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Abstract. Graph coloring is one of the best known, popular and extensively
researched subject in the �eld of graph theory, having many applications and con-
jectures, which are still open and studied by various mathematicians and computer
scientists along the world. In this paper we present a survey of graph coloring as an
important sub�eld of graph theory, describing various methods of the coloring, and a
list of problems and conjectures associated with them. Lastly, we turn our attention
to cubic graphs, a class of graphs, which has been found to be very interesting to
study and color. A brief review of graph coloring methods (in Polish) was given by
Kubale in [32] and a more detailed one in a book by the same author. We extend
this review and explore the �eld of graph coloring further, describing various results
obtained by other authors and show some interesting applications of this �eld of graph
theory.
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1 Introduction

Graph coloring is one of the most important, well-known and studied sub�elds of
graph theory. An evidence of this can be found in various papers and books, in
which the coloring is studied, and the problems and conjectures associated with this
�eld of research are being described and solved. Good examples of such works are
[27] and [28]. In the following sections of this paper, we describe a brief history of
graph coloring and give a tour through types of coloring, problems and conjectures
associated with them, and applications. We gather various results in this �eld of
study, providing the reader with an outline of graph coloring, its types, properties and
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papers associated with previous research in this �eld. Then, we turn our attention
to algorithmic approach to solving several presented types of graph coloring and
problems connected with them.

2 The Four Color Problem - an inspiration for development
of graph coloring

The �eld of graph coloring, and mathematical problems associated with this �eld of
study, fascinated mathematicians for a long time. In the middle of the nineteenth
century, it was found that an administrative map of England, with all counties, can
be painted using only 4 colors. Every two adjacent (sharing a border) counties were
assigned di�erent colors in this drawing. It became an interesting problem for many
scientists whether it is possible to color any possible political map satisfying the above
conditions, using only four colors. What is more, in 1880 Tait proved in [41] that
the Four Color Theorem is equivalent to the conjecture saying that every cubic map
(every cubic planar graph without cutting edges) has a proper edge coloring with 3
colors. The problem was not solved until computer era. It was solved in 1976 by
Appel and Haken in [5]. The above authors have divided the problem into many
subclasses of maps, and written a computer algorithm to check if the map can be
four-colored in all possible cases.

3 What can be colored in a graph?

In this section we will take the reader through a tour of the graph coloring, showing
various types of objects, which can be colored in graphs, starting from the most
simple and common ones, and then going through more sophisticated methods of
graph coloring.

3.1 Vertex coloring

A proper vertex coloring problem for a given graph G is to color all the vertices
of the graph with di�erent colors in such a way that any two adjacent (having an
edge connecting them) vertices of G have assigned di�erent colors. In terms of graph
theory, a proper vertex coloring with k colors is a mapping f : V (G) → N such that
: ∀vi,vj∈V (G),i6=j∃(ei, ej) ⇒ f(i) 6= f(j).

A sample of a proper vertex coloring is shown in Figure 1.
Vertex coloring of graphs can represent a mathematical model of various resource

assignments. An example of such a problem is to assign frequencies for stations of
radio, or mobile phone network. Stations, which are in broadcasting range (and so
their signals would interfere with each other) must be assigned di�erent frequencies.
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Figure 1: A proper vertex coloring.

To solve this problem, a mathematical model of the connection network is constructed,
where vertices represent stations, and edges between them show con�icts (that is, pairs
of stations, which need to be given di�erent frequencies). The model itself is a graph
with vertex coloring. This application of vertex coloring has been extenstively studied
in many papers, among others in [11] and [44].

The minimum number of colors, for which exists a proper vertex coloring for a
given graph G is known as the chromatic number of the graph G and is denoted
by χ(G). From algorithmic point of view and for possible applications the following
fact is especially important.

Fact 3.1. The vertex coloring problem is NP-complete [35].

3.1.1 Some selected interesting types of vertex coloring

In this chapter we take a brief tour of various interesting types of vertex coloring other
than the standard (proper) coloring, and describe their examples and properties.

Equitable vertex coloring. An equitable vertex k-coloring of a graph G =
(V,E) is a proper vertex coloring, which assigns colors from {1, . . . , k} to vertices in
such a way that for every pair of colors ka, kb, a 6= b the numbers of vertices painted
with color a and color b di�er by at most one. The smallest number, for which
there exists an equitable vertex coloring of the graph G is known as the equitable
chromatic number and is denoted by χ=(G).

It was proven by Hajnal and Szemeredi, that a graph G has a k-equitable vertex
coloring if k ≥ ∆(G) + 1, where ∆ is the maximum degree of the graph [21].

However, Hajnal and Szemeredi's results did not produce an e�ective algorithm
which can �nd equitable vertex coloring of a given graph. A quick such an algorithm
has been discovered recently by Kierstead, Kostochka, Mydlarz and Szemeredi [29].
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The algorithm presented in their paper has O(∆n2) complexity, where n is the number
of graph's vertices.

This area of study has also been explored by Furma«czyk and Kubale [18]. They
have given formulas for the equitable chromatic number of several graph classes and
some graph products, and presented polynomial-time equitable coloring algorithms
with suboptimal number of colors.

Fact 3.2. The equitable vertex coloring can be used as a representation of performed
tasks, where every two connected vertices correspond to a pair of tasks which cannot be
performed simultaneously (at the same time unit). An optimal coloring would assign
task times so that the entire work could be �nished in as short time as possible, with
no colliding tasks. This application of equitable coloring was shown in [34].

Circular vertex coloring. Another type of a graph vertex coloring is the circular
vertex coloring. In this type of coloring we are allowed to assign fractional numbers,
not only integers, to vertices, and values of adjacent vertices need to fall within a
certain range (having speci�ed minimum di�erence, and the maximum value assigned
to a vertex).

In terms of graph theory, a circular vertex k-coloring of a graph G = (V, E) is
a mapping A : V → [0, k) for which 1 ≤ |A(Vx) − A(Vy)| ≤ k − 1, for every pair of
vertices Vx, Vy ∈ V (G), x 6= y.

Circular vertex coloring of graphs was originally de�ned by Vince in [42]. An
example of a circular vertex coloring is shown in Figure 2. The minimum number for
which there exists a circular vertex coloring of the graph G is known as the circular
chromatic number and denoted by χC(G).
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Figure 2: A circular vertex 2.5 - coloring of the Flower Snark J5.

A brief survey of circular chromatic numbers for certain subclasses of graphs was
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given in [31]. An interesting survey, describing many properties and open problems
associated with the circular chromatic index was presented by Zhu [45].

The circular vertex coloring can be applied to an open shop scheduling problem,
where independent jobs are processed in a shop with dedicated renewable resources
[36].

Acyclic vertex coloring. An acyclic vertex coloring of a graph G is a proper
vertex coloring without a 2-colored (alternating) cycle. The minimum number for
which a given graph G contains an acyclic vertex coloring is de�ned as the acyclic
chromatic number, A(G). An example of an acyclic 3-vertex coloring is shown in
Figure 3.

It is known that A(G) ≤ 4 when ∆(G) = 3 [20], and A(G) ≤ 5 when ∆(G) = 4
[9]. Checking whether A(G) ≤ 3 is a NP-complete problem [30]. Alon, McDiarmid
and Reed have proven that A(G) = O(∆(G)

4
3 ), ∆ →∞ [2].

Two e�cient acyclic graph coloring algorithms for graphs with maximum vertex de-
gree 3 (one colors vertices, and the other edges) were presented by Skulrattanakulchai
[40].

Figure 3: An acyclic 3-vertex coloring.

Star vertex coloring. A star coloring of a graph G is a proper vertex coloring
satisfying the condition that every path of length 4 contains vertices of at least 3
di�erent colors. The minimum number, for which a given graph G has a star coloring,
or a star chromatic number is denoted as χS(G). Star coloring has been introduced
by Grunbaum in [20]. A sample star 4-coloring of a 32-vertex Dyck graph is shown
in Figure 4.
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Determining whether χS(G) ≤ 3 is NP-complete, even if we know that the graph
G is both planar and bipartite [1].

A survey of the star coloring numbers for several various classes of graphs was
given by Fertin, Raspaud and Reed [15].

Moreover, a quick, linear-time algorithm �nding optimal acyclic and star colorings
for cographs has been found recently by Lyons [33]. The author has also proven that
every acyclic coloring of a cograph is also a star coloring.

Figure 4: A star coloring.

3.2 Edge coloring

The other well-known and intensely studied type of graph coloring besides vertex
coloring is the edge coloring. Analogically to the de�nition of the vertex coloring,
the edge coloring of a graph G = (V, E) is a mapping, which assigns a color to every
edge, satisfying condition that no two edges sharing a common vertex have the same
color. Mathematically, a proper (classic) edge coloring of a graph G is a mapping
f : E(G) → N such that ∀(ei, ej ∈ E(G)), i 6= j ei, ej are adjacent ⇒ f(i) 6= f(j).

Two examples of edge coloring are shown in Figure 5.

Fact 3.3. It was proven by Vizing in [43] that the minimum number of colors needed
to construct a proper edge coloring (the chromatic index χ

′
(G) of any graph G is

limited to a set of two values {∆G, ∆G + 1}, where ∆(G) is the maximum degree of
a vertex in G. In fact, those graphs are known as class 1, and class 2 graphs,
respectively.

In the example given in Figure 5 we show edge colorings of two graphs with
∆(G) = 3, the left one belonging to the class 1, with a proper 3-edge coloring, and

228 P. Formanowicz, K. Tanaś



Figure 5: Two examples of an edge coloring

the other one being a class 2 graph, and thus requiring 4 colors to properly color its
edges.

Edge coloring of graphs has various applications and is linked with many inter-
esting research problems, such as the route planning problem, transfer assignment in
computer networks, and many others. A nice review of edge-coloring problems and
its applications was given by Nakano, Zhou and Nishizeki [38].

The minimum number of colors, for which there exists a proper edge coloring for
a given graph G is known as the chromatic index of the graph G and is denoted by
χ
′
(G). The following fact describes an important property of edge coloring.

Fact 3.4. It is known that determining the chromatic index of a given graph is NP-
complete. It is true even if we limit only to cubic (3-regular) graphs. [23]

3.2.1 Special types of edge coloring

As we did earlier in the paper, we now turn our attention to a few chosen interesting
non-standard types of edge coloring.

Circular edge coloring. Analogically to the circular vertex coloring, the edges
of a graph could be colored in such a way that no two adjacent (sharing a common
vertex) edges have assigned values di�ering by no less than some speci�ed number.
A mapping C : E(G) → [0, k) such that for every two adjacent edges ea, eb ∈ E(G)
1 ≤ |C(a)−C(b)| ≤ k−1 is called the circular k-edge coloring of the graph G. The
minimum number, for which there exists a circular edge coloring of a given graph G is
known as the circular chromatic index of the graph G and is denoted by χ

′
C(G).

Figure 6 shows an example of a circular edge coloring. This is a 11
3 -edge coloring

of the Petersen Graph.

Fact 3.5. A circular k−edge coloring of any graph G is a circular k−vertex coloring
of the line graph L(G). Thus χ

′
C(G) = χC(L(G)).

An approximate algorithm for circular edge coloring of graphs was given by Janczewski,
Kuszner, Maªa�ejski and Nadolski [26].
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Figure 6: A circular (11/3)-edge coloring of the Petersen graph.

Acyclic edge coloring. In a similar way as with the vertex coloring, the edges
of a graph could also be colored in such a way that there does not exist a 2-colored
(alternating) cycle. The minimum number of colors needed to color the edges of a
given graph G acyclically is called the acyclic chromatic index of the graph G, and
is denoted by A′(G).

It is known that A′G ≤ 16∆(G) for any graph G, and there exists a constant c
such that A′(G) ≤ ∆(G)+2 for every graph G of girth (length of the graph's shortest
cycle) greater or equal to c∆(G) log ∆(G). Moreover, A′(G) ≤ ∆(G) + 2 for almost
every regular graph [3].

Alon and Zaks have proven that determining the acyclic chromatic index of an
arbitrary graph G is NP-complete. However, if the girth of graph G is large enough
in relation to ∆(G), there does exist a polynomial-time algorithm creating an acyclic
coloring of G with at most ∆(G) + 2 colors [4].

For planar graphs, in was conjectured that for su�ciently large ∆(G), A′(G) =
∆(G). What is more, A′(G) ≤ ∆(G) + 25 [10].

Berge-Fulkerson and Fan-Raspaud coloring. Another two interesting types
of edge coloring are the Berge-Fulkerson and Fan-Raspaud colorings. In both cases
we are working on bridgeless cubic graphs, that is, graphs with all vertices of
degree 3, and without bridges (cutting edges). This class of graphs could represent a
mathematical model of a cubic computer network, where vertices represent computers,
and the edges correspond to network connections (cables) connecting them. The
cubic network is an e�ective network topology, due to the constant vertex degree,
which allows relatively easy implementation of algorithms operating in the whole
network. The graph representing the network would almost certainly be bridgeless,
as it is generally unwise to connect computers in such a way that a failure of just
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one connection would disconnect the network into separate components, and make
communication between some computers and the others unavailable.

Now let us suppose that a computer network constructed in the above way, rep-
resented mathematically as a bridgeless cubic graph is performing a research project,
which consists of m parallel computations, which must be performed by pairs of com-
puters, where each pair shares a network connection. For every of the m computations,
each computer in the network must be assigned to exactly one connected pair working
on this computation, but the connections (or cables) have a transfer limit, so that
any cable can simultaneously transfer data for at most 2 computations. Assigning one
connection to three or more computations would be technically unavailable, or would
reduce the speed of the whole project below satisfactory level, or would damage the
network connection (due to overheating, for example).

In graph theory terms, we need to construct an edge coloring, consisting of m
perfect matchings, where every edge belongs to at most two of them. For m = 6,
we would have a Berge-Fulkerson coloring, and for m = 3 - a Fan-Raspaud
coloring. The origins of such types of graph coloring were given in [17] and [14],
respectively. They formulated conjectures, which state that every bridgeless cubic
graph can be colored in such a way. No proof, or counterexample has been found yet.

A sample Berge-Fulkerson and Fan-Raspaud colorings of the Petersen graph are
shown in Figure 7. Every perfect matching, representing one part of the research
project computed by the network, is marked with a distinct color of the edges.

Figure 7: A Berge-Fulkerson coloring (left) and a Fan-Raspaud coloring (right) of
the Petersen graph. The dotted lines represent empty edges.

Fact 3.6. It is obvious that every proper 3-edge coloring is a Fan-Raspaud coloring,
and duplicating any such coloring (adding a second triple of colors to edges in the same
way as in the original coloring) would produce a Berge-Fulkerson coloring. However,
some bridgeless cubic graphs do not have a proper 3-edge coloring. These graphs are
called snarks. A classic example of a snark is the Petersen graph.
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Fact 3.7. Holyer has proven that determinig whether a bridgeless cubic graph has a
proper 3-edge coloring is an NP-complete problem. [23].

Due to the NP-completeness of a classic 3-edge coloring problem, it is suspected
that �nding a Fan-Raspaud coloring is also NP-complete, what would imply that there
does not exist a deterministic polynomial time algorithm �nding such colorings (unless
P=NP). So it is a good idea to use randomized algorithms instead. A randomized
algorithm constructing Fan-Raspaud colorings for a given cubic graph is presented in
[16].

3.3 Face and map coloring

Aside from two most common types of graph coloring, the vertex coloring and edge
coloring, there exist various other objects in graphs that can be colored. Next method
shown in this paper will be the face coloring, also known as map coloring.

The face coloring is the method used to color areas on a political map, and so it is
the coloring associated with the Four Color theorem. This type of coloring requires
a graph to be planar, what means the graph can be drawn on a 2-dimensional plane
without intersections between edges.

In fact, a map coloring can be done by creating the dual graph, in which every
vertex represents one face of the map (including the outermost face), and any two
vertices are connected if and only if faces represented by them are adjacent. A sample
graph and its dual graph is drawn in Figure 8.

Figure 8: A graph (solid lines) and its dual graph (dotted lines).

Fact 3.8. The face coloring of planar graphs is a NP-complete problem [19].
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3.4 List coloring

Another interesting type of graph coloring is the list coloring. In list coloring, unlike
the classic vertex or edge coloring, the possible color assigned to each object (vertex or
edge) of a given graph is limited to a restricted set, called a list. Every vertex or edge
could have di�erent list. In terms of graph theory, a vertex list coloring is a mapping,
which assigns every vertex a color from the vertex's list such that no two adjacent
vertices have the same color. The edge list coloring can be de�ned analogically, in
this case no two incident edges are painted with the same color. The list coloring of
graphs can represent a mathematical model of job scheduling, where vertices represent
employees (or machines), which will have assignes jobs, and the lists describe possible
jobs for a given vertex. The list coloring, and a detailed review of its properties and
conjectures is shown in papers [12] and [6].

Fact 3.9. List coloring is NP-complete even for some classes of graphs for which
classic vertex coloring is solvable in linear time, for example the interval graphs [7].

3.5 Path coloring

A path coloring of a given graph is a speci�c type of edge coloring. Here, we need
to color certain paths linking some certain pairs of vertices, and where each path
contains a speci�c set of edges, satisfying the condition that no two paths containing
the same edge (or in some versions of the path coloring it is required for the same-color
paths to pass through disjoint sets of vertices) of the graph or multigraph (depending
on the problem to solve there may be several edges connecting the same vertices).
Path coloring of graphs can be used as a mathematical model of call scheduling in
a network, where a set of requests to transfer data between certain nodes is to be
handled, and paths which have common edges, or intersecting vertices, must be given
di�erent colors. Another possible application of path coloring is the coloring of tourist
routes. The routes intersecting at any crossing point must be given di�erent colors. In
this case, a multigraph is colored, because certain routes may have common segments,
represented by edges with more than one color. An overview of path coloring and its
complexity results was shown by Erlebach and Jansen [13].

An example of a path coloring is shown in Figure 9.

3.6 Total coloring

In the total coloring of a graph, vertices and edges are colored simultaneously. Every
two adjacent vertices, any two edges having a common vertex, as well as every incident
pair (vertex, edge) must be assigned di�erent colors. A sample total coloring of a
graph is shown in Figure 10.

The minimum number of colors needed to construct a total coloring for a given
graph G is known as the total chromatic number and is denoted by χ

′′
(G).
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Figure 9: A sample path (multi)coloring of a graph.

Figure 10: A total coloring.

Fact 3.10. It was conjectured by Behzad and Vizing (independently) that for every
graph G
χ
′′
(G) ≤ ∆(G) + 2.

If the above conjecture (the Total coloring conjecture) is true, then for every
graph χ

′′
(G) ∈ {∆(G)+1,∆(G)+2} and so, graphs could be divided into two classes

in relation to the total chromatic number.
It was proven by probabilistical methods, that for su�ciently large graphs, there

exists a bound on total chromatic index relative to the maximum vertex degree in
graph, namely χ

′′
(G) ≤ ∆(G) + 1026 [37].

A further exploration of total graph coloring, its properties, conjectures, theorems
and results was presented in [24].
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4 An algorithmic approach to graph coloring - a view on heuris-
tics

Having already shown various types of graph coloring, and provided inforamtion about
them, we now turn our attention to algorithmic methods of solving graph coloring
problems. As the graph theory and coloring plays an important role in computer
science and related �elds of study, and algorithms working on graphs and performing
various types of coloring are extensively used, constructed and further developed, we
now present a brief survey of algorithmic methods of constructing various types of
graph coloring. As we have already presented results on the computational complexity
for several types of graph coloring, many problems turn out to be NP-complete, which
means it would be di�cult to construct an e�ective coloring algorithm for them. In
fact, there is no deterministic algorithm able to �nd solution in polynomial time,
unless it turns out that P = NP . Due to the above facts, we now stay aside from well-
known deterministic coloring algorithms and emphasize on heuristic ones. A glimpse
of heuristics could provide information and direction, which would allow researchers
to create more e�cient algorithms, needing less time and/or memory, and having
higher probability of success, that is, �nding a solution for a given problem.

A heuristic coloring algorithm was constructed by Brelaz [8]. This algorithm
constructs vertex coloring using the saturation degree - the number of di�erent colors
for which already exists a vertex adjacent to the subject vertex.

For edge coloring, a set of complexity results for many possible subclasses of graphs
was presented in [38]. The heuristics for edge coloring were further explored in several
other papers. A survey of edge coloring heuristics for large graphs, divided into few
di�erent methods, such as evolutionary algorithms and the cyclic, random, line and
ant heuristics has been shown in [22].

For list coloring, an interesting heuristic coloring algorithm for random graphs was
given in [39].

For the total coloring of graphs, some interesting results in the �eld of algorithmic
approach appeared in [25]. The cited paper has shown algorithms for total coloring of
various classes of graphs, such as the s−degenerate graphs and partial k−trees. There
was also proven that s−degenerate graphs with su�ciently large maximum vertex
degree belong to class 1 in the terms of total coloring, that is, χ

′′
(G) = ∆(G) + 1 for

this class of graphs.

5 Conclusion

In this paper, we have presented a brief survey of the various types of graph coloring,
guiding the reader through sub�elds of this �eld of study, including several types of
coloring, selected important results connected to them, such as mathematical proper-
ties, conjectures, complexities and algorithms. As the �eld of graph coloring is one of
the most important, interesting, and developing branches of graph theory, and many
new properties, conjectures, proofs and algorithms are actively constructed, formu-
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lated and explored by mathematicians and computer scientists all over the world, it
would be helpful to provide future researchers with information about various coloring
types, its properties and applications. As the article is supposed to be read by com-
puter scientists, we emphasize on the complexity results and algorithmic approach,
especially on heuristic algorithms.
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