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Abstract. Experimental design is concerned with the problem of allocating re-
sources within an experiment to ensure that objectives of the experiment are achieved
at the minimum cost. This paper focuses on the generation of optimal or near-optimal
designs for large and complex experiments where it is infeasible to carry out an ex-
haustive search of the design space. Optimal designs for gene expression studies,
aimed at investigating the behaviour of genes, are considered, where the optimality
criterion employed is Pareto optimality. We develop an adaptation of the metaheuris-
tic method of Pareto simulated annealing to generate an approximation to the set of
Pareto optimal designs for large and complex experiments. We develop algorithms
that utilise response surface methodology to search systematically for the optimal
values of parameters associated with Pareto simulated annealing and performance is
evaluated using quality measures.

Keywords: Combinatorial optimisation, Metaheuristics, Pareto simulated an-
nealing, Experimental design, Gene expression study

1 Introduction

Experimental design is concerned with the problem of allocating resources within an
experiment to ensure that objectives of the experiment are achieved at the minimum
cost. The objectives can be modelled such that effects of interest are identified and
any constraints can be taken into account. Rigorous experimental design is essential
to make the most effective use of available resources and should be considered prior
to carrying out the experiment.
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Suppose some system response, denoted by say m, is thought to depend on the
values taken by predictor variables, denoted by x1, x2, ..., xp. The relationship is
approximated by a mathematical model which includes unknown coefficients. The aim
is to estimate the values of these coefficients from runs of the process which result
in a value of the response for corresponding choices of the value of the predictors.
The experiment consists of a set of runs and the design is the choice of values of the
predictor variables for these runs. The choice of the values of the predictor variables
affects the precision of the estimates and objectives are to minimise the variance
of estimators and the variance of specified combinations of estimators. Under rather
general conditions these objectives are independent of the values taken by the response
and the choice of design can be made on a quantitative basis before the experiment
is performed.

In many practical problems, the predictor variables may be restricted to a few,
or even just two, categories. In this case the problem of choosing a design is a
combinatorial problem. We consider the case of a gene expression study. Such studies
are aimed at investigating the behaviour of genes and provide the potential to make
significant advances in areas of medical research, including the prevention, treatment
and cure of genetic conditions (see [11], [6] and [8] for further background about gene
expression studies).

Consider a gene expression study aimed at investigating the genetic basis of
leukaemia (see [11] for further background). In this gene expression study, there
are two factors, each with two categories: cell line, which can be normal (wild type)
or mutant; and time which is no delay or 24 hours delay. It follows that there are 4
combinations: wild type with no delay, wild type with delay, mutant with no delay
and mutant with delay. An experimental run involves comparing two of the four pos-
sible combinations on a microarray slide. Since there are 6 ways of choosing 2 from
4, there are 6 slide types, which constitutes the set of configurations for the experi-
ment. The possible comparisons are shown in Figure 1 The two combinations on a
microarray slide are dyed red and green, more specifically referred to as two-colour
microarrays, and the response is the relative log expression which ranges from green
through yellow to red. The design is a specification of the number of slides of each
type, or configuration, given a fixed number, n, of available slides. A design can be
represented by the sextuple d = (d1, d2, ..., d6), such that

• d1, d2, ..., d6 ≥ 0,

• d1 + d2 + ...+ d6 = n.

At the outset of the gene expression study, the effects of scientific interest are
identified and prioritised, the number of available microarray slides is fixed and an
appropriate mathematical model is adopted. (See [14] for a general introduction
to design issues for such studies.) The appropriate mathematical model relates the
combinations or pairs of samples chosen for each available microarray slide, or design,
to the efficiency of effects that are of scientific interest in the experiment.

Our optimality criterion is Pareto optimality, as in [11] and [5]. Pareto optimality
is an appropriate optimality criterion because analysis is carried out separately for the
effects of particular scientific interest for gene expression studies that use two-colour
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Figure 1: Parameterization and hybridizations for the 2× 2 experiment.

microarrays. For further details regarding gene expression analysis, an introduction
is in [13]. For further details on the gain in efficiency using Pareto optimality over
other classical optimality criteria and associated designs in the two-colour microarray
context, see [5].

A design is defined to be Pareto optimal if there is no other design that leads
to equal or greater precision for each effect of scientific interest and strictly greater
precision for at least one. The combinatorial nature of the problem lies in the choice
of optimal designs, that is, the combinations of experimental material that are to be
applied to each available microarray slide such that the effects of particular scientific
interest are optimised. Such an approach explores the trade-off in efficiency for the
effects of scientific interest for various designs.

In what follows, the background underpinning the formation of suitable objectives
to which Pareto optimality can be applied is given. Firstly, in general a linear model
for the set of configurations can be represented by

θ = Aβ (1)

where θ is the vector of expected log ratios, A is the configuration matrix and β is
the parameter vector.

For the present gene expression study, β is (α, β, αβ), representing the change in
expression between the wildtype and mutant with no delay, the change in expression
for the wildtype over time and the interaction between cell line and time respectively
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and

A =


1 0 0
0 1 0
1 1 1
1 0 1
0 1 1
−1 1 0


The observed log-intensities in the experiment, M , are related to the parameters

through the design matrix X, the rows of X being the rows of A corresponding to the
choice of configurations used in the experiment. Thus

E(M) = η = Xβ (2)

and
var(M) = σ2I (3)

where M is the vector of log intensity-ratios from all slides in the experiment, η is
the vector of expected values, X is the design matrix and β is the parameter vector.

The least squares estimators of β are given by

β̂ = (XTX)−1XTM

and the variance-covariance matrix is given by

var(β̂) = σ2(XTX)−1,

see, for example, [12].
However , in this, and similar, gene expression studies some linear combinations

of parameters, known as contrasts, are also of interest. Using the linear model (1), a
set of contrasts, say γ, can be represented by a set of linear functions of θ. Let the
i-th contrast be given by γi = bTi θ where bi is a suitable vector of coefficients, and
write γ = Bβ is the complete set of contrasts of interest.

The best linear unbiased estimate for the contrast vector is γ̂ = Bβ̂ = B(XTX)−1XTM
and the variance matrix

var(γ̂) = Bvar(β̂)BT = σ2B(XTX)−1BT . (4)

In the present gene expression study, due to scientific interest in cell line effects,
interaction and time effects,

B =


1 0 0
0 1 0
0 0 1
1 0 1
0 1 1


Now we can define the multi-objective function, which is based on minimisation

of the variances of the elements of γ, that is the diagonal elements ci, taking into
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account that subsets of elements of γ are considered to be of equal interest, usually
because of symmetries in the model. As in [11], the objectives are tA = cα + cα+αβ ,
tB = cβ + cβ+αβ and tAB = cαβ which are penalised based on the constraints cα =
cα+αβ and cβ = cβ+αβ which arise from scientific interest. That is, the change in
expression between the wild type and mutant cell line with no time delay is of equal
interest to the change in expression between the wild type and mutant cell line with
24 hours delay. It is also of equal scientific interest as to how each of the cell lines
behaves over time. A penalty is used because enforcing constraints exactly can be
unduly restrictive. For example, there may be situations where none of the Pareto
optimal designs satisfy the constraints. In extreme cases, it may happen that there
are no designs at all that satisfy the constraints.

Based on the constraints, an appropriate penalty function is D = (cα− cα+αβ)2 +
(cβ − cβ+αβ)2.

Then the penalised objectives are given by t
(D)
i = (1−w)ti +wD where w ∈ [0, 1)

is the weight associated with the penalty and ti is the i-th objective.

The Pareto optimal set is then generated for the penalized objectives t
(D)
A , t

(D)
B

and t
(D)
AB corresponding to the effects for cell line, time and interaction respectively.

Although those effects are all of interest, interaction is of primary interest in this gene
expression study.

[11] generated Pareto optimal designs for gene expression studies with relatively
small numbers of available microarray slides using an exhaustive search of the design
space. It was also found that a relatively high penalty weight, close to 1, tended to
work well.

In practice, for large gene expression studies, such as those for which a large num-
ber of slides are to be utilised, it is not feasible to examine all possible designs in an
exhaustive search for Pareto optimal designs. In this paper, we adapt the multiple
objective metaheuristic method of Pareto simulated annealing to the design of ex-
periments. The metaheuristic method of Pareto simulated annealing was introduced
in [4] and [7] to solve multiple objective combinatorial optimisation problems based
on employing the criterion of Pareto optimality. Pareto simulated annealing also ex-
tends some principles applied in single objective simulated annealing (see [9] for an
introduction to simulated annealing).

Our adaptation of Pareto simulated annealing is aimed at finding optimal or near-
optimal designs for gene expression studies for situations where it is not feasible to
carry out an enumerative search. This is based on employing the criterion of Pareto
optimality which is appropriate, as highlighted earlier, since the efficiency of effects of
scientific interest are prioritised and are of interest separately. At each iteration in the
search based on Pareto simulated annealing, a sample of generating designs explores
the design space in an efficient way according to the Pareto simulated annealing algo-
rithm we present. This involves the setting of a number of Pareto simulated annealing
parameters as well as the development of appropriate quality measures to assess their
performance. In addition, we present algorithms we have developed to search system-
atically for the optimal values of tuning parameters associated with Pareto simulated
annealing based on the incorporation of response surface methodology.

Our algorithms will be demonstrated in the context of a gene expression study
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where the objectives in the optimisation problem, corresponding to the effects of
particular scientific interest, are

• t(D)
A for cell line

• t(D)
B for time and

• t(D)
AB for interaction, where interaction is of primary interest

(with background details provided earlier in this section). Our consideration will
include catering for the case where an exhaustive search of the design space for Pareto
optimal designs is infeasible due to allowing for a large number of microarray slides
to be used in the experiment.

2 Pareto simulated annealing strategy

We present our adaptation of the metaheuristic method of Pareto simulated annealing
given in [4] and [7] to the design of experiments as follows.

2.1 Strategy

The aim of Pareto simulated annealing is to find a good approximation to the exact
set of Pareto optimal designs in a relatively short time. In order to do so, a guided
search is carried out in the design space using a sample of generating designs. At
each iteration of the search, a given generating design is compared to a nearby, or
neighbourhood, design. At the beginning of the search, the generating designs move
most freely around the design space. The search becomes gradually more selective
over time in terms of a reduction in the probability that a generating design will move
to a design that provides no improvement in any of the variance objective functions.
In addition to the use of generating designs, a set of designs, called the potentially
Pareto optimal set, is maintained during the search.

Another aspect of the guided search is the information exchange that takes place
among generating designs. During the search, generating designs are compared to
each other and are influenced to repel each other to be dispersed throughout the
variance objective function space.

2.2 Strategic concepts

2.2.1 Generating designs

The generating designs are a set of designs used to explore the design space. During
the search, individual generating designs may be replaced by neighbouring designs.

204 P. Sanchez, G. Glonek, A. Metcalfe



2.2.2 Neighbourhood

A neighbourhood structure is defined such that it allows for the possibility of moving
from a given design to any other design over time. In the case of a gene expression
study, the neighbourhood of d can be defined to be any design obtained by removing
a slide from one configuration and re-allocating it to a different configuration.

2.2.3 Multiple objective function

Pareto simulated annealing is concerned with optimising for multiple objectives since
the variance objective function is multi-dimensional. For example, for a generating
design d, the corresponding variance objective function, f(d), is p-dimensional when
optimising for p objectives.

2.2.4 Potentially Pareto optimal set

The potentially Pareto optimal set is the set of designs obtained by carrying out
Pareto simulated annealing. It is maintained during the search so that it is updated
at each iteration, that is, each time a new design is visited.

2.2.5 Acceptance probability

The set of generating designs consists of one or more individual designs. Moves
are made by individual generating designs one at a time during the search. The
acceptance probability is a measure of the probability of moving from the current
generating design d to a randomly selected neighbourhood design y. Taking into
account multiple objectives, given by variance objective functions, the following two
acceptance probability functions are given based on [4].

P (d,y, T,Λ) = min{1, exp(max
i
{λi(fi(d)− fi(y))/T})} (5)

and

P (d,y, T,Λ) = min{1, exp(

p∑
i=1

λi(fi(d)− fi(y))/T )} (6)

where T is the temperature and Λ = {λi} is the set of weights used to influence the
dispersion of generating designs.

For each of the acceptance probability functions, given above, the following holds.
If a neighbourhood design does at least as well as the generating design for all variance
objective functions, then the generating design will be replaced by the neighbourhood
design. If the neighbourhood design is less efficient for all objectives, then the prob-
ability of moving to the neighbourhood design will always be less than one. In all
other cases, the probability of moving to a neighbourhood design:
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• is 1 when using the acceptance probability function given by Equation (5) since
there is at least one objective that the neighbourhood design is doing better on
than the generating design, and

• depends on the weighted sum of differences for each variance objective function
when using the acceptance probability function given by Equation (6).

The acceptance probability also depends on the temperature parameter. During
the search, the temperature parameter progressively decreases according to a cooling
schedule.

2.2.6 Cooling schedule

In order to achieve the Pareto simulated annealing strategy described in Section 2.1,
the temperature parameter is progressively decreased according to a cooling schedule
as follows.

• Select an initial temperature T0, number of steps at each temperature, l, and
cooling rate κ (where 0 < κ < 1)

• For each temperature, Tk, do the following

– Maintain the temperature for l steps

– After l steps, decrease the temperature. For example, using cooling rate κ,

Tk = κkT0 (7)

– Stop when the final temperature is reached

2.2.7 Stopping rule

The stopping rule determines when the search ends. One example is to stop after a
certain number of designs have been visited. Another example is to stop when the
proportion of accepted moves is less than ε % at a given temperature.

2.3 Role of weights

The role of the weights, Λ, is to disperse the generating designs throughout the
variance objective space. This is implemented by adjusting the weights used in the
acceptance probability function based on information exchange between generating
designs so that they act to repel each other in the variance objective space. Firstly,
for each generating design, the Euclidean distance is used to determine which of
the other generating designs is closest to it as follows. Consider a given generating
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design di with corresponding variance objective function f(di). Consider the j-th
generating design dj with corresponding variance objective function f(dj) in the set
of generating designs such that i 6= j. The distance between di and dj is taken to be
S =

∑p
k=1(f(di)k − f(dj)k)2. The closest generating design to di is taken to be the

generating design dj for which S is minimal and which is not dominated by di. Then
the weights for each objective, to be applied to the acceptance probability function,
are adjusted such that

• for the objectives that the given generating design is doing well on compared
to the closest generating design, the weights are increased so that the given
generating design is more likely to make a move that continues to improve on
those objectives, and

• for the objectives that the given generating design is not doing well on compared
to the closest generating design, the weights are decreased so that the given
generating design is less likely to be geared towards making a move that improves
on those objectives.

If the given generating design di dominates all other designs in the set of gener-
ating designs, a closest generating design does not exist and the weights of the given
generating design are randomly adjusted. That is, for each of the objectives, each
of the associated weights are adjusted separately to increase or decrease with equal
probability.

2.4 Core Pareto simulated annealing algorithm

Initialisation

1. Select an initial set of generating designs {d} at random.

2. For each generating design d, generate an initial weight vector such that λdi =
1/p where p is the number of variance objective functions.

3. Initialise the set of potentially Pareto optimal designs, PP , to be those designs
that are Pareto optimal among the initial set of generating designs.

4. Set the initial temperature such that T = T0.

Iterative Steps

For each generating design, d, do the following until the stopping condition is fulfilled.

1. Construct a neighbourhood design y as follows. Randomly select a configuration
in {d} that has at least one slide allocated to it. Remove one slide from that
configuration and re-allocate it to a different configuration that is selected at
random.
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2. If y is not dominated by d, update the set PP with y.

3. Select the closest generating design, in the objective space, do that is not dom-
inated with respect to d. If there is no such generating design, adjust the
weights such that λdi = λdi α or λdi = λdi /α, each with probability equal to 0.5.
Otherwise adjust the weights such that

λdi =

{
λdi α, if fi(d) < fi(d

o)
λdi /α, if fi(d) ≥ fi(do)

(α is greater than, but close to, 1.)

4. Normalize the weights such that
∑
i

λdi = 1.

5. Accept the neighbourhood design, to replace the generating design, with prob-
ability P (d,y, T,Λd).

6. If the condition for changing the temperature is fulfilled, decrease the temper-
ature T such that it becomes κT , 0 < κ < 1.

3 Quality measures

To evaluate the performance of Pareto simulated annealing, the following quality
measures are proposed.

3.1 Comparison with exact set of Pareto optimal designs

The quality measures presented in this section arise from considering Czyzak and
Jaszkiewicz (1998). It is assumed that the exact set of Pareto optimal designs is
given.

3.1.1 Number of designs missed

Quality measure Qm is based on the number of designs that appear in the exact
set R of Pareto optimal designs but not in the potentially Pareto optimal set PP
obtained by applying Pareto simulated annealing. This constitutes the number of
designs missed given by

Qm = card{R} − (card{PP ∩R}). (8)

A similar measure is the proportion of designs missed whereby

Qp =
card{R} − (card{PP ∩R})

card{R} . (9)

208 P. Sanchez, G. Glonek, A. Metcalfe



In practice, it is convenient to use the empirical logit whereby

Ql = log (Qm + 0.5)/(card{R}+ 0.5−Qm) (10)

3.1.2 Average distance

Quality measure Qa is based on the average distance of designs in the exact set to the
closest design in the set of potentially Pareto optimal designs as follows. For a given
design, say v, in the exact set, the closeness of a design u in the set of potentially
Pareto optimal designs is given by

c(u,v) = max
i=1,2,...,p

{0, wi(fi(u)− fi(v))} (11)

The weight wi = 1/∆i where ∆i is the range for the i-th objective in the exact
set. The closest design is that u for which c(u,v) is minimized. Following such
measurements for all designs in the exact set, Qa is the average of the distances such
that

Qa =
1

card{R}
∑
v∈R
{ min
u∈PP

{c(u,v)}}. (12)

3.1.3 Worst case

Quality measure Qw presents the worst case scenario as follows. For each design in the
exact set, the closest design in the set of potentially Pareto optimal designs is found
using Equation (11). After all designs are considered, the worst case is returned such
that

Qw = max
v∈R
{ min
u∈PP

{c(u,v)}}. (13)

4 Tuning parameters for Pareto simulated annealing

4.1 Introduction

The core Pareto simulated annealing algorithm, presented in Section 2.4, involves a
number of tuning parameters that affect its performance. In this section, algorithms
to search systematically for the optimal values of the tuning parameters are developed.
To achieve this, the performance of the core Pareto simulated annealing algorithm is
systematically evaluated with the use of response surface methodology. For further
background about response surface methodology, see [2] and [1]. Firstly, we develop a
parameter selection algorithm to study the impact of the tuning parameters in simple
examples for which the exact Pareto optimal set R is known and can be used to inform
the choice of parameters in larger problems. Following this, an adaptive algorithm for
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the selection of tuning parameters is developed in the practical case when the exact
set is not known.

The tuning parameters of the core algorithm to be considered are summarised as
follows.

Number of generating designs (NG): this is the number of designs used to ex-
plore the design space such that each visits successive designs in its neighbour-
hood.

Initial temperature (IT): this is the temperature that is set at the beginning of
the algorithm.

Cooling rate (CR): this is the rate, κ ∈ (0, 1], at which the temperature T is
decreased such that it becomes κT following the completion of a temperature
level.

Repulsion coefficient (RC): this is the multiplicative factor, α ≥ 1, used to adjust
weights to allow for the dispersion of generating designs.

Acceptance rule (AR): this is the rule used to calculate the probability of mov-
ing from the current generating design to a randomly selected neighbourhood
design. Rule 0 and rule 1, given by equations (5) and (6) respectively, are
considered.

The number of designs, initial temperature and cooling rate are quantitative pa-
rameters. The consideration of the repulsion coefficient is to assign two values, one
to indicate no repulsion (α = 1) and the other to indicate repulsion (choose α > 1).
The acceptance rule has two values corresponding to the two options proposed for the
acceptance probability function.

4.2 Central composite experimental plan

In order to find the optimal values for the tuning parameters, a sequence of experi-
ments is conducted. Each such experiment is defined by a central composite design,
which were introduced in general in [3]. In the present context, the quantitative pa-
rameters, number of generating designs, initial temperature and cooling rate, are each
assigned 5 values, corresponding to very low, low, medium, high and very high. The
values for each quantitative parameter are typically set so that the interval between
the low and medium levels is equal to that for medium and high. Furthermore, these
intervals are typically twice the size of that for the interval between very low and low
and and that for high and very high.

The central composite design is constructed as follows. Firstly, for the quantitative
parameters, form the setting combinations consisting of:

• all combinations of low and high levels for the quantitative parameters,

• the combination corresponding to each quantitative parameter set to the medium
level,
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• the combinations arising from setting each quantitative parameter in turn to
very low while the others are set to medium and

• the combinations arising from setting each quantitative parameter in turn to
very high while the others are set to medium.

To consider the repulsion coefficient and acceptance rule also, each of the setting
combinations formed for the quantitative parameters is carried out in the absence
and presence of repulsion and for both acceptance rules. All setting combinations
constitute the central composite design.

A single experiment then consists of a specified number of replicates of the central
composite design.

4.3 Analysis

The analysis of a single experiment is performed using multiple linear regression.
Each tuning parameter is represented by a variable x. For the quantitative variables,
number of generating designs, initial temperature and cooling rate, the values of x are
−1.5, −1, 0, 1 and 1.5. For the repulsion coefficient and acceptance rule, the values
of x are -1 and 1.

The quality measure, Q, forms the response variable. Examples of such measures
were presented in Section 3.1 for the case where the exact set is known. Later in this
section, practical cases where the exact set is not known are catered for.

The linear model is defined to be

ML : E(Q) = β0 +
k∑
i=1

βixi

and the quadratic model is defined to be

MQ : E(Q) = β0 +
k∑
i=1

βixi +
k∑
i=1

γix
2
i +

∑
i<j

γijxixj .

In what follows, algorithms for finding optimal values for the tuning parameters
are proposed based on the core algorithm and use of response surface methodology.

4.4 Parameter selection algorithm

For cases where the exact set R is known, the following algorithm for the selection of
suitable values for the Pareto simulated annealing tuning parameters is proposed.

Initialisation

1. Set the parameter values for the first experiment.
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2. Using the appropriate combinations of parameter values, form the first compos-
ite design.

3. Perform a number of replicate runs of the core Pareto simulated annealing algo-
rithm for each combination of parameters in the first central composite design.

4. Calculate the quality measure Q for each run.

5. Fit the linear and quadratic models given by ML and MQ respectively.

6. Determine whether the quadratic model provides a substantial improvement
over the linear model. A formal test to do so is given as follows. Calculate

the F-statistic
(R2

MQ−R
2
ML)/(νML−νMQ)

(1−R2
MQ)/νMQ

. where νML and νMQ are the degrees

of freedom for ML and MQ respectively. Compare the calculated value with
FνMQ−νML,νMQ

. Based on the critical point of F at the 10% level of significance,
accept the quadratic model if the calculated value of F exceeds the critical point.

7. If the quadratic model provides no substantial improvement over the linear
model, apply the method of steepest descent. A formal specification is to adjust
the tuning parameter values in proportion to their estimated coefficients. Thus,
if the coefficients of the k PSA tuning parameters, xi, are βi and x1 is changed
by ∆ then set

xj =
βj
β1

∆ (14)

for j = 2, ..., k. The value of ∆ is typically taken so that the move is 1 in terms
of the coded units. That is:

∆ = (1 + β2
1 + ...+ β2

k)−0.5. (15)

In practice, there may be restrictions on the feasible range of values for the
tuning parameters and an approximation to the estimated direction of steepest
descent is used. If, however, the quadratic model is accepted, proceed to the
optimisation step.

Iterative Steps

The following steps are repeated until it is determined that the quadratic model is
appropriate.

1. Using the method of steepest descent, set the parameter values for the current
experiment.

2. Using the parameter values, form the current central composite design.

3. Perform a number of replicate runs of the core Pareto simulated annealing al-
gorithm for each combination of parameters in the current central composite
design.
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4. Calculate the quality measure Q for each run.

5. Fit the linear and quadratic models given by ML and MQ respectively.

6. Determine whether the quadratic model provides a substantial improvement
over the linear model.

7. If the quadratic model provides no substantial improvement over the linear
model, apply the method of steepest descent. If, however, the quadratic model
is accepted, proceed to the optimisation step.

Optimisation step

Following the determination of an appropriate quadratic model, the optimal values
for the parameters can be estimated as follows.

1. Choose x1, x2, . . . , xk to find the least value of the quadratic function

β̂0 +
k∑
i=1

β̂ixi +
k∑
i=1

γ̂ix
2
i +

∑
i<j

γ̂ijxixj ,

within the specified domain, where {β̂0, β̂i, γ̂i, γ̂ij} are the least squares esti-
mates obtained from the final experiment. If this least value lies on the bound-
ary, it is not a minimum (unless a minimum lies precisely on the boundary). If
it is not a minimum, use it to define the direction of steepest descent and return
to Iterative Step 7.

2. Calculate the corresponding values for the tuning parameters on the original
scale.

For cases where the exact set is known, this algorithm can be applied to obtain
insight into the importance and effect of each of the tuning parameters. Moreover, it
provides the basis for the development and testing of the adaptive algorithm described
in the next section. Applications are presented later in this paper.

4.5 Adaptive Pareto simulated annealing algorithm

In practical cases, it may not be feasible to determine the exact set of Pareto optimal
designs. An adaptive algorithm that caters for such cases can be implemented in a
manner identical to the parameter selection algorithm except that the exact set R
is replaced by a suitably constructed reference set U that is defined by cumulatively
combining all of the potentially Pareto optimal designs from all experiments as the
iterations proceed. This updating provides the opportunity for the set U to continue
to improve as a set of potentially Pareto optimal designs as the algorithm progresses.
At each iteration, the reference set U is used in place of R for the calculation of
quality measures described in Section 3.1.
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5 Applications

In this section, the parameter selection and adaptive algorithms are applied to the
gene expression study, introduced in Section 1, that investigates the genetic basis of
leukaemia. The penalised objectives for the effects for cell line, time and interaction
are of interest and the penalty weight used is w = 0.9999. We will consider the gener-
ation of Pareto optimal designs for this gene expression study so that it is considered
to be large, which is characterised by having a relatively large number of microarray
slides available.

The multiple objective combinatorial optimisation problem can be summarised as
follows:

• There are six possible comparisons (i = 1, . . . , 6), any one of which can be made
on a single slide.

• There are n slides.

• Let di be the number of slides used for comparison i.

The objectives to be minimized are:

tA = (1− w)(cα + cα+αβ) + wD

tB = (1− w)(cβ + cβ+αβ) + wD

tAB = (1− w)cαβ + wD

where
D = (cα − cα+αβ)2 + (cβ − cβ+αβ)2.

The constraints are
d1, . . . , d6 ≥ 0

and
d1 + · · ·+ d6 = n.

A simulated annealing algorithm (SSA) is used to tackle this combinatorial problem.
The SAA has 5 parameters (NG, IT, CR, RC, AR) and the intermediate objective
is to tune (optimise) the performance of the SAA. The tuning objective is defined in
terms of Q which is the number of designs missed by a run of the SAA relative to the
set U of all potentially Pareto optimal designs obtained at the end of the run (U-Q is
therefore the number of designs contributed by the run).
Minimise Q
subject to:

NG ∈ {10, 20, 40, 60, 70}
IT ∈ {0.5, 5, 40, 400, 1200}
CR ∈ {0.4, 0.5, 0.7, 0.9, 1.0}

RC ∈ {0, 1}
AR ∈ {0, 1}

214 P. Sanchez, G. Glonek, A. Metcalfe



5.1 Parameter selection algorithm: 36 slides

As an illustration, consider the case where 36 slides are available. In this situation,
there are 749, 398 possible designs. It is feasible to carry out an enumerative search
of the design space and the Pareto optimal set obtained consists of 63 designs. This
constitutes the reference set.

Now suppose that the parameter selection algorithm is applied. A central com-
posite experimental plan for the Pareto simulated annealing parameters is adopted
as follows. The number of generating designs, initial temperature and cooling rate
consist of 5 levels each, corresponding to very low, low, medium, high and very high.
The values for those parameters are given in Table 1.

For a given acceptance rule, the method of setting the initial temperature in Table
1 is carried out as follows. Let the proportion of moves be the number of times a
generating design is replaced by a neighbourhood design divided by the total number
of visits at a given temperature. The initial temperatures were chosen to correspond
to approximate proportions of moves: 30%, 40%, 60%, 80% and 90%. These pro-
portions depend on acceptance probabilities and vary with generating designs. The
correspondences between initial temperature and proportion of moves were estimated
from pilot runs. Note that this was the method used for setting initial temperatures
in all applications presented in this paper.

The number of steps is fixed to be 600. The values for the repulsion coefficient and
acceptance rule used each consist of 2 levels; (1, 1.05) and (rule 0, rule 1). Note that
rule 0 and rule 1 are given by Equations (5) and (6) respectively. Thus the experimen-
tal plan consists of 15 setting combinations to vary the number of generating designs,
initial temperature and cooling rate for a given level of the repulsion coefficient and
acceptance rule.

The 15 combinations are carried out for each combination of the repulsion coeffi-
cient and acceptance rule, with a total of 60 settings. The number of replicates for
each setting is 4 thus there are 240 runs in total. The stopping criterion is the com-
pletion of the temperature level that results in having visited at least 40, 000 designs,
which is 5.333% of the design space.

Table 1: Values for parameters that have 5 levels for the first experimental plan for
the gene expression study with 36 slides

NG 1 4 10 16 19
Initial T rule 0 0.00002 0.00003 0.000085 0.0004 0.002
Initial T rule 1 0.00005 0.00009 0.00035 0.0013 0.007
CR 0.4 0.5 0.7 0.9 1

The quality measure used is based on the number of Pareto optimal designs, M , in
the exact set missed by the application of the particular Pareto simulated annealing
setting.
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In particular, the empirical logit, introduced in Section 3.1, is used such that

Y = log (M + 0.5)/(63.5−M) (16)

given that there are 63 designs in the exact set.
The results from the first Pareto simulated annealing experimental plan were anal-

ysed using linear models in R, [10].
The adjusted R-squared for the linear model was found to be 34% compared to

60% for the quadratic model. The linear model is statistically significant, inasmuch as
there is overwhelming evidence against a null hypothesis that all the coefficients except
the intercept are 0, but the quadratic model is a statistically significant improvement.
The F-ratio for testing the null hypothesis that the coefficients of all the quadratic
and cross-product terms are 0 is 12.67. When compared with the quantiles of an F-
distribution with 13 and 221 degrees of freedom, for the numerator and denominator
respectively, there is evidence to reject this null hypothesis at the 0.6 × 10−5 level.
However, the least value of the fitted quadratic model, subject to the constraints, oc-
curs on a boundary. In the coded units, the least value of the empirical logit is −1.941
when the number of generating designs, initial temperature, cooling rate, repulsion
coefficient and acceptance rule are set at 0.13, −1.5, 1.5, −1 and 1 respectively. The
linear model suggests that an increase in the number of generating designs and the
cooling rate and a reduction in the initial temperature provide improvements.

Taking the estimates and feasible values for the coefficients into account, the pa-
rameter settings from the first experimental plan are modified to the values given in
Table 2. This forms the second central composite experimental plan. Note that the
initial temperatures were chosen to correspond to approximate proportions of moves:
10%, 20%, 40%, 60% and 70%.

Table 2: Values for parameters that have 5 levels after applying steepest descent for
the gene expression study with 36 slides

NG 10 13 19 25 28
Initial T rule 1 0.00001 0.00003 0.00009 0.00035 0.0007
CR 0.7 0.75 0.85 0.95 1

In addition, it is found that the model from the first experimental plan suggests
that the low level of repulsion, which corresponds to no repulsion, is better and that
acceptance rule 1 is better. Thus the second experimental plan consists of the 15
setting combinations from the modified parameter settings for the number of gener-
ating designs, initial temperature and cooling rate and applies no repulsion and uses
acceptance rule 1. Furthermore, to maintain a total of 240 runs as carried out in the
first plan, each setting in the second plan has 16 replicates. The stopping rule and
number of steps from the first plan are preserved.

The results from the second plan were analysed in R. The linear model is found to
be only just statistically significant and has an adjusted R-squared of 3%. Moving to
the quadratic model, the adjusted R-squared increases to 63% and it is statistically
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significant. The quadratic model implies being near the minimum of a quadratic
surface. Thus no further iterations are required and the quadratic model is used to
find the co-ordinates of the minimum.

Using Solver in Excel, the co-ordinates of the minimum of the quadratic surface
were found and the values for each of the parameters are given in Table 3.

Table 3: Estimated optimal parameter values for the empirical logit quality measure
for the gene expression study with 36 slides

Parameter Estimated value
NG 28
Initial T 0.00005
CR 1

The logit response and associated analysis presented is appropriate for the current
application. In addition, recall that the average distance and worst case quality mea-
sures were introduced in Section 3.1 as alternatives. Using the second experimental
plan for the Pareto simulated annealing settings, the current application, that is, the
second experimental plan, is analysed in R with those alternative quality measures.
For the average distance quality measure, the optimal values for the tuning parame-
ters were found to be NG = 28, Initial T = 0.00015 and CR = 1. For the worst case
distance quality measure, the optimal values for the tuning parameters were found to
be NG = 10, Initial T = 0.00018 and CR = 1.

5.2 Adaptive Pareto simulated annealing algorithm

In what follows, we consider applying the adaptive algorithm for the gene expression
study with 160 slides available. When 160 slides are available, It is infeasible time-
wise to find the set of all Pareto optimal designs therefore the adaptive approach is
necessary. Firstly, we adopt a central composite experimental plan arising from the
parameter values given in Table 4. The initial temperatures were chosen to correspond
to approximate proportions of moves: 42.5%, 50%, 65%, 80% and 87.5%.

Table 4: Values for parameters that have 5 levels for the experimental plan for the
gene expression study with 160 slides

NG 10 20 40 60 70
Initial T 0.5 5 40 400 1200
CR 0.4 0.5 0.7 0.9 1

The central composite experimental plan consists of 15 setting combinations. Each
setting combination for the central composite experimental plan was replicated 4
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times, with a total of 60 runs. The number of steps is fixed to be 60 and the stopping
criterion for each run is the completion of the temperature level that results in having
visited at least 100, 000 designs. The quality measure used is the empirical logit of
the number of designs missed by the application of the particular Pareto simulated
annealing setting, taking the reference set to be U .

After the first central composite experimental plan was executed, the reference
set U was constructed to be the designs deemed to be Pareto optimal among the 60
potentially Pareto optimal sets obtained from the runs. For this experiment, U was
found to consist of 940 designs. The results were analysed in R.

The linear model is not found to be statistically significant (P=0.22). For the
quadratic model, the adjusted R2 is 54%. In particular, note that all three interaction
terms are statistically highly significant.

The quadratic model implies being near the minimum of a quadratic surface. Thus
no further iterations are required and the optimisation step is carried out as follows.

The quadratic model is used to find the co-ordinates of the minimum using Solver
in Excel. The optimum values of the Pareto simulated annealing parameters within
the region explored were found to be 70 for the number of generating designs, 0.5 for
initial temperature and 0.6211 for the cooling rate.

The algorithm was carried out from the optimum values for 60 runs. Then U was
updated from the set of 940 designs to find those Pareto optimal among those 940
designs as well as the 60 potentially Pereto optimal sets from the runs at the optimum.
This leads to an updated U consisting of a set of 924 designs obtained by adding 172
designs and removing 188 designs. Of the 172 designs added, 156 of those designs
satisfy the constraints for the subsets of interest which were presented in Section 1.

The updated set U consists of 50 designs that provide minimum variance for inter-
action of 0.025 and it is interaction that is of primary interest in this gene expression
study. Each of the 50 designs are also those that satisfy the constraints. During the
updating of U , due to carrying out 60 runs at the optimum, 10 of those 50 designs
were added, including a design that provides equal variance for cell line and time
effects of 0.01875 in addition to having minimum variance for interaction among the
designs in U .

The improvement obtained in the optimisation step can also be seen in Figure 2
that shows the relative efficiencies for the three objectives tA, tB and tAB for each
of the Pareto optimal designs at the first adaptive step and then after the final op-
timisation. Note that in both cases, the relative efficiencies are with respect to the
final reference set, U . This comparison shows an obvious improvement but the gaps
in suggest that a number of Pareto optimal designs have still been missed.
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Figure 2: Relative efficiencies for 2× 2 experiment with 160 slides, at the first step
(upper panel) and after the final optimisation (lower panel).
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Now consider fitting models for the first Pareto simulated annealing plan for 160
slides using the average and worst case quality measures that were defined in Section
3.1 except that U is the reference set as described in Section 4.5. The analysis for
both measures was carried out in R.

When either the average distance or worst case quality measure is used in place of
the logit response, the optimum values of the Pareto simulated annealing parameters
for the number of generating designs and the initial temperature remain at the upper
end and lower end of their ranges, 70 and 0.5 respectively. The optimum cooling rate
is 0.64 for the average distance and 0.70 for the worst case quality measures, relatively
near 0.62 found for the logit response quality measure. In this application, at least,
the choice of quality measure has little effect on the optimum values of the Pareto
simulated annealing parameters.

6 Conclusion

This paper demonstrates how the metaheuristic method of Pareto simulated anneal-
ing can be adapted to the context of the design of experiments. Furthermore we
demonstrate how to incorporate response surface methodology to find values for the
tuning parameters and the use of quality measures to assess its performance. We have
successfully applied our algorithms to generate optimal and near-optimal designs in
the case of a gene expression study and provide a potential platform for other types
of applications in experimental design to be explored.
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