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Abstract.  One of the research fields significantly affected by the emergence of “big 
data” is computational linguistics. A prominent example of a large dataset targeting this 
domain is the collection of Google Books Ngrams, made freely available, for several 
languages, in July 2009. There are two problems with Google Books Ngrams; the textual 
format (compressed with Deflate) in which they are distributed is highly inefficient; we are 
not aware of any tool facilitating search over those data, apart from the Google viewer, 
which, as a Web tool, has seriously limited use. In this paper we present a simple 
preprocessing scheme for Google Books Ngrams, enabling also search for an arbitrary 
n-gram (i.e., its associated statistics) in average time below 0.2 ms. The obtained 
compression ratio, with Deflate (zip) left as the backend coder, is over 3 times higher than 
in the original distribution. 
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1. Introduction 

The emergence of big data is about to change everything, in research domains and 
industries like genomics, e-commerce, Internet search, automated translation, social 
networking and more. One particular field getting a boost in recent years from massive 
datasets is linguistics. Among those corpora a notable example is the collection of Google 
Books Ngrams, made freely available in July 2009 [13]. 

The Google Books Ngrams contain n-word phrase statistics, for n from 1 to 5 
(inclusive), for a few popular languages. Those statistics are obtained from over 5 million 
digitized books, corresponding to about 4% of all books ever published [5]. In fact, over 15 
million books were digitized in the project, but only those with high enough OCR quality 
and available metadata (data and place of publication) were retained.  
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The oldest books are from the 16th century, but of course only the last 60 years or so 
are responsible for most of its volume; in particular, the number of words in publications 
from 2000 in the collection is about 8 billion, while it is only 1.4 billion for the year 1900. 
Many more curiosities and statistics can be found in reference [5]. 

It can be argued that analysis of the corpus can impact fields as diverse as linguistics, 
sociology, cultural history, shedding light on lexicography, the evolution of grammar (e.g., 
which irregular English verbs tend to become regular, over time), censorship in past 
decades, adoption of technology, surging and declining trends and fashions in society. 
Some interesting findings:  (i) people become celebrities faster than in the past, but they are 
also more quickly forgotten, (ii) one can track banned persons, like Marc Chagall, whose 
full name appeared in the German corpus in years 1936–44 only once, to be followed with 
almost 100 occurrences in 1946–54 in the same corpus; (iii) peaks in “influenza” correlate 
with dates of known pandemics [5]. It is a truism to say that what we speak (and write) 
reflects what and how we think. Or, stressing slightly different aspects of the same thing, 
we could repeat after Wittgenstein: Die Grenzen meiner Sprache bedeuten die Grenzen 
meiner Welt (“The limits of my language mean the limits of my world”). 

If Google Books Ngrams are a great gift for many communities of researchers (and they 
are), what is bothering us? Two things. One is that the collection is distributed in highly 
inefficient textual form, compressed with a general-purpose compressor, zip. The other 
(and more important) is that the raw form does not support any efficient way for queries. 
The n-grams in files are lexicographically sorted, but there is no index, let alone a 
possibility to keep a significant fraction of the corpus in the RAM memory even of a high-
end PC. 

The contributions is this work are thus two-fold. We present a simple specialized 
compression scheme for the n-gram data, resulting in almost 3.4 times higher compression 
ratio than their original distribution. Moreover, our format supports efficient n-gram search 
(for relatively small penalty in compression ratio), which is experimentally validated. 

2. Related work 
 
We are not aware of any compression attempts for the Google Books Ngrams data. 

Still, other large linguistic collections, in particular the (commercial) Google 1T 5-gram 
corpus with Web data [19], Microsoft Web N-gram Language Models [17] and English 
Gigaword corpus of newswire [20] have been objects of interest. Large language models 
have been shown to be beneficial e.g. for statistical machine translation [1], search query 
spelling correction [6] and search query reformulation [2].  

It is possible to search for trends in phraseology via Google viewer [13], but such a tool 
(as any Web-based tool) cannot scale to thousands of queries from a single researcher, i.e., 
serves mostly as a demonstration. For instance, Figure 1 illustrates how the numbers of 
occurrences for two phrases (in this example, 2-grams) change over 100 years. 

 

272 S. Grabowski, J. Swacha



 
Figure 1. Occurrences of ‘Upper Volta’ vs. ‘Burkina Faso’ between 1900 and 2000 

Huge language models are precious, to mention only the finding of Brants et al. [1],  
that machine translation quality continues to improve even when the text over which the 
language model is built grows beyond 1 trillion tokens. Talbot and Brants [10] compress 
the Google Web 1T 5-gram corpus to slightly over 3 bytes per n-gram, with a randomized 
solution (i.e., allowing errors with a small probability). Guthrie et al. [4] improve this result 
to 2.5 bytes per n-gram, also with a probabilistic solution, based on perfect hashing; even 
less is needed if the n-gram frequency counts are quantized. It is notable however the best 
“error-free” algorithm from [10] requires about 60% more space (i.e., above 5 bytes per n-
gram). Pauls and Klein [7] store the same dataset, containing 4 billion n-grams, with 
associated frequency counts, in 23 bits per n-gram, in a lossless scheme. About twice larger 
representation allows them to handle queries (without caching) in about half a microsecond 
on average. 

3. The characteristics of Google n-gram dataset structure 

The Google n-gram datasets consist of lines with tab-separated textual fields. The first field 
in every line is the n-gram itself, that is a phrase of n successive words from a reference 
text. Punctuations in the collections are generally preserved, i.e., the phrase ‘run,’ is treated 
as a bigram: ‘run’ + ‘,’ (comma). More on this issue can be found in [15]. 

Each n-gram (let us denote it with f1) is followed by four fields that describe it: 
x f2 – the year in which the n-gram f1 occurred in print (in the book collection 

scanned by Google, of course),  
x f3 – the total number of occurrences of n-gram f1 in the year f2,  
x f4 – the number of distinct book pages having occurrences of n-gram f1 in 

books published in the year f2,  
x f5 – the number of distinct books having occurrences of n-gram f1 and 

published in the year f2. 
Observing the dataset contents [14], it is easy to notice the following properties: 

x the order of lines is that for any interval of lines with f1 unchanged, the values 
of f2 are usually increasing; 
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x for any line, the total number of occurrences is larger or equal than the number 
of distinct book pages, which in turn is larger or equal than the number of 
distinct books, f3 t f4 t f5. 

4. The algorithm 

4.1. The general concept 

There are two key requirements for the algorithm: effective compression and random 
access to specified n-gram. Following our experience with XML compression [9] we 
expect the former to be achievable by compressing different types of data separately, 
whereas following our experience with URL collection compression [3] we assume the 
latter can be accomplished by dividing n-gram datasets into small blocks and compressing 
them separately. 

4.2. Compression algorithm 

The compression algorithm can be described as follows: 
1) Open the dataset containing n-grams  
2) Read n-gram x  
3) If x is the first n-gram of a group,  

a) store it in the index file  
4) Otherwise,  

a) encode and store it in the n-grams buffer  
5) For every data element accompanying the n-gram:  

a) Encode it into respective buffer  
6) If the number of entries in the current group surpasses defined group size  

a) For every buffer:  
i) Compress the data it contains using a LZ77-based [12] algorithm  
ii) Flush the compressed data to the main file  
iii) Append the current main file position to the index file  

7) Go back to step (2) unless the end of file is encountered. 
 

There are eight buffers in use during compression: n-gram, entry count, first year, 
subsequent year, match count, page count, volume count and low bits. 

The first buffer is for the actual n-grams (phrases of words). They are encoded as 
strings of characters (no word substitution applied) with front-coding [11]. In case there are 
multiple occurrences of the same n-gram (note that they all must be next to each other, as 
the input file is sorted), the n-gram is encoded only once, whereas the number of repetitions 
is encoded in the entry count buffer as a decimal (see Table 1 for detailed information on 
the encoding scheme used for each data type). 
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Table 1. Used encoding schemes 

Data type Value (x) Approximately encoded as (bytes) Into buffer 

n-gram  (group begin) string of characters index file 
(not group begin) string of characters with front-coding n-gram 

entry count 
x �127 x entry count 
128� x �16383 128+x(bits 7..13),x(bits 0..6) entry count 
x �16384 (x/16384)x128,128+x(bits 7..13),x(bits 0..6) entry count 

year  
(first for 
n-gram) 

x �1820 2(1885íx)í1 (bits 8..14) 
2(1885íx)í1 (bits 0..7) 

first year 
low bits 

1821� x�1884 2(1885íx)í1 (bits 0..7) first year 
1885� x �1948 2(xí1885) (bits 0..7) first year 

x �1949 2(xí1885) (bits 8..14) 
2(xí1885) (bits 0..7) 

first year 
low bits 

year  
(not first for 
n-gram) 

xíxí1�63 xíxí1 subs. year 

xíxí1 �64 64·ªlog256(xíxí1)º+(xíxí1)(upper 6 bits) 
ªlog256(xíxí1)º x (xíxí1)(lower 8 to 24 bits) 

subs. year 
low bits 

match count 
(mc) 

x�64 xí1 match cnt. 

x �65 64·ªlog256(xí1)º+(xí1)(upper 6 bits) 
ªlog256(xí1)º x (xí1)(lower 8 to 24 bits) 

match cnt. 
low bits 

page count 
(pc) 

x=1 0 page cnt. 
mcíx�62 1+mcíx page cnt. 

mcíx�63 64·ªlog256(1+mcíx)º+( 1+mcíx)(upper 6 bits) 
ªlog256(1+mcíx)º x (1+mcíx)(lower 8 to 24 bits) 

page cnt. 
low bits 

volume 
count 

pcíx�63 pcíx volume cnt. 

pcíx�64 64·ªlog256(pcíx)º +( pcíx)(upper 6 bits) 
ªlog256(pcíx)º x (pcíx)(lower 8 to 24 bits) 

volume cnt. 
low bits 

 Remark: xí1 denotes previously encoded value of x. 

4.3. Search algorithm 

The search algorithm for n-gram x can be described as follows: 
1) Open the index file  
2) Search the index for the group g that possibly contains x (using binary search)  
3) Position the main file pointer at the group g beginning  
4) Read and decompress n-gram buffer of the group g  
5) Sequentially decode n-grams and check for x   
6) If x has been found at position p:  

a) Read and decompress remaining buffers of the group g  
b) Decode pí1 data of n-grams preceding x in the group g  
c) Decode and return x data   

7) Otherwise, return search failure 
 
Note that only a small part of the compressed file has to be read and decompressed to 

return data related to a specified n-gram, and even smaller part of the compressed file has 
to be read and decompressed if the n-gram being searched for does not exist in the dataset. 
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5. Empirical evaluation 

5.1. Proof-of-concept implementation 

The algorithm described in Section 4 has been implemented by the second author in Turbo 
Delphi. The Deflate compression algorithm has been used for compression (as 
implemented in Delphi Zlib library [18]). The executables used in the tests can be 
downloaded from the following web address: 
http://iiwz.wneiz.pl/jakubs/progs/ngram_compressor.zip [16]. 

5.2. Test data sets 

The Google Books N-grams datasets were downloaded from 
http://books.google.com/ngrams/datasets (July 2009 version) [14]. Although their content 
looks ordered, it is not guaranteed to be so, therefore all files used in the tests were sorted 
prior to compression using the sort tool included in [16].  

We have to note that the Ngram corpus is unfortunately contaminated with errors, such 
as missing characters and unusual repetitions of the same n-grams. For the sake of 
achieving comparable results we decided not to fix any of its defects, and compressed the 
data as they were. 

For the tests, datasets in English (‘all’ version), French and German were selected. Each 
of these sets consists of ten to hundreds of files for each phrase length from 1 to 5 words. 
We have observed that although compression ratio depends on the language and the 
number of words in phrases, the ratios measured for files of the same language and number 
of words were very highly consistent. For instance, we have calculated the coefficients of 
variation for groups of several hundred German datasets and they all were below 0.1%. It 
means that a single file from a given group is representative for the entire group. In our 
tests we have used the following test files for each of the three languages: #5 for 1-grams, 
#42 for 2-grams, #83 for 3-grams, #164 for 4-grams, and #325 for 5-grams. The numbers 
approxi-mate the 3/5 of the entire collection, whereas the last digit (for 2…5-grams) 
reminds the phrase length. 

5.3. Test environment 

The test platform was a desktop PC featuring Intel Core i3-2120 (3.3 GHz) processor, a 
motherboard based on Intel B75M chipset, 8 GB of DDR3-1600 RAM, and Intel 330 solid 
state drive (120 GB). The operating system was 64-bit Windows 7. Notice that the 
algorithm was implemented in an environment that can only produce 32-bit code, which 
could negatively affect measured query times. 
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5.4. Compression test results 

Table 2 shows bit rates attained by applying the proposed algorithm (with the default 
compression settings: Deflate mode 6) to the chosen test files, grouping n-grams for 
random access decompression by respectively: 1000, 2000, and 4000 entries. For a 
comparison, we also list the bit rate of the individual data streams compressed as a whole 
(no groups for random access decompression; the Streams column), and the bit rate of the 
original Zip file (as they are currently distributed; the last column). 

Table 2. Attained bit rates in output bits per input character 

File name 1000 2000 4000 Streams Zip 
eng-1gram 0.709 0.670 0.648 0.618 1.700 
eng-2gram 0.480 0.450 0.433 0.406 1.320 
eng-3gram 0.380 0.354 0.339 0.314 1.136 
eng-4gram 0.330 0.307 0.294 0.270 1.030 
eng-5gram 0.306 0.285 0.272 0.248 0.960 
fre-1gram 0.677 0.641 0.621 0.593 1.657 
fre-2gram 0.448 0.420 0.404 0.379 1.274 
fre-3gram 0.362 0.337 0.323 0.300 1.102 
fre-4gram 0.326 0.302 0.289 0.266 1.016 
fre-5gram 0.308 0.285 0.273 0.249 0.959 
ger-1gram 0.594 0.560 0.542 0.514 1.491 
ger-2gram 0.412 0.384 0.368 0.342 1.185 
ger-3gram 0.349 0.324 0.309 0.284 1.064 
ger-4gram 0.314 0.291 0.277 0.252 0.994 
ger-5gram 0.304 0.282 0.269 0.243 0.960 

Average 0.420 0.393 0.377 0.352 1.190 
 
As the reader may observe, the proposed algorithm allows to store n-gram data in 

memory of capacity equal to about 5% of their initial volume. Looking at the Streams 
column, it can be observed that the feature of retrieving specified n-gram data without 
decompressing the whole file costs, in terms of degraded compression effectiveness, on 
average, from  7% (in case of  the largest group size tested) to 19% (in case of  the smallest 
group size tested). Even so, a significant improvement has still been achieved for each of 
the tested datasets compared the original Zip format. Figure 2 shows the actual 
improvement measured. 
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Figure 2. Measured improvement in the bit rate in relation to the original Zip 

format 

5.5. Search test results 

Table 3 shows average query execution times measured on the test data sets for around 200 
phrases (chosen randomly using –rg option of the software used in the tests [16]). The 
measurements were done internally (–rd option), therefore they include only the sole query 
execution time (including saving the query results to a file, –f option), not the program 
start-up time. 

Table 3. Extract time and extracted data size measurements 

File name Extract time (ms) Extracted data (kB) 
 1000 2000 4000 1000 2000 4000 

eng-1gram 0.160 0.193 0.269 3.86 7.54 14.86 
eng-2gram 0.148 0.192 0.275 3.81 7.42 14.66 
eng-3gram 0.180 0.228 0.310 3.84 7.40 14.42 
eng-4gram 0.190 0.227 0.292 3.84 7.17 14.20 
eng-5gram 0.139 0.190 0.286 3.66 7.26 14.38 
fre-1gram 0.155 0.198 0.278 3.85 7.47 14.79 
fre-2gram 0.147 0.189 0.274 3.68 7.16 14.17 
fre-3gram 0.148 0.193 0.270 3.60 6.99 13.85 
fre-4gram 0.142 0.187 0.273 3.54 6.91 13.70 
fre-5gram 0.148 0.209 0.293 3.56 12.33 19.10 
ger-1gram 0.150 0.195 0.285 3.86 7.50 14.85 
ger-2gram 0.143 0.189 0.266 3.65 7.18 14.15 
ger-3gram 0.141 0.188 0.270 3.57 7.06 13.86 
ger-4gram 0.146 0.191 0.303 3.73 7.19 24.01 
ger-5gram 0.154 0.207 0.304 7.03 10.50 17.53 

Average 0.152 0.198 0.283 3.94 7.81 15.50 
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With the default grouping of 2000 entries, the computer used in the tests would be able 
to handle about 5000 different queries per second. It seems to be a satisfactory value for 
typical real-world scenarios.  

The extraction time obviously depends on the amount of data that need to be 
decompressed. Comparing left and right sides of Table 2, one can notice that the average 
300% growth in extracted data volume between the 4000-entry and 1000-entry groups is 
accompanied by less than 100% increase in query execution time. It means that unless rigid 
query time limits are to be kept, it is reasonable to increase the group size for the sake of 
improved compression effectiveness (see Figure 3). 
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Figure 3. Measured query execution time versus attained bit rate 

6. Conclusions 

Gathering large amounts of data is not everything. Cleaning process is tedious and non-
trivial task. For example, Procházka and Pollák [8] report issues with Google CzechWeb 
1T n-Grams, e.g., a lot of problematic tokens (foreign words, or Czech words but without 
diacritical marks, or even semi-random character strings). We have also noticed some 
problems with Google Books Ngrams statistics, e.g. missing characters. Such issues are 
likely to hamper applications of huge corpora in machine translation, speech recognition 
etc. 

Our task, however, was to deal with data at hand. “At hand” is spoken lightly, but the 
collections are not quite at hand, because of the multiple large volumes that must be down-
loaded to keep complete statistics for at least one language. This was a primary motivation 
for our research: show that the textual format used by Google is highly inefficient from the 
compression viewpoint, and even leaving Deflate (zip) as the backend compressor, we can 
squeeze those data much better (more precisely, about 3.4 times tighter). 

Moreover, we added a simple index enabling to search quickly for a given n-gram, to 
obtain all its statistics (occurrences per year). Extraction times are usually within 0.2 ms. 
Future works should focus on handling more general queries, lossy compression (the exact 
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occurrence values are not necessary for all applications) and tests with storing a complete 
language n-gram database in main memory of a powerful PC, with 16–32 GB of RAM. 
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