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Abstract. The study of DNA microarray gene extraction methods is an important
and current area of research. Many researchers study gene ontological character,
which contain significant information about symptoms of illnesses in tissues, types
of organisms, and the distinguishing of some organisms’ features. DNA microarray
gene extraction methods allow us to choose the most significant genes for a given
problem and some ways of their extraction. In this article, we aim to compare three
methods of gene extraction. The first and second types are based on, respectively,
the modified Fisher and F statistics methods. The last one is based on the novel
experimental statistics called A. A common element of those three methods is the
way in which we choose genes after the calculation of decision classes’ separation ratio.
Additionally, all three algorithms are based on the idea of central class separation from
other decision concepts. We use our best 8v1.4 granular weighted voting classier as
the basic element of comparison of our gene selection methods. The results of the
research show that A statistics are better than other methods in all cases. In this
article the best one is the SAM10 method, which works well for a small number of
genes - less than one hundred. For a higher number of separated genes the SAM5
method is better - its effectiveness has been proven in recent published works.
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1 Introduction

We start with an introduction of the basic facts of DNA microarrays, the rough sets,
and the weighted voting classifier - see [20], [4] - based on granular computing methods
- see [14, 15, 19].

1.1 DNA Microarrays - Basic Information

The DNA microarray is a really useful molecular biology tool. We can place a large
number of genes on a small plate, and check the gene expression profiles, among
other things. The complementary DNA microarray used in this article is one of
the most popular types of DNA microarrays, due to its low price compared with
oligonucleotide DNA arrays. An interesting application, and the wider description of
the DNA microarrays, can be found in [9], [10], [11], and [22]. The complementary
DNA microarray technique is widely applied in genome sequencing - the recognition
of the genes responsible for specific illnesses, etc. During the classification process
each gene is treated as an attribute, and its value is the intensity of bond of DNA
array. Due to the large number of attributes in the DNA arrays it is quite difficult to
apply the most effective classification algorithms. In this article we apply the weighted
voting classifier based on residual rough inclusions, proposed in [4], and [20] in order
to compare the best gene extraction methods based on the modified Fisher method,
F statistics and experimental A statistics.

1.2 Rough Sets Background - In a Nutshell

In the rough set theory, data are stored in the form of information, or decision systems,
where the first one is defined as a pair (U,A), for U as a set of objects, and A as an
attribute set. The decision system is defined as a triple (U,A, d); where d fulfils the
condition d /∈ A of the decision attribute. An ’information set of object x’ of the
decision system is defined as follows:

InfA(x) = {(a = a(x)) : a ∈ A}, (1)

An individual attribute of object x with value a(x) defines a descriptor (a = a(x)),
commonly used in the short form (a = v), where a ∈ A ∪ {d}.

In the descriptor notation, the decision rules derived from object x can be described
as,

(a1 = a1(x)) ∧ (a2 = a2(x)) ∧ . . . ∧ (ak = ak(x))⇒ (d = d(u)) (2)

where the set of conditional attributes {a1, a2, ..., ak} is the subset of A.
In the classic meaning, the granulation of knowledge in information, or decision

systems consists in partitioning the universe of objects U into the elementary granules
of the form

[x]A = {y ∈ U : a(x) = a(y),∀a ∈ A}, where the central object x ∈ U (3)
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The collection of elementary granules are called The Granules of Knowledge. The
granulation in this sense consists in forming the aggregates of objects, which are in-
discernible from the sets of conditional attributes.

The relation µ ⊆ U × u × [0, 1] is the formal definition of the rough inclusion in
the sense of [14, 15]. In short, it can be formulated by saying ‘an object x is a part of
an object y to a degree of r’.

The father of granular computing, Professor Zadeh [24], proposed to replace indi-
vidual objects by ’clumps of objects’. The objects were collected together by type,
and as aggregates were used for computing.

In our approach, the granules are defined based on the rough inclusions in the
form proposed in [15, 19].

For the rough inclusion µ, an object u, and a granulation radius r ∈ [0, 1], a granule
g(u, r) is defined as g(u, r) = {v ∈ U : µ(v, u, r)}, in detail

g(u, r) = {v ∈ U :
card{IND(u, v)}

card{A}|
≥ r} (4)

where, IND(u, v) = {a ∈ A : a(u) = a(v)} (5)

The described granules, g(u, r), are computed for all objects u ∈ U , and applied in
the classification process with radius r equal 1.

In the next step we define basic t-norms and the residual rough inclusion based on
residuum of t-norm in the terms of decision systems. The function

T : [0, 1]× [0, 1]→ [0, 1], (6)

which is symmetrical, associative, increasing in each coordinate, and subject to bound-
ary conditions: T (x, 0) = 0, T (x, 1) = x, e.g, [12] is a t-norm.

The best known t–norms are the Łukasiewicz, Product, and minimum t–norm,
defined as L(x, y) = max{0, x+y−1}, Prod(x, y) = x ·y, and min(x, y) = min{x, y}
respectively.

The equivalence,

x⇒T y ≥ r if and only if T (x, r) ≤ y (7)

describes a residuum x⇒T y of a t–norm T.
For continuous t–norms L,Prod, and min, the residual implication is given by

the formula,

x⇒T y = max{r : T (x, r) ≤ y} (8)

normalized at the interval [0, 1] - see the survey [19] - looks as

µT (x, y, r) if and only if x⇒T y ≥ r (9)

In the next subsection we introduce the idea of our decision assignment algorithm
in terms of rough set theory.
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1.3 A Voting Scheme by Residual Rough Inclusion

In our approach the rough inclusion induced by the Łukasiewicz t–norm L, is applied
in the classifier synthesis.

For an object u from the test decision system, and objects v from the training
base of knowledge, we assign the decision class to the test object based on the fol-
lowing weights: w(v, u, ε) = disε(u, v) ⇒T indε(u, v), where ε-discernibility, and
ε-indiscernibility parameters are defined as follows,

disε(u, v) =
|{a ∈ A : ||a(u)− a(v)|| ≥ ε}|

|A|
(10)

indε(u, v) =
|{a ∈ A : ||a(u)− a(v)|| < ε}|

|A|
(11)

The decision class vd with the minimal value of parameter,

Param(vd) =
∑

{v∈Utrn:d(v)=vd}

w(v, u, ε) (12)

is assigned into the the classified test object u.
Having described the decision value assignment method we can apply this algo-

rithm along the lines of [20], [4].

2 Rough Set Weighted Voting Classifier Based on Granules of
Training Objects

The general idea of our weighted voting classifiers consists of dynamic changes of
weights during classification depending on the distance between descriptors of train-
ing and test objects. This kind of classification, especially one used in this work 8v1.4
classifier seems to reduce the overfitting phenomena during classification by a slight
disturbance of proper classification - [20], [1, 2, 4].

General way of classification by 8 v1.4 method - [20], [1, 2, 4] - appears as follows,

Step 1. We choose the training decision system (Utrn, A, d), and the test decision
system (Utst, A, d),

Step 2. We search for the maximal and the minimal values of attributes a on the
training set, and mark them as max attra, and min attra respectively.

Step 3. We fix an attribute similarity ratio as ε.

Step 4. The test objects are classified in the following way.
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For ∀ a ∈ A, training objects vp ∈ Utrn, for p ∈ {1, ..., card{Utrn}, and the
test objects uq ∈ Utst, where q ∈ {1, ..., card{Utst} we compute

(i) If |a(uq)−a(vp)|
max attra−min attra

≥ ε, then

w(uq, vp) = w(uq, vp) +
|a(uq)− a(vp)|

(max attra −min attra) ∗ (ε+
|a(uq)−a(vp)|

max attra−min attra
)

i. e.,

(13)

w(uq, vp) = w(uq, vp) +
|a(uq)− a(vp)|

(max attra −min attra) ∗ ε+ |a(uq)− a(vp)|
(14)

(ii) If |a(uq)−a(vp)|
max attra−min attra

< ε, then

w(uq, vp) = w(uq, vp) +
|a(uq)− a(vp)|

(max attra −min attra) ∗ ε

If the weights between uq test object and all vp training objects are computed then
we start the voting procedure by means of the following parameters,

Param(vd) =
∑

{vp∈Utrn:d(vp)=vd}

w(uq, vp), (15)

Lastly, the vd concept with minimal value of the parameter Param(vd) is assigned to
uq test object.

2.1 The Result Validation Method

To validate results in this article we have used a resampling method called Leave One
Out (LOO). The motivation to use the LOO method is to be found, among other
places in [13]. This article proves the effectiveness and almost unbiased character of
this method.

We have introduced basic facts about our approach and now we return to our
analysis of DNA microarrays.

3 DNA Microarray Features Extraction Methods

3.1 The Main Motivation

Our general goal is the comparison of gene extraction methods based on Fisher dis-
tance and F , A statistics - by using a classifier based on mereological granules. We
would like to find the best method among those studied and identify the numbers
of the genes separating the decision classes with the highest rate, and give the best
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classification results. The genes which we have found can be used for ontological
analysis, but our methods of gene extraction do not take into account the ontological
sense of separated genes. The context of data doesn’t matter either.

The high number of genes in comparison with the number of objects can cause a
problem with overfitting. For this reason, we need some extraction methods which can
point us towards smaller groups of genes which, as a decision system, can effectively
classify samples of data. It is time to show our propositions of gene extraction methods
based on the central decision class separation.

In the first algorithm (MFM1), we have chosen the most characteristic genes which
best differentiate decision classes. An application of modified Fisher method is the
basic element of this algorithm.

3.2 Feature Extraction Method Based on Modified Fisher Method
- Case 1 (MFM1)

For the decision system (U,A, d), where U = {u1, u2, ..., un}, A = {a1, a2, ..., am},
d 6∈ A, classes of d: c1, c2, ..., ck, we propose to obtain the rate of separation of the
gene a ∈ A for decision class ci, i = 1, 2, ..., k in the following way. We let,

Sci(a) =
(C

a

i − Ĉa
i )2

Z
C

a2

i

+ Z
Ĉa2

i

, a ∈ A. (16)

where,

Ca
i = {a(u) : u ∈ U and d(u) = ci}. (17)

C
a

i =
{
∑
a(u) : u ∈ U and d(u) = ci}

card{Ca
i }

, Ĉa
i =

{
∑
a(v) : v ∈ U and d(v) 6= ci}
card{U} − card{Ca

i }
. (18)

Z
C

a2

i

=

∑
a(u)∈Ca

i
(a(u)− Ca

i )2

card{Ca
i }

, Z
Ĉa2

i
=

∑
a(v)∈U\Ca

i
(a(v)− Ĉa

i )2

card{U} − card{Ca
i }

(19)

After the rate of the separation, Sci(a) is computed for all genes a ∈ A and all decision
classes ci; genes are sorted in the increasing order of Sci(a),

Sc1
1 (a) > Sc1

2 (a) > ... > Sc1
card{A}(a)

Sc2
1 (a) > Sc2

2 (a) > ... > Sc2
card{A}(a)

...

Sck
1 (a) > Sck

2 (a) > ... > Sck
card{A}(a)
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Finally, we choose for experiments the fixed number of genes from the sorted list by
means of the procedure,

Procedure
Input data
A′ ← ∅
iter ← 0
for i=1,2,...,card{A} do
for j=1,2,...,k do
Scj (a) = S

cj
i (a)

if a 6∈ A′ then
A′ ← a
iter ← iter + 1
if iter = fixed number of the best genes then

BREAK
end if
end if
end for
if iter = fixed number of the best genes then

BREAK
end if
end for
return A′

The next algorithm (MSF4) has similar motivation to the previous one. However,
we applied here F statistics, extended on multiple decision classes, well known for
separation of the two decision classes.

3.3 Feature Extraction Method Based on Modified F Statistics Method
- Case4 (MSF4)

In this case the rate of separation at the anologous assumptions as MFM1 is defined
as follows,

Fci(a) =
MSTRci(a)

MSEci(a)
(20)

Ca
i = {a(u) : u ∈ U and d(u) = ci}

C
a

i =
{
∑
a(u) : u ∈ U and d(u) = ci}

card{Ca
i }

, Ĉa
i =

{
∑
a(v) : v ∈ U and d(v) 6= ci}
card{U} − card{ci}

MSTRci(a) = card{Ca
i } ∗ (C̄a

i − Ĉa
i )2
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MSEci(a) =

∑card{Ca
i }

j=1 (a(uj)− C̄a
i )2

card{Ca
i }

, where uj ∈ Ca
i , i = 1, 2, ..., card{Ca

i }

After the rate of the separation, F ci(a) is computed for all genes a ∈ A and all decision
classes ci; genes are sorted in the decreasing order of F ci(a),

F c1
1 (a) > F c1

2 (a) > ... > F c1
card{A}(a)

F c2
1 (a) > F c2

2 (a) > ... > F c2
card{A}(a)

...

F ck
1 (a) > F ck

2 (a) > ... > F ck
card{A}(a)

Finally, we choose for experiments the fixed number of genes from the sorted list by
means of the procedure,

Procedure
Input data
A′ ← ∅
iter ← 0
for i=1,2,...,card{A} do
for j=1,2,...,k do
F cj (a) = F

cj
i (a)

if a 6∈ A′ then
A′ ← a
iter ← iter + 1
if iter = fixed number of the best genes then

BREAK
end if
end if
end for
if iter = fixed number of the best genes then

BREAK
end if
end for
return A′

An idea for modifying the above approach was suggested by Professor Polkowski. We
thought how to extract genes by means of the distance between gene attribute values
and the distance between gene values and an average value for a considered decision
class or the rest of decision classes.
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Table 1: An information table of the examined data sets - see [23]; data1 = anthra-
cyclineTaxaneChemotherapy, data2 = BurkittLymphoma, data3 = HepatitisC, data4
= mouseType, data5 = ovarianTumour, data6 = variousCancers final

Data No.attr No.obj No.class The.dec.class.details

data1 61359 159 2 1(59.7%), 2(40.2%)
data2 22283 220 3 3(58.1%), 2(20%), 1(21.8%)
data3 22277 123 4 2(13.8%), 4(15.4%), 1(33.3%), 3(37.3%)

data4 45101 214 7
3(9.8%), 2(32.2%), 7(7.4%), 6(18.2%),
5(16.3%), 4(9.8%), 1(6%)

data5 54621 283 3 3(86.5%), 1(6.3%), 2(7%)

data6 54675 383 9
3(6.2%), 2(40.4%), 4(10.1%), 7(5.2%), 5(12.2%),
6(10.9%), 8(4.1%), 9(4.6%), 10(5.7%)

3.4 Feature Extraction Method Based on A Statistics - Case10 (SAM10)

For this method we defined the decision system as (U,B, d), where U = {u1, u2, ..., un},
B = {a1, a2, ..., am}, and d 6∈ B, d ∈ {c1, c2, ..., ck}, we propose to obtain the rate of
separation of the gene a ∈ A for decision class ci, where i = 1, 2, ..., k in the following
way. We let,

Aci(a) = Ca
i ∧ε {U\Ca

i }, (21)

Ca
i = {a(u) : u ∈ U and d(u) = ci}, Ĉa

i =
{a(v) : v ∈ U and d(v) 6= ci}

card{U} − card{Ca
i }

, (22)

where,

C
a
i ∧ε{U\C

a
i } =

card{a(u) ∈ Ca
i : ∃a(v) ∈ {U\Ca

i };
|a(u)−a(v)|

traina
≤ ε} + card{a(v) ∈ {U\Ca

i } : ∃a(u) ∈ Ca
i ;
|a(u)−a(v)|

traina
≤ ε}

card{U}
−

card{a(u) ∈ Ca
i :
|a(u)−Ĉa

i |
traina

> ε}

card{Ca
i
}

,

where, traina = max attra −min attra, a ∈ B.
After the rate of the separation Aci(a) are computed for all genes a ∈ B and all

decision classes ci, genes are sorted in the increasing order of Aci(a),

Ac1
1 (a) < Ac1

2 (a) < ... < Ac1
card{B}(a)

Ac2
1 (a) < Ac2

2 (a) < ... < Ac2
card{B}(a)

...
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Ack
1 (a) < Ack

2 (a) < ... < Ack
card{B}(a)

Finally, we choose for experiments the fixed number of genes from the sorted list by
means of the procedure,

Procedure
Input data
B′ ← ∅
iter ← 0
for i=1,2,...,card{B} do
for j=1,2,...,k do
Acj (a) = A

cj
i (a)

if a 6∈ B′ then
B′ ← a
iter ← iter + 1
if iter = fixed number of the best genes then

BREAK
end if
end if
end for
if iter = fixed number of the best genes then

BREAK
end if
end for
return B′

The results of our algorithm with real data sets, see [23], are reported in the next
section.

4 The results of our research on real data sets

One of the most common parameters which are used for evaluation of data with
unbalanced decision classes in the cardinality sense (see examined data sets in Tab.
1) are balanced accuracy and balanced coverage, whose definitions appear in the
equation 23 and 24 respectively.

Balanced.acc =
accc1 + accc2 + ...+ accck

k
, (23)

Balanced.cov =
covc1 + covc2 + ...+ covck

k
. (24)

For clarity, the average results of classification presented in Tables 2 are the average
values of balanced accuracy from all examined data sets.

In order to show our results in a more objective way, we use for our 8 v1.4 clas-
sification algorithm only one value of epsilon ε = 0.01. We have carried out Leave
One Out experiments with real DNA microarray data from the Tuned It platform
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Table 2: Leave One Out; Average balanced accuracy of classification for implemented
methods; Examined data sets: anthracyclineTaxaneChemotherapy, BurkittLym-
phoma, HepatitisC, mouseType, ovarianTumour, variousCancers final; No.of.genes
= number of classified genes, method = method’s name
method\No.of.genes 10 20 50 100 200 500 1000

MFM1 0.746 0.764 0.79 0.796 0.795 0.794 0.782
MSF4 0.651 0.655 0.699 0.722 0.751 0.769 0.776
SAM10 0.781 0.817 0.822 0.835 0.83 0.824 0.808
SAM5 [1] 0.718 0.77 0.815 0.841 0.84 0.846 0.833
MSF6 [2] 0.718 0.759 0.789 0.782 0.781 0.777 0.783

described in details in the Table 1. To achieve a proper computation of accuracy for
the LOO method it is necessary to build a confusion matrix, with the assumption
that objects from all folds are treated as one decision system.

The average of balanced accuracy for all examined methods, in comparison with
recently studied methods SAM5 (see [1]) and MSF6 (see [2]), is shown in Table 2. As
we can see for the small number of genes (less than 100), the best method is SAM10,
and starting from 100 genes to 1000 genes the best is the SAM5 method. Those two
algorithms are unrivalled with other presented methods, and are from 3 to 6 percent
better.

5 Conclusions

The results of our research showed beyond a shadow of a doubt the vast advantage
of SAM10 and SAM5 methods over the remaining gene separation methods. Those
results have been confirmed by average results of balanced accuracy. It turns out
that the SAM10 method works best for a small number of genes in the range of 10,
20 and 50. Its characteristic is to decrease the product of a given class with the
remaining classes by discernibility degree of central class elements from the average
of the other classes. Contrary to this, the SAM5 method makes use of lowering the
value of product weight of a pair of decision classes by the indiscernibility degree of
elements of a given class from an average value of paired decision classes, which is
a characteristic element of this method. It works best for a large number of genes
in the range of 100, 200, 500, and 1000. The essential element of these methods is
the way of choosing the best genes after their calculation. The main difference is the
general approach to gene separation; in the SAM10 method we have the separation of
the central class from all other classes, but in the SAM5 method there is a separation
of pairs of decision classes.

In our future research we are going to examine to what extent the analyzed gene
separation methods depend on the information content of particular DNA microar-
rays.
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