a
partial memory mechanism. AQ11-PM+WAH [33] is extended with a heuristic for
a flexible size of the window with stored examples. The FACIL algorithm operates
similarly to AQ11-PM [13]. However, it differs in the way that examples stored in the
partial memory do not have to be extreme ones. Those three main algorithms were
not tested on huge datasets. For massive high-speed data streams a new algorithm
called VFDR was proposed in [19]. It induces an ordered or an unordered sets of
decision rules that are efficient in terms of memory and processing time.

Those solutions use the same representation of knowledge—decision rules, how-
ever they operate in a differet way. These four algorithms can be compared on several
criteria, like the type of data. FLORA is restricted only to nominal attributes, where
AQ11-PM+WAH, FACIL and VFDR process both nominal and numerical attributes.
On the other hand, FLORA, AQ11-PM+WAH and FACIL are adjusted to deal with
concept drift, where VFDR are suitable only to stationary environments. Moreover,
FLORA was designed and tested on different types of concept drift: sudden, recur-
ring, and noise. Unfortunately, the first three solutions were not tested on massive
data streams with concept drift. Two of them (FLORA and AQ11-PM+WAH) were
tested on STAGGER concepts with 120 learning examples, where FACIL was evalu-
ated on the moving hyperplane problem. FLORA and AQ11-PM+WAH solve binary
classification problem, but the latter one can be extended for the multi-class problem.
FACIL and VFDR do not have any restrictions on the number of decision classes.
The four proposals differ also on the type of memory that they maintain. FLORA
remembers only a window of the most recent examples. AQ11-PM+WAH has a
partial memory with extreme examples that lie on the boundaries of induced deci-
sion rules. Additionally, application of WAH heuristic introduced a global learning
window, outside which old examples are forgotten. FACIL also maintains a partial
memory but the stored examples do not have to be extreme ones. Every decision rule
has its own window of learning examples. Moreover, it remembers more examples
than its predecessor (it stores two positive per one negative example). On the other

Incremental Rule-Based Learners for Handling Concept Drift: An Overview 61

hand, VFDR has no instance memory—it only maintains a set of decision rules with
their corresponding data structures Lr containing all necessary statistics. Knowledge
representation is also maintained in a different way. FLORA stores the conditional
part of rules in three description sets: ADES, PDES, and NDES. AQ11-PM+WAH
induces a classical unordered set of decision rules. In case of FACIL, rules consist of
all conditional attributes, which define an m-dimensional space (intervals). VFDR is
the only algorithm that can induce either an unordered or an ordered set of decision
rules. Its rules have to be as short as possible. Another criterion that differs the
four described algorithms is the way of use of induced decision rules for new exam-
ples’ classification. Moreover, all algorithms were evaluated in different setups and
on different data sets, so the obtained results cannot be compared with each other.

It is difficult to state which of the described algorithms is the best. They were intro-
duced in different times and were tested on different data sets. It would be interesting
to perform a comparison of those solutions on many data streams containing different
types of concept drift with respect to the total accuracy of classification, the mem-
ory usage and the processing time. Nowadays the MOA environment—a framework
for data stream mining, is very helpful. It contains a collection of machine learning
algorithms, data generators and tools for evaluation. More can be found about this
project in the literature [4] and on the MOA project website2. MOA can be easily
extended with new mining algorithms, but also with new stream generators or eval-
uation measures. Unfortunately the implementations of FLORA, AQ11-PM+WAH,
FACIL, and VDFR are not publicly available, hindering such a comparison at present.

References

[1] An A., Learning Classification Rules from Data, Computers and Mathematics
with Applications, vol. 45, p. 737-748, 2003.

[2] Baena-Garcia M., Del Campo-Avila J., Fidalgo R., Bifet A., Early Drift Detec-
tion Method, Proceedings of the 4th ECML PKDD International Workshop on
Knowledge Discovery from Data Streams, p. 77-86, Berlin, Germany, 2006.

[3] Bakker J., Pechenizkiy M., Food Wholesales Prediction: What is Your Baseline?,
Proceedings of the 18th Symposium on Methodologies for Intelligent Systems,
ISMIS 2009, Prague, Czech Republic, LNCS, vol. 5722, p. 493-502, 2009.

[4] Bifet A., Holmes G., Pfahringer B., Kranen P., Kremer H., Jansen T., Seidl
T.: MOA: Massive Online Analysis a Framework for Stream Classification and
Clustering, Workshop on Applications of Pattern Analysis, HaCDAIS, 2010.

[5] B laszczyński J., Stefanowski J., Zaja̧c M., Ensembles of Abstaining Classifiers
Based on Rule Sets, Proceedings of the 18th International Symposium on Method-
ologies for Intelligent Systems, ISMIS 2009, Prague, Czech Republic, LNCS, vol.
5722, p. 382-391, 2009.

2see: http://moa.cs.waikato.ac.nz/

62 M. Deckert

[6] Cendrowska J., PRISM An Algorithm for Inducing Modular Rules, International
Journal Man-Machine Studies, vol. 27, p. 349-370, 1987.

[7] Cestnik B., Estimating Probabilities: A Crucial Task in Machine Learning, Pro-
ceedings ECAO 1990, Stockholm, Sweden, 1990.

[8] Clark P, Boswell R., Rule Induction with CN2: some recent improvement, Pro-
ceedings of 5th European Working Session on Learning, ESWL 1991, Porto, Por-
tugal, p. 151-163, 1991.

[9] Clark P., Niblett T., The CN2 Induction Algorithm, Machine Learning, vol. 3,
p. 261-283, 1989.

[10] Deckert M., Batch Weighted Ensemble for Mining Data Streams with Concept
Drift, Proceedings of the 19th International Symposium on Methodologies for
Intelligent Systems, ISMIS 2011, Warsaw, Poland, LNCS, vol. 6804, p. 290-299,
2011.

[11] Deckert M., Stefanowski J., Comparing Block Ensembles for Data Streams with
Concept Drift, Proc. of Workshop Mining Complex and Stream Data, ADBIS
2012, Poznań, Poland, AISC, vol. 185, p. 69-78, 2012.

[12] Domingos P., Hulten G., Mining High-Speed Data Streams, Proceedings of the
KDD 2000, ACM Press, p. 71-80, 2000.

[13] Ferrer-Troyano F.J., Aguilar-Ruiz J.A., Riquelme J.C., Incremental Rule Learn-
ing and Border Examples Selection from Numerical Data Streams, Journal of
Universal Computer Science, vol. 11(8), p. 1426-1439, 2005.

[14] Ferrer-Troyano F.J., Aguilar-Ruiz J.A., Riquelme J.C., Data Streams Classifica-
tion by Incremental Rule Learning with Parametrized Generalization, Proceed-
ings of ACM Symposium on Applied Computing 2006, SAC 2006, p. 657-661,
ACM, 2006.

[15] Fürnkranz J., Separate-and-Conquer Rule Learning, Artificial Intelligence Re-
view, vol. 13, p.3-54, 1999.

[16] Fürnkranz J., Gamberger D., Lavrac̆ N., Foundations of Rule Learning, Cognitive
Technologies, 2012.

[17] Gama J., Medas P., Castillo G., Rodrigues P., Learning with Drift Detection,
Proceedings of Brazilian Symposium on Artificial Intelligence, SBIA 2004, LNAI,
vol. 3171, p. 286-295, Springer-Verlag, 2004.

[18] Gama J., Knowledge Discovery from Data Streams, Chapman and Hall/CRC
2010.

[19] Gama J., Kosina P., Learning Decision Rules from Data Streams, Proceedings of
22th International Joint Conference on Artificial Intelligence, IJCAI 11, vol. 2,
p. 1255-1260, AAAI Press, 2011.

[20] Giraud-Carrier C., A Note on the Utility of Incremental Learning, AI Commu-
nications, vol. 13, p. 215-223, 2000.

Incremental Rule-Based Learners for Handling Concept Drift: An Overview 63

[21] Greco S., S lowiński R., Stefanowski J., Żurawski M., Incremental versus Non-
incremental Rule Induction for Multicriteria Classification, Transactions on
Rough Sets II, LNCS, vol. 3135, p. 33-53, 2004.

[22] Grzymala-Busse J.W., LERS - A System for Learning from Examples Based on
Rough Sets, Intelligent Decision Support. Handbook of Applications and Advances
of the Rough Sets Theory, p. 3-18, 1992.

[23] Grzymala-Busse J.W., Selected Algorithms of Machine Learning from Examples,
Fundamenta Informaticae, vol. 18, p. 193-207, 1993.

[24] Grzymala-Busse J.W., Managing Uncertainty in Machine Learning from Exam-
ples. Proceedings of 3rd International Symposium in Intelligent Systems, p. 70-84,
1994.

[25] Hulten G., Spencer L., Domingos P., Mining Time-changing Data Streams, Pro-
ceedings of the KDD 2001, ACM Press, p. 97-106, 2001.

[26] Kosina P., Gama J., Very Fast Decision Rules for Multi-class Problems, Proceed-
ings of the 2012 ACM Symposium on Applied Computing, New York, USA, p.
795-800, 2012.

[27] Kosina P., Gama J., Handling Time Changing Data with Adaptive Very Fast
Decision Rules, Proceedings of the 2012 European conference on Machine Learn-
ing and Knowledge Discovery in Databases, ECML/PKDD 2012, Bristol, United
Kingdom, vol. 1, p. 827-842, 2012.

[28] Kuncheva L. I., Classifier Ensembles for Changing Environments, Proceedings of
5th International Workshop on Multiple Classifier Systems, MCS 04, LNCS, vol.
3077, p. 1-15, Springer-Verlag, 2004.

[29] Kuncheva L. I., Classifier Ensembles for Detecting Concept Change in Streaming
Data: Overview and Perspectives, Proceedings 2nd Workshop SUEMA 2008,
ECAI 2008, p. 5-10, Patras, Greece, 2008.

[30] Maison R., Zakrzewicz M., Content-based Load Shedding in Multimedia Data
Stream Management System, Foundations of Computing and Decision Sciences,
vol. 37(2), p. 79-95, 2012.

[31] Maloof M., Michalski R., Selecting Examples for Partial Memory Learning, Ma-
chine Learning, vol. 41, p. 27-52, Kluwer Academic Publishers, 2000.

[32] Maloof M., Michalski R., Incremental Learning with Partial Instance Memory,
Artificial Intelligence, vol. 154, p. 95-126, Elsevier, 2003.

[33] Maloof M., Incremental Rule Learning with Partial Instance Memory for Chang-
ing Concepts, Proceedings of the International Joint Conference on Neural Net-
works 2003, IJCNN-03, vol. 4, p. 2764-2769, IEEE Press, 2003.

[34] Michalski R.S., A Theory and Methodology of Inductive Learning, Machine
Learning: An Artificial Intelligence Approach, p. 83-134, 1983.

64 M. Deckert

[35] Michalski R.S., Mozetic I., Hong J., Lavrac N., The AQ15 Inductive Learning
System: An Overview and Experiments, Report 1260, Department of Computer
Science, University of Illinois, 1986.

[36] Nishida K., Yamauchi K., Omori T., ACE: Adaptive Classifiers-Ensemble Sys-
tem for Concept-Drifting Environments, Multiple Classifier Systems, LNCS, vol.
3541, p. 176-185, 2005.

[37] Schlimmer J., Granger R., Incremental Learning from Noisy Data, Machine
Learning, vol. 1(3), p. 317-357, 1986.

[38] Shannon C.E., A Mathematical Theory of Communication, Bell System Technical
Journal, vol. 27(3), p. 379-423, 1948.

[39] Stefanowski J., The Rough Set Based Rule Induction Technique for Classification
Problems. Proceedings of the 6th European Conference on Intelligent Techniques
and Soft Computing, EUFIT-98, p. 109-113, 1998.

[40] Stefanowski J., Algorytmy Indukcji Regu l Decyzyjnych w Odkrywaniu Wiedzy
[in Polish], Habilitation thesis, Rozprawy series, vol. 361, Poznań University of
Technology, 2001.

[41] Sulzmann J.N., Fürnkranz J., A Study of Probability Estimation Techniques
for Rule Learning, From Local Patterns to Global Models. Proceedings of the
ECML/PKDD 2009 Workshop, p. 123-138, 2009.

[42] Tsymbal A., The Problem of Concept Drift: Definitions and Related Work, Tech-
nical Report, Department of Computer Science, Trinity College Dublin, Ireland,
2004.

[43] Wang H., Fan W., Yu P.S. and Han J., Mining Concept-drifting Data Streams
Using Ensemble Classifiers, Proceedings ACM SIGKDD, p. 226-235, 2003.

[44] Widmer G., Kubat M., Learning in the Presence of Concept Drift and Hidden
Contexts, Machine Learning, vol. 23, p. 69-101, 1996.

[45] Zliobaite I., Learning Under Concept Drift: An Overview, Technical Report,
Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania,
2009.

[46] Zliobaite I., Bakker J., Pechenizkiy M., OMFP: An Approach for Online Mass
Flow Prediction in CFB Boilers, Discovery Science, p. 272-286, 2009.

[47] Zliobaite I., Bakker J., Pechenizkiy M., Towards Context Aware Food Sales Pre-
diction. In Proceedings of the 3nd International Workshop on Domain Driven
Data Mining (DDDM’09), IEEE International Conference on Data Mining
ICDM’09, Miami, Florida, USA, p. 94-99, 2009.

Received October, 2012

Incremental Rule-Based Learners for Handling Concept Drift: An Overview 65

