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Abstract. The problem of DNA sequence assembly is well known for its high
complexity. Experimental errors of different kinds present in data and huge sizes
of the problem instances make this problem very hard to solve. In order to deal with
such data, advanced efficient heuristics must be constructed. Here, we propose a new
approach to the sequence assembly problem, modeled as the problem of searching for
paths in an acyclic digraph. Since the graph representing an assembly instance is not
acyclic in general, it is heuristically transformed into the acyclic form. This approach
reduces the time of computations significantly and allows to maintain high quality
of produced solutions.
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1 Introduction

The DNA sequence assembly, one of the most important problems of computational
biology, is well known for its high complexity both on biological and computational
levels. Huge amount of data, which are erroneous and incomplete, make the problem
very hard to solve. Many teams worldwide put their efforts to provide time- and
memory-efficient heuristics that produce satisfying results (see for example [13, 9, 12]).

The input data of the assembly problem come from the previous stage of the
process of reading genetic information of organisms, namely the DNA sequencing.

aInstitute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan,
Poland

bInstitute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
cLuxembourg Centre for Systems Biomedicine, University of Luxembourg
∗The corresponding author: marta@cs.put.poznan.pl

F O U N D A T I O N S   O F   C O M P U T I N G   A N D   D E C I S I O N   S C I E N C E S  
Vol. 38 (2013)                             No. 1
 
DOI: 10.2478/v10209-011-0019-4



A few years ago a new biochemical method of DNA sequencing, 454 sequencing owned
by Roche company (formerly by 454 Life Sciences Corporation), was introduced [10].
It gives highly reliable output of relatively low cost, in short time.

The specificity of the data from the 454 sequencing requires a specialized assembly
algorithm. The aim of this paper is to present such an algorithm, partially imple-
mented for GPU, which deals well with these data and outperforms other methods
known from the literature. The algorithm is a heuristic based on a graph model,
the graph being built on the set of input sequences. The novelty is present in the way
the solution is searched for in the graph. Here, we utilize the polynomially-solvable
problem of searching for paths in an acyclic digraph, unlike in common approaches
to DNA assembly, where the graph is very tangled in general. Our graph also is not
acyclic at the beginning, thus we use a heuristic transformation into the acyclic form.

The organization of the paper is as follows. After an introduction to the assembly
problem and the 454 sequencing approach in Section 2, the description of the graph
model is presented in Section 3. Section 4 contains details of the assembly algorithm.
In Section 5, results of computational tests on real-world biological data are presented,
together with a comparison of other assembly programs. The conclusion is provided
in Section 6.

The source code of the algorithm is available at http://bioserver.cs.put.poznan.pl/
#/Research/Download/SR-ASM/37.

2 The assembly problem

The process of reading genomic sequences can be divided into three stages depending
on the length of the analyzed sequence: sequencing — which is determining a sequence
of nucleotides in a DNA fragment of a length up to one thousand nucleotides, assem-
bly — combining the sequenced fragments into longer contigs (continuous regions
in genomes), and mapping — placing the assembled contigs in proper chromosome
regions. For smaller genomes (viruses, bacteria) the stage of mapping is omitted.
The whole process of reading genomic sequences is fundamental and underlies further
genomic analysis, like understanding gene functions and phylogenetic relationship
of species.

The problem of DNA sequence assembly can be generally defined in the follow-
ing way. We have a multiset of sequences over alphabet {‘A’, ‘C’, ‘G’, ‘T’} as in-
put. These letters stand for four nucleotides composing DNA chains. The input
sequences may have different lengths (although several next-generation sequencers
produce DNA fragments of the same length) and they are outcomes of the DNA se-
quencing process, performed by traditional gel-based laboratory experiments or by
modern next-generation sequencers (454 Roche, Illumina, SOLiD). Unfortunately,
the results of the sequencing usually contain misreadings and other errors, coming
from biochemical steps as well as from limitations of a given sequencing program.
Thus, inexact matches of sequences have to be allowed at the assembly stage. The in-
put data come from both strands of an assembled fragment of the DNA helix. Thus,
some of the input sequences have the opposite orientation than the others, and they
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should be matched in accordance with the rule of complementarity. Complementarity
means, that A in one strand has T at the same position in the other strand, and C
has G, respectively. For example, the reverse complement for AACATG is CATGTT.
The goal of the assembly is to compose the input sequences into one sequence, or
a series of contigs, in a proper order, where the criterion of evaluation of the solution
can be its length (minimized during computations) or its likelihood (maximized).
Example 1 provides an illustration of the general sequence assembly problem with
sequences on input containing errors and coming from both DNA strands.

Example 1. Let a set of the input sequences for the DNA assembly process be
{AGCA, ATCAAGCAAC, GACTC, TAGAA, TTTGCC}. Due to the fact that we as-
sume that the sequences may contain misreadings, we must allow for inexact matches.
Furthermore, as they may come from any of the DNA strands, appearance of some
reverse complements in the output is permitted. One of the possible results is shown
in Figure 1. In printing the resulting sequence (the one above the line) the major-
ity rule has been used, i.e. the character appearing the greatest number of times in
a column is the winner.

TTAGCAAGGAACTCTA

TTTGCC GA-CTC

AGCA TTCTA

ATCAAGCAAC

Figure 1: A possible assembly of sequences from Example 1

The DNA sequence assembly problem is strongly NP-hard, even in the case of data
without errors and derived from one DNA strand (compare with the shortest common
superstring problem).

In the approach of 454 Roche, the sequencing process is performed automati-
cally by a sequencer, which produces a set of DNA reads (DNA fragments) with
great average depth of coverage and high single read accuracy [10]. Additionally to
the reads, one gets rates of confidence for every nucleotide. Similarly as in other
sequencing methods, the produced reads come from both DNA strands and include
insertions, deletions, and substitutions of nucleotides with reference to the source.
Dealing with these errors became the main goal of algorithms solving the computa-
tional part of the assembly process. Consequently, they cannot avoid incorporating
some of these errors into their results.

3 Graph model

In a graph-theoretical model of the DNA assembly problem, used also in our approach,
every DNA fragment (read) is represented by a vertex in a directed weighted graph.
Two vertices are connected by an arc if they are likely to be neighbors in a potential
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solution. It means that the fragments represented by the vertices overlap more or
less accurately. Algorithms of more theoretical nature allow only for exact matches
of the overlapping fragments. In practice, overlaps which are admitted are those
whose number (or percentage) of mismatches between paired nucleotides is below
an acceptable threshold. It can be calculated by classical dynamic programming
algorithm for semi-global alignment (a variant of [11]). Weights on the arcs represent
then the score of the alignment — the higher, the better.

An example of such a graph is shown in Figure 2. This graph is complete, but in
practice — when a threshold on the score is defined — the weaker arcs are not present.
Another practical problem, which is lack of knowledge which DNA fragments should
be replaced by their reverse complements, is solved by doubling the graph. Every
vertex has then a dual vertex standing for the reverse complement of its sequence,
and arcs are added similarly. Finally, when searching for a path, only one vertex from
every pair can be visited.

Example 2. In Figure 2 a graph modeling the following set of sequences is present:
{ACCGTGT, CGGTGTG, GGTGTGG, GTGCTGGG}. To simplify the example,
all sequences are assumed to belong to the same DNA strand (no reverse complement
is taken into account), what in general cannot be done. Weights on arcs correspond
to the scores of semi-global alignment of pairs of sequences, where every match of
nucleotides gets +1 and every mismatch or gap gets −1. This instance can be assem-
bled into one consensus sequence ACCGGTGTGGG, which can be obtained from the
Hamiltonian path with the highest total weight.

CGGTGTG

GTGCTGGGGGTGTGG

ACCGTGT 0

4

3

5

3 0 4 2

0

3
6

1

Figure 2: A graph representing the instance from Example 2

All of these properties imply that exact algorithms for the problem, or even heuris-
tics, are highly inefficient for the usual number of input fragments — hundreds of thou-
sands and more. A complete graph on n vertices requires O(n2) memory, hence some
reduction in size is necessary. In our approach, a heuristic procedure chooses pairs
of fragments which look similarly and computes alignments only for them. The incom-
plete graph makes no longer possible to find one continuous resulting path (another
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reason can be incompleteness of information coming from the sequencing stage). Now,
instead of looking for one path in a graph with the highest score, the algorithm needs
to look for many long and good paths. This problem is similar to the minimum
path covering problem, which is NP-hard in general but easy for acyclic digraphs
(see e.g. [1]).

There are, however, some differences in the path covering problem in DAGs and
the model used for solving the DNA assembly problem. The main issue is that
the assembly graph is not acyclic. The second problem concerns dual vertices: only
one node from a pair can be used. To make the graph acyclic we propose the following
heuristic approach. First of all, after computing semi-global alignments, results with
scores that indicate many errors (more than 8) are rejected. Setting the threshold to
a lower value cannot be done due to sequencing errors existing in the input data. This
reduces the number of cycles in the graph, but does not remove all of them. Then,
all strongly connected components are separately transformed into acyclic forms.

To handle this task, two heuristic methods have been checked. The first one is
an intuitive approach: removing the worst arc from every strongly connected compo-
nent as long as it contains a cycle. The second one is more sophisticated: from every
strongly connected component one vertex is chosen and split into two vertices, vs with
all arcs leaving the initial vertex and vt with all incoming arcs. Next, the max-flow
min-cut algorithm [7] is run to find a minimal cut needed to disconnect the source vs
and the sink vt.

The second problem with dual vertices is solved by a similar heuristic procedure.
Directions of arcs are temporarily disregarded (arcs replaced by pairs of antiparallel
arcs) and if in any connected component there are both vertices from a dual pair,
they become the source and the sink, and a cut disconnecting them is looked for.

At this stage the algorithm for finding minimum path covering can be applied.
Using dynamic programming we get paths from the longest to the shortest. The al-
gorithm guarantees that a current path is as long as possible, but henceforth it can
result in decreased length of next paths.

4 Algorithm

We have recently invented a new assembly algorithm working very well with the data
from 454 sequencer [2], but consuming noticeable amount of time. In this algorithm
our ideas from previous approaches to DNA sequencing by hybridization were partially
applied [3, 6]. Now, basing on a series of tests on raw data coming from a real exper-
iment with 454 sequencer, we decided to implement our new algorithm with partial
parallelization for GPU. Using a GPU as a computational platform is relevant, due
to huge amount of data being the input for the assembly process; many independent
tasks — here alignment of pairs of sequences — can be executed simultaneously.

A set of sequences which are a few hundred nucleotides long and rates of con-
fidence for every nucleotide from the set constitute the algorithm’s input. As the
sequences can come from either of the two complementary strands of the analyzed
DNA fragment, at the beginning of the algorithm the input set is doubled by reverse
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complements of the input sequences, which are added to the data. (Later on, only
one of the complementary fragments is used in the assembly process, as described
in the previous section.) The rates of confidence constitute positive numbers corre-
sponding to the level of reliability of a given nucleotide, and vary from 0 to over 30.
The highest values are reserved for single nucleotides read by the sequencer without
any doubt.

The algorithm is composed of three phases: computing overlaps of input sequences,
building the graph together with searching for paths, and finally printing the resulting
consensus sequence. The first phase in previous implementation took the longest time
and it was the main part aimed for the parallelization. We incorporated a new module
of semi-global alignment implemented for GPU [4], which significantly shortened this
computational phase. (Similar GPU approach was sucessfully used for other problem,
multiple sequence alignment [5], what inspired us to apply it here.) Only promising
pairs of input reads have been selected to the semi-global alignment, on the base of
their similarity in “windows” and also on the confidential rates.

Basing on the computed overlaps, in the second phase of the algorithm a graph
is constructed with arcs corresponding to feasible overlaps between sequences in ver-
tices. The arcs are weighted by the remembered shift of the overlap and the error of
the connection. The error is the total number of penalties for mismatches between
nucleotides in the overlap, calculated by our GPU algorithm. Next, a series of addi-
tional operations is done, which helps repair the graph in case the heuristic procedure
of selecting pairs in the first phase fails. These operations can add an arc for a new
pair classified now as promising, or remove some vertices corresponding to sequences
contained in other ones.

Next, the graph is submitted to the procedure of making it acyclic, which has
been described in the previous section. A solution for the minimum path covering
problem, which is looked for in the reduced graph, is a set of paths passing through
one of the vertices representing either the straightforward fragment provided in the in-
put, or its reverse complementary counterpart. Every path corresponds to a contig
and is constructed with the following optimization criteria used sequentially: first
the minimum shift between neighboring sequences is used, then the minimum error
of traversed arcs.

The third phase of the algorithm consists in printing the series of obtained contigs.
Instead of the most frequently used majority rule, we decided to implement another
one. Namely, if a nucleotide of one type occurs at a given position in the alignment
in over 50% of sequences, then it is printed in the consensus sequence, otherwise,
it is rejected.

5 Results

Computational tests have been performed on data coming from a real biochemical
experiment with 454 sequencer, done in Lawrence Livermore National Laboratory
cooperating with Joint Genome Institute. The aim of that experiment was to se-
quence the whole 1.84 Mbp genome of bacteria Prochlorococcus marinus. The output
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Table 1: Results of DNA assembly of the whole genome of bacteria Prochlorococcus
marinus obtained by newly implemented approaches

Basic GPU Acyclic Flow

Contig
No.

length quality
[%]

length quality
[%]

length quality
[%]

length quality
[%]

1 50362 48.18 42121 98.70 68088 68.75 70949 52.48

2 42865 97.84 40543 79.29 49012 98.59 68088 68.75

3 38290 64.02 36787 99.18 45484 99.28 49012 98.59

4 38271 99.09 35341 98.77 38634 96.62 45484 99.28

5 38212 99.06 35021 98.65 37043 61.09 38634 96.62

6 37920 96.80 33826 98.92 36644 98.73 37043 61.09

7 34906 99.35 33111 74.23 34881 99.14 36644 98.73

8 34248 99.33 31872 98.83 33623 99.57 34881 99.14

9 32959 98.10 29886 98.92 31807 98.56 33623 99.57

10 32855 99.42 28268 98.45 28804 98.57 31807 98.56

average 38089 90.12 34678 94.39 40402 91.89 44617 87.28

n50 16274 12915 17509 16227

time [s] 13054 11251 2436 2520

of the sequencer contained over 300000 sequences of length of about 100 nucleotides.
Together with the sequences, their rates of confidence were provided.

In Table 1 collective results for all newly implemented approaches are shown.
“Basic” is a modernized algorithm from [2], “GPU” differs from it in GPU procedure
for semi-global alignment and distinct way of selecting promising pairs. “GPU” en-
hanced by the intuitive method of making the graph acyclic is named “Acyclic”, and
“Flow” when realizes max-flow min-cut algorithm. Ten longest contigs obtained by
the programs are taken into account.

The quality, i.e. the similarity of the produced contigs to fragments of the genome,
is quite high for all the implementations, but the best (on average) for “GPU”.
On the other hand, the mean length of these contigs is the smallest. The length and
the quality are somehow connected, and the best pair of average values of these param-
eters is present for “Acyclic”. The most advanced method “Flow” gives the longest
contigs, but of lowest quality.

N50 is a popular biological measure for evaluating assembly results. If we order
all the generated contigs with decreasing length, n50 is equal to the length of the first
contig in this order satisfying the condition, that its length and lengths of longer
contigs summed up, give at least half of the assembled DNA. So, the greater n50,
the better the results are. Again “Acyclic” has the best value of this measure, also
its computation time is the shortest.
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Table 2: Results of DNA assembly of the whole genome of bacteria Prochlorococcus
marinus obtained by other approaches

PHRAP NEWBLER CAP3 VELVET

Contig
No.

length quality
[%]

length quality
[%]

length quality
[%]

length quality
[%]

1 19534 93,60 76956 99.29 7139 99.85 3121 99.90

2 18010 99,54 66481 99.38 6487 99.69 2737 99.96

3 17468 99,52 66153 99.45 5361 99.91 2551 99.90

4 14367 85,35 50293 99,31 5266 99,85 2468 100,00

5 14286 99,71 45002 99,49 5034 99,76 2305 100,00

6 14174 99,29 41745 99,40 4756 99,74 2148 99,88

7 14106 99,56 41642 99,48 4690 99,89 2002 99,90

8 14055 99,45 40488 99,41 4676 99,74 1958 99,90

9 12816 99,66 34780 99,45 4663 99,83 1916 99,95

10 12711 99,23 33585 45,71 4609 99,87 1911 99,82

average 15153 97,49 49713 94,04 5268 99,81 2312 99,92

n50 5241 22745 1517 518

time [s] 2067 — 12376 328

In Table 2 results of other widely known assembly programs are presented. The al-
gorithms are PHRAP (www.phrap.org), NEWBLER (a commercial package), CAP3
(seq.cs.iastate.edu [8]), and VELVET (www.ebi.ac.uk/∼zerbino/velvet/ [13]).

The tests from Table 2 were performed in a different computational environment,
thus the times cannot be directly compared with the ones from Table 1. As one
can observe, NEWBLER produces the best results. Among academic approaches,
our algorithms (in all presented variants) have the best achievements in the lengths
of contigs, while other authors’ programs have contigs of better average quality.

6 Conclusion

In this paper we have proposed a new algorithm for DNA sequence assembly, involv-
ing the acyclic graph model, which generally outperforms other widely known and
previously published assembly algorithms. Only a commercial package, NEWBLER,
distributed together with 454 sequencing equipment, has produced better results.
Considering non-commercial academic methods, our algorithm in all its variants has
proven to be the best in length of generated contigs. The contigs’ similarities to
the original genome are generally high with few exceptions, which are to be elim-
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inated in our further work. Partial implementation for GPU reduced the overall
computation time, however, further reduction in time could be made. Our research
plans include, among others, adapting the whole program to a parallel environment
without any loss of quality of its results.
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