

MINIMIZING TOTAL TARDINESS IN NO-WAIT FLOWSHOPS

Tariq ALDOWAISAN1
Ali ALLAHVERDI1

Abstract. We address the m-machine no-wait flowshop scheduling problem;
where the objective is to minimize total tardiness. To the best of our knowledge,
the considered problem has not been addressed so far. We propose heuristic
solutions since the problem is NP-hard. Initially, we consider a number of
dispatching rules commonly used for the considered objective in other scheduling
environments. We identify through computational experiments the best
performing dispatching rule; and then propose simulated annealing (SA) and
genetic algorithms (GA) by using the best performing dispatching rule as an initial
solution. This achieves at least 50% improvement in the SA and GA performances.
Next, we propose enhanced versions of SA and GA and show through
computational experiments that the enhanced versions provide over 90% further
improvement. The performance of enhanced GA is slightly better than that of
enhanced SA; however, the computation time of enhanced GA is about 10 times
that of enhanced SA. Therefore, we conclude that the enhanced SA outperforms the
enhanced GA.

Keywords: No-wait, scheduling, flowshop, total tardiness.

1. Introduction

In a flowshop environment, there is a set of n jobs that have to be processed on a set of m
machines. All the jobs follow the same route in the machines starting with machine one
until machine m. For some flowshop environments, the operations of a job have to be
processed continuously from start to end without interruptions either on or between
machines. In other words, if necessary, the start of a job on a given machine is delayed in
order that the operation’s completion coincides with the start of the next operation on the
subsequent machine. Such flowshops are called no-wait flowshops.

1 Department of Industrial and Management Systems Engineering, College of Engineering
and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait, Fax: +965 2481
6137, Email:tariq.aldowaisan@ku.edu.kw, Email:ali.allahverdi@ku.edu.kw

F O U N D A T I O N S O F C O M P U T I N G A N D D E C I S I O N S C I E N C E S
Vol. 37 (2012) No. 3

DOI: 10.2478/v10209-011-0009-6

Several industries exist, where the no-wait constraint applies including metal, plastic,
chemical and food industries; which are common in Kuwait and Gulf countries. For
instance, in the case of rolling of steel, the heated metal must continuously go through a
sequence of operations before it is cooled in order to prevent defects in the composition of
the material. Also in the food processing industry, the canning operation must immediately
follow the cooking operation to ensure freshness. Hall and Sriskandarajah [12] provided a
detailed presentation of applications and research on no-wait flowshop problems.

The m-machine no-wait flowshop problem has been addressed by many researchers,
mainly with respect to makespan or total completion time performance measures.
Aldowaisan and Allahverdi [3], Allahverdi and Aldowaisan [4], Framinan and Nagano
[10], and Pan et al. [15] addressed the problem with respect to makespan performance
measure. The performance measure of makespan is directly related to utilization of
resources while the total completion time performance measure is directly related to the
cost of inventory. The significance of minimizing the total cost of inventory has been
discussed by many researchers, e.g., Warburton [19]. Some of the works on the problem
with the performance measure of total completion time include Chen et al. [9], Aldowaisan
and Allahverdi [4], Chang et al. [8], and Pan et al. [15].

The aforementioned performance measures of makespan and total completion time can
be considered as related to job completion times. There are some other performance
measures which are related to job due dates such as number of tardy jobs and total
tardiness. Aldowaisan and Allahverdi [1] proposed several heuristics for the m-machine no-
wait flowshop scheduling problem with respect to the objective of minimizing the number
of tardy jobs. The minimization of the number of tardy jobs is important in scheduling since
certain costs are incurred when jobs are completed after their due dates. As reported by
Aldowaisan and Allahverdi [1], this performance measure is also directly related to the
percentage of on-time shipments, which is often used to rate managers’ performance.
However, the performance measure of the number of tardy jobs does not differentiate
among the late jobs (beyond their due dates), while it is a known fact that the cost increases
as the gap between a job's due date and its completion time increases. Hence, late jobs
should be differentiated as to how much their completion times are beyond their due dates.
The costs as a result of late completion time of jobs may also be penalty costs in contracts,
loss of goodwill, and damaged reputation. For such scheduling environments the
performance measure of total tardiness is more appropriate than the number of tardy jobs.
To the best of our knowledge, there has been no research addressing the m-machine no-wait
scheduling problem with respect to the total tardiness performance measure. In this paper,
we address this problem.

It should be noted that for other scheduling environments a lot of research has been
conducted with respect to the total tardiness performance measure. For example, Vallada et
al. [18] provided an excellent review and evaluation of heuristics and metaheuristics for the
regular (no no-wait) m-machine flowshops with the objective of minimizing total tardiness.
Framinan and Leisten [11] presented a greedy algorithm and Vallada et al. [17] presented a
genetic algorithm for the same problem.

150 T. Aldowaisan, A. Allahverdi

2. Notation

Every job j = 1, …, n has to be processed continuously in the same order on a set of i = 1,
…, m machines without interruptions either on or between machines. We assume that the
set of n jobs are ready for processing at time zero. The following notation will be used
throughout the paper:

E: tardiness factor.
R: due date range factor.
dj: due date of job j; which is generated using the E and R factors.
Cj: completion time of job j on the last machine.
Tj: tardiness of job j; where Tj = max {Cj-dj , 0}.
Pij: processing time of job j on machine i.

ሖܲ௝: average processing time of job j across all machines; i.e. ሖܲ௝ ൌ
∑ ௉೔ೕ
೘
೔సభ

௠

ሖܲሖ௝: variation normalized average processing time of job j across all machines; i.e.

 ሖܲሖ௝ ൌ
ఙೕ

୫୧୬ሺఙೕሻ
∗ ሖܲ௝ and ߪ௝ ൌ ට∑ ሺ௉೔ೕି௉ሖ ೕሻమ

೘
೔సభ

௠

ሖ݀
௝: due date of job j for reduced m-machine problem to single-machine one; i.e.

 ሖ݀
௝ ൌ 	 ௝݀/݉.

The objective is to sequence all jobs to minimize the total tardiness (TT); i.e.	∑ ௝ܶ
௡
௝ୀଵ .

3. Dispatching Rules

Dispatching rules are simple heuristics for building a schedule. Their popularity is due to
their ability to rapidly provide good solution in practical production settings. They are also
used as initial sequences for metaheuristic and improvement heuristics.

Let s denote the sequence of jobs which are scheduled so far and t denote the time at
which jobs need to be selected. Moreover, let Cj(s) denote the completion time of job j
considered for scheduling (not in s yet) if it is scheduled as the last job in the sequence s.
The following are five commonly used dispatching rules for the total tardiness m-machine
regular flowshop problem (Vallada et al. 2008):
1. Earliest due date (EDD); where jobs are sequenced in non-decreasing order of their due

dates.
2. Earliest due date with processing times (EDDP); where jobs are sequenced in non-

decreasing order of dj/∑ ௜ܲ௝
௠
௜ୀଵ .

3. Modified due date (MDD); where jobs are sequenced in non-decreasing order of
max{dj , Cj(s)}.

4. SLACK; where jobs are sequenced in non-decreasing order of (dj - Cj(s)).
5. Slack per remaining work (SRMWK); where jobs are sequenced in non-decreasing

order of (dj - C j(s))/∑ ௜ܲ௝
௠
௜ୀଵ .

We propose two new dispatching rules by first reducing the m-machine problem to a
single-machine problem, for which an optimal algorithm exists; and then using the optimal
algorithm to determine the solution sequence as follows:

Minimizing total tardiness in no-wait flowshops 151

1. Single-machine processing time (SMPT); where jobs are sequenced by reducing the
problem to a single-machine problem with processing times ሖܲ௝ ൌ 	∑ ௜ܲ௝

௠
௜ୀଵ /݉ and due

dates	 ሖ݀௝ ൌ 	 ௝݀/݉, and then finding the optimal job sequence that minimizes total
tardiness [16].

2. Adjusted single-machine processing time (ASMPT); where the single-machine
processing time ሖܲ௝ is adjusted to account for the variations of processing times among

the m-machines as follows: ሖܲሖ௝ ൌ
ఙೕ

୫୧୬ሺఙೕሻ
∗ ሖܲ௝ and ߪ௝ ൌ ට∑ ሺ௉೔ೕି௉ሖ ೕሻమ

೘
೔సభ

௠
. The optimal job

sequence is then determined similar to SMPT but using the adjusted processing time ሖܲሖ௝.
The ASMPT normalizes the averages of the processing time of jobs across machines by
multiplying by a factor reflecting the difference in variances of the processing times on
machines for the considered jobs.

For the considered experimentation parameters for n, m, E, and R; and the relative
deviation index (RDI) error performance measure (to be discussed later in the
“Computational Analysis” section), Figure 1 shows the comparison among the five and the
two proposed dispatching rules for different number of jobs, while Figure 2 provides the
comparison for different number of machines; where ത݊, ഥ݉ .ത, and തܴ denote the averagesܧ ,
Note that E denotes the tardiness factor, R denotes the due date range factor, and RDI is
defined as follows:

RDI =
ு௘௨௥௜௦௧௜௖ି஻௘௦௧

ௐ௢௥௦௧ି஻௘௦௧
∗ 100,	where Heuristic is the solution obtained by a given

heuristic, Best is the best solution obtained from among the compared heuristics, and Worst
is the worst solution obtained from among the compared heuristics.

Figure 1. Comparison of dispatching rules for RDI criterion vs. n; for ࡱഥ, ࡾഥ and ࢓ഥ

0

20

40

60

80

100

30 40 50 60 70 80 90 100

R
D
I

number of jobs (n)

EDD

EDDP

MDD

SLACK

SRMWK

SMPT

ASMPT

152 T. Aldowaisan, A. Allahverdi

Figure 2. Comparison of dispatching rules for RDI criterion vs. m; for ࡱഥ, ࡾഥ and ࢔ഥ

The proposed ASMPT didn’t perform well; it only outperformed the SLACK dispatching
rule. However, SMPT did well against all considered dispatching rules except MDD and for
smaller number of jobs against EDDP. As for the number of machines, the proposed SMPT
performance improves with the increase in the number of machines to outperform all other
rules at about m=14; however, MDD is still the superior performing dispatching rule.

In the next section, we use MDD as an initial sequence to develop an improved
simulated annealing heuristic; and use the three best performing dispatching rules MDD,
SMPT, and EDDP as part of the initial generation population to develop an improved
genetic algorithm heuristic.

4. Metaheuristics

Metaheuristics are computational methods that seek based on a preset objective criterion to
search for a good heuristic in a large solution space till a certain stopping criterion is met;
e.g. time, number of iterations, improvement threshold value, etc. We develop two
improved metaheuristic methods that are based on simulated annealing and genetic
algorithm.

4.1 ISA Heuristic

Simulated Annealing (SA) is a generic probabilistic metaheuristic for global optimization;
locating a good approximation to the global maximum/minimum of a given function in a
large search space. It is usually much more efficient than exhaustive brute-force search for
such search spaces. Commonly SA is applied to an initial random sequence. In this paper,
however, we propose an improved simulated annealing (ISA) heuristic using the best
performing dispatching rule MDD as the initial sequence.

During the execution of the simulated annealing, two sequences S and B are maintained.
S is the current sequence obtained so far and to be manipulated throughout the algorithm

0

20

40

60

80

100

5 8 11 14 17 20

R
D
I

number of machines (m)

EDD

EDDP

MDD

SLACK

SRMWK

SMPT

ASMPT

Minimizing total tardiness in no-wait flowshops 153

execution. Initially, S is set to be the MDD sequence. B is the best sequence that was
obtained so far.

One of the main attributes of any simulated annealing implementations is the
‘temperature’ variable (T) which indicates the amount of energy that the system has. Higher
T means that the system is unstable and the current solution could jump to a distant solution
and vice-versa; it is used to determine the probability of accepting an inferior sequence
during the search process. The initial temperature is set to T0. A higher initial temperature
would lead to the acceptance of very inferior sequences. For example, setting T0 = 500
leads to accepting a sequence that is inferior by 50% relative to the original sequence, with
a probability of 0.905 when the simulated annealing algorithm starts; whereas for T0 = 400,
the probability becomes 0.882, and as T decreases, so does this probability.

A variable Temperature Reduction Factor (TRF) is used to gradually cool down the
system by geometrically decreasing T. Both T and T0 allow for a reasonable number of
iterations to be carried out before the algorithm freezes (i.e. stops).

Another parameter of simulated annealing is the neighbor function which finds a
neighbor of a given state. We implement Adjacent Interchange Scheme (AIS) to generate a
new sequence S’ by perturbing the current sequence S. The AIS algorithm chooses a job at
random and then interchanges it with its left or right neighbor according to whether a
randomly generated number (between 0 and 1) is less than, equal to, or higher than 0.5.
When the selected job is either the first or last in the sequence, it should be interchanged
with its neighbor.

S is replaced by S' in two cases; when S' is superior to S, or if otherwise, with a
probability P=exp(-/T), where  is the relative deterioration of S’ with respect to S, and T
is the actual temperature. If the replacement was done, a variable ACC, used to keep track
of the number of accepted moves at a particular temperature, is incremented by one. If S’ is
better than S, the best sequence B is also checked against the obtained sequence S’. If S’
turns out to be better, B is also updated by S’.

The total number of moves at some temperature T is kept track of with the variable
TOT. Initially TOT and ACC are set to 0. They are also set to 0 at the start of every new
temperature. When either TOT or ACC exceed some predefined limits (TOTmax and ACCmax
respectively), the algorithm assumes that at that particular temperature, the chances of
obtaining a better sequence is getting very low. In such occasions, the algorithm cools
down the temperature T by the value TRF to obtain a new temperature.

The algorithm freezes when a counter freezing number FN reaches a maximum limit of
FNmax. FN is initialized to zero and incremented by one when the percentage of accepted
moves at a particular temperature is lower than a preset value PCNTmax. It is reinitialized to
zero each time the best sequence is updated. A high FN indicates that the chances of finding
better sequences at lower temperatures are diminishing to the point that it is not worth the
search effort. FN is reset to 0 whenever the best sequence B is updated. In addition to
FNmax, the algorithm will also stop if the actual temperature drops below the freezing
temperature FT. In other words, the search will continue till either the maximum freeze
number FNmax is reached or the freezing temperature FT is attained. The latter condition is
used to terminate the search when the freeze counter is repeatedly reset to 0 which requires
a large computational effort.

Many parameters affect the performance of simulated annealing when implemented for
optimizing the total tardiness of the no-wait flowshop problem. For every parameter of the
considered six parameters a range of values was suggested. Our approach for coming up

154 T. Aldowaisan, A. Allahverdi

with the best parameter values was to run the simulated annealing on all the different
parameter value combinations, analyze the results, and study the behavior for increasing or
decreasing each parameter value.

The maximum accepted moves ACCmax is one of the typical parameters considered
when studying the behavior of simulated annealing. The values of n/2, n, 2n, 3n and 4n
were tested where n is the number of jobs. The analysis showed that increasing ACCmax up
to 2n results in improved total tardiness while no improvement is gained for higher values.
The same was done for maximum total moves TOTmax. For that parameter, higher values
yielded better total tardiness; however the execution time increased as well. Therefore 5n
was chosen to balance between the execution time and the quality of the resulting solution.

The same has been done for maximum freezing number FNmax and freezing temperature
FT. For FNmax and FT the values 10 and 20 were selected, respectively.

For the temperature reduction factor TRF, the higher the value is, the longer algorithm
takes to complete. It was found that 0.9 and 0.95 gave similar results. 0.90 was chosen for
its execution time advantage. Finally, for the maximum accepted moves percentage
PCNTmax the experiment showed that lower values yielded better results. The value 0.10
was selected since it gave the best average total tardiness. The tested and selected values for
the parameters of the improved simulated annealing are given in Table 1.

Table 1. Selected values for the parameters of ISA

Parameter Description Tested Values Selected
Values

ACCmax Max Accepted Moves n/2, n, 2n, 3n, 4n 2n
TOTmax Max Total Moves n/2, n, 2n, 3n, 4n, 5n 5n
FNmax Max Freezing Number 2, 5, 10, 15, 20 10
FT Freezing Temperature 5 ,10, 20, 30, 150 20
TRF Temperature Reduction Factor 0.60, 0.70, 0.80, 0.80, 0.90,

0.95
0.90

PCNTmax Max Accepted Move Percentage 0.05, 0.10, 0.15, 0.20, 0.25,
0.30, 0.35

0.10

4.2 IGA Heuristic

A genetic algorithm (GA) is a search heuristic that mimics the process of natural evolution.
This heuristic is routinely used to generate useful solutions to optimization and search
problems. Genetic algorithms belong to the larger class of evolutionary algorithms, which
generate solutions to optimization problems using techniques inspired by natural evolution,
such as inheritance, mutation, selection, and crossover.

An initial generation of structures or solutions (job sequences in our case) is randomly
selected and new generations are generated by applying simple genetic operations on the
current population structures. However, in this paper an improved genetic algorithm (IGA)
is developed using the best performing three dispatching heuristics MDD, SMPT, and
EDDP as part of the initial population; and the remaining initial population members are
generated randomly.

Minimizing total tardiness in no-wait flowshops 155

The structures from the current population with higher fitness values are given higher
chance to be coupled together and thus increase the chance of getting offspring of high
fitness. This process is repeated many times leading to continuous improvement of the
solutions fitness.

The scheduling problem is a possible application of the IGA provided that a set of
genetic operations is defined between two job sequences and a job sequence fitness
evaluation procedure is specified. The IGA algorithm is next described, where P(t) denotes
the population at the tth generation, si(t) represents the ith job sequence in P(t) and f(si(t)) is
the fitness value of si(t).

It starts by first specifying the population size POPSIZE, the number of generations
NGEN and setting t to 0. The initial generation P(0) is generated randomly along with the
three best performing dispatching solutions. Starting with good sequences speeds up the
process of fitness improvement. Next, the fitness value f(si(t)) of each job sequence in the
population P(t) is calculated as follows:

݂൫ݏ௜ሺݐሻ൯ ൌ 	
max
௝
	ሺ ܱܾ݆ሺݏ௝ሺݐሻሻሻ െ 	ܱܾ݆ሺݏ௜ሺݐሻሻ

∑ ሺmax
௝
ሺܱܾ݆ሺݏ௝ሺݐሻሻሻ௞ െ 	ܱܾ݆ሺݏ௞ሺݐሻሻሻ

Where Obj(si(t)) is the objective function value of the sequence si(t) to be minimized;
i.e. the total tardiness in our case. After that, the selection probability pi(t) of each job
sequence si(t) in P(t) is calculates as follows:

ሻݐ௜ሺ݌ ൌ ݂൫ݏ௜ሺݐሻ൯/	෍݂ሺݏ௝ሺݐሻሻ
௝

Two job sequences (the parents) are picked from the population based on their selection
probability for reproduction (crossover and mutation). Sequences with higher probability
are favored over the others. At most ten selection trials are made to ensure that the two
selected sequences are different. The parents are submitted to crossover and mutation with
probabilities PCROSS and PMUTE respectively before adding P(t+1). Crossover uses
Goldberg’s PMX operator while mutation consists of swapping two randomly selected jobs
in the job sequence. The process of selecting the parents and applying the mutation and the
crossover is repeated until the new generation is constructed. This way, it is guaranteed that
sequences with highest fitness value are always passed to the children populations. Once
P(t+1) is complete it becomes the new parent population and t is incremented by 1. The
whole process is repeated until t reaches NGEN or the fitted percent of the new generation
reaches POPFIT; where POPFIT denotes population fitted percentage and it is assigned a
value of 60%. The ith job sequence is considered fitted if:

max
௝
	ሺ ݂ሺݏ௝ሺݐሻሻ െ 	݂ሺݏ௜ሺݐሻሻሻ 	൑ ܴܧܮܱܶܶܫܨ

where, FITTOLER denotes fitted tolerance and it has a value of 0.10.
Finally, the job sequence in the most recent generation with the highest fitness value is

selected as the solution of the scheduling problem.
Several parameters affect the performance of genetic algorithm when implemented for

optimizing the total tardiness of the no-wait flowshop problem. For every parameter a range
of values was suggested. Similar to the ISA, our approach for determining the best
parameter values was to run the IGA on all the different parameter value combinations,
analyze the results, and study the behavior for increasing or decreasing each parameter
value.

156 T. Aldowaisan, A. Allahverdi

Probability of crossover PCROSS and probability of mutation PMUTE are important to
improve the existing population and to maintain diversity in order not to trap at a local
minimum. The values of 0.70, 0.75, 0.80, 0.85, and 0.90 were tested to decide the value for
PCROSS. Experimental tests were conducted, and the results indicated that the performance
of GA improved as PCROSS value was increased up to 0.75, and remained almost the same
for higher values. In order to decide the PMUTE value, 0.00, 0.01, 0.02, 0.03, 0.04, 0.05
and 0.10 were considered and 0.05 was selected after the pilot runs.

Finally, for population size POPSIZE and number of generations NGEN parameters,
first we set a fixed value for the problems with different job sizes, n. We tested varying
values for these two parameters. The tested values were n/2, n, 2n, and 3n. It was observed
that the computation time increased significantly as n increases, thus we chose n for
POPSIZE and 2n for NGEN, which yielded the best total tardiness while considering the
least possible execution time. The tested and selected values for the IGA parameters are
given in Table 2.

Table 2. Selected values for the parameters of IGA

Parameter Description Tested Values Selected
Values

PCROSS Probability of Crossover 0.70, 0.75, 0.80, 0.85, 0.90 0.75
PMUTE Probability of Mutation 0.00, 0.01 0.02, 0.03, 0.04,

0.05, 0.10
0.05

POPSIZE Population Size n/2, n, 2n, 3n n
NGEN Number of Generations n/2, n, 2n, 3n 2n

4.3 FISA and FIGA Heuristics

Using the heuristic of PAAH of Allahverdi and Aldowaisan [5], where the ISA sequence is
used as the initial sequence  in PAAH of Allahverdi and Aldowaisan, and where block size
in PAAH is chosen as one. The resulting sequence becomes the further enhanced ISA
solution (i.e. FISA). Similarly, we apply the heuristic PAAH to the IGA sequence to obtain a
further enhanced IGA solution (i.e. FIGA.) In the following section, the PAAH heuristic is
adapted to our problem.

The PAAH heuristic consists of three main parts; obtaining an initial sequence,
improving the initial sequence using an insertion procedure, and further improving the
solution using an exchange procedure. First we explain the insertion procedure that will be
used in PAAH.

Step 1: Use ISA as an initial sequence .
Step 2: Set k=1. Pick the first job from  and sequence it in order to minimize the partial

objective function value of TT. Select the best sequence as a current solution.
Step 3: Set k=k+1. Generate candidate sequences by selecting the next job from  and

inserting this job into each position or slot of the current solution. Among these candidates,
select the best one with the least partial TT value. Set the best one as a current solution.

Step 4: Repeat step 3 until all the jobs in  have been considered.
Next, the solution is further improved using the following exchange procedure.

Minimizing total tardiness in no-wait flowshops 157

Step 1: Set k=u=d=2, p=c=g=1, 1={1, …, n}, 2=Set the number of repetition of
insertions and exchanges to be number of repetition of insertions (NRI) and number of
repetition of exchanges (NRE). The values of NRI and NRE are set to 10 and 3 respectively
as experimentally was determined by Allahverdi and Aldowaisan [5].
Step 2: Choose job i such that

 


m

j 1

ti,j 


m

j 1

tr,j for all r in 1.

 Remove job i from 1 and place it in the first position of 2.
Step 3: Calculate the partial objective function of TT for each job i1 after inserting it in

position k of 2 and assign the job with the minimum partial objective function of TT in
position k in 2 and remove it from 1

 Let k=k+1. Set 2.
Step 4: Go to Step 3 if k<n, otherwise go to Step 5.
Step 5: Apply the proposed insertion procedure to the sequence d. Let d=d+1 and let the

sequence obtained after the insertion be called d. If TT(d)<TT(), then set d.
Step 6: Apply the Nawaz et al. [14] insertion procedure to the sequence d. Let d=d+1 and

let the sequence be d. If TT(d)<TT(), then set d. Let g=g+1.
Step 7: If g<NRI, go to Step 5
Step 8: Exchange the jobs in positions c and u of the sequence . Let the new sequence be

. If TT(d)>TT(), then set d=.
Step 9: Set u=u+1. If un go to Step 8.
Step 10: Set c=c+1 and u=c+1. If c<n go to Step 8.
Step 11: Set p=p+1. If pNRE, then set c=1, u=2 and go to Step 8.
Step 12: The heuristic solution is d.

5. Computational Analysis

The experiments were performed on a PC running Windows 7 32-bits, with an Intel Dual
Core CPU 2.26 GHz and 3GB RAM. The data generation and testing application were
developed using the C# programming language which runs on the top of Microsoft's .NET
Framework 3.5. The Experimentation parameters are as follows:
 n: 30, 40, …, 100.
 m: 5, 8, 11, 14, 17, 20.
 E: 0.2, 0.4, 0.6.
 R: 0.2, 0.6, 1.0 .

The above mentioned E and R combinations are recommended by Vallada et al. [18]
based on the literature review. Also, as often used in the literature, the processing times of
jobs Pij are generated with a uniform distribution between 1 and 99 and due dates of jobs
are generated using due date parameters E and R with a uniform distribution between B(1-
E-R/2) and B(1-E+R/2), where B is a tight lower bound of the makespan.

ܤ ൌ 	 max
ଵஸ௝ஸ௠

ቐ෍݌௜௝ ൅ min
ଵஸ௜ஸ௡

෍݌௜௞ ൅	 minଵஸ௜ஸ௡
෍ 	௜௞݌

୫

୩ୀ୨ାଵ

୨ିଵ

୩ୀଵ

௡

௜ୀଵ

ቑ

158 T. Aldowaisan, A. Allahverdi

Where, ∑ ௜௞݌ ൌ 0						ܽ݊݀					଴
௞ୀଵ ∑ ௜௞݌ ൌ 0	௠

௞ୀ௠ାଵ
 Based on the n, m, E, and R values, the total number of combinations is 432; where

each combination is replicated 30 times.
The performance measure used for evaluating the heuristics is the relative deviation

index (RDI); calculated as follows:

RDI =
ு௘௨௥௜௦௧௜௖ି஻௘௦௧

ௐ௢௥௦௧ି஻௘௦௧
∗ 100,	where Heuristic is the solution obtained by a given heuristic,

Best is the best solution obtained from among the compared heuristics, and Worst is the
worst solution obtained from among the compared heuristics. The RDI will produce a result
between 0 and 100; where good solutions will have an RDI closer to 0.

Using the RDI evaluation criteria, we compare the regular simulated annealing (SA) and
genetic algorithm (GA) where random initial solutions are used; the proposed improved
simulated annealing (ISA), improved genetic algorithm (IGA); and the further enhanced
simulated annealing (FISA) and genetic algorithm (FIGA).

Figure 3 shows the results of the RDI comparison for different number of jobs, while
Figure 4 shows the results for different number of machines. On the other hand, Figure 5
shows the results for different E/R combinations. It should be noted that the heuristic
performances in general did not change for different values of m, n, and E/R combinations.
The only noted exception is the slight improvement in ISA and IGA performances for high
values of E and R.

Figure 3. Comparison of metaheuristics for RDI criterion vs. n; for ࡱഥ, ࡾഥ and ࢓ഥ

0

10

20

30

40

50

60

30 40 50 60 70 80 90 100

R
D
I

number of jobs (n)

SA

FISA

GA

FIGA

ISA

IGA

Minimizing total tardiness in no-wait flowshops 159

Figure 4. Comparison of metaheuristics for RDI criterion vs. m; for ࡱഥ, ࡾഥ and ࢔ഥ

Figure 5. Comparison of metaheuristics for RDI criterion for different E/R
combinations

Figure 3 shows that GA outperforms SA by about 33%; both of their performances
deteriorate slightly with the increase in the number of jobs. ISA outperforms SA by about
70%; while IGA outperforms GA by about 55%. Both of their performances do not seem to
change with the increase in number of jobs. It should be noted that ISA slightly outperforms
IGA. This is expected as ISA takes the initial seed as MDD only, while IGA takes additional
random seeds for its initial population. The two other proposed methods FISA and FIGA
have very close RDI performance that is less than 1.0 with a slight advantage of FIGA that
amounts to about 10%. Both FISA and FIGA outperforms ISA and IGA, respectively, by
about 94%. Another observation is that the performances of FISA and FIGA slightly
improve with the increase in the number of jobs. Figure 4, which shows the performance
with respect to m, the relative performance of the considered heuristics is similar to that of
Figure 3.

0

20

40

60

5 8 11 14 17 20

R
D
I

number of machines (m)

SA

FISA

GA

FIGA

ISA

IGA

0

20

40

60

80

100

0.2 0.6 1 0.2 0.6 1 0.2 0.6 1

0.2 0.4 0.6

R
D
I

E/R Combinations

SA

ISA

FISA

GA

IGA

FIGA

160 T. Aldowaisan, A. Allahverdi

The computational time for all heuristics was reasonable. For the largest number of jobs
case (n = 100), the computational time for FIGA is about 90 seconds; which is 10 times
more than the computational time of FISA. Since both FISA and FIGA performance is less
than 1.0 RDI, and FIGA has 10 times more computational time, we recommend FISA as the
superior heuristic.

6. Conclusion

The m-machine no-wait flowshop scheduling problem with the objective of minimizing
total tardiness has been considered. Several dispatching rules and enhanced simulated
annealing and genetic algorithms have been proposed. Computational analysis showed the
dispatching rule MDD outperforms all other dispatching rules. Using the MDD as initial
sequence in GA and SA has improved their performances more than 50%. Moreover, further
enhancements on GA and SA resulted in more than 90% further improvement. The
performance of the enhanced version of genetic algorithm FIGA was slightly better than
that of the enhanced version of simulated annealing FISA; however, the computation time
of FIGA was about 10 times that of FISA. Therefore, we conclude that FISA the superior
heuristic.

In this paper, setup times are ignored or assumed to be included in the processing times.
This assumption is valid for some scheduling environments. However, the assumption may
not be valid for some other scheduling environments. The importance of setup times,
treated as separate from processing times, has been addressed by many researchers and the
work of those researchers has been reviewed by Allahverdi et al. [6, 7]. Therefore, a
possible extension is to consider the problem addressed in this paper where setup times are
treated as separate from processing times.

Acknowledgment

This research is supported by Kuwait University Research Administration project number
EI02/09.

References

[1] Aldowaisan, T., and Allahverdi, A. No-wait flowshop scheduling problem to minimize
the number of tardy Jobs. International Journal of Advanced Manufacturing
Technology 2012 (to appear).

[2] Aldowaisan T, Allahverdi A. A new heuristic for m-machine no-wait flowshop to
minimize total completion time. OMEGA International Journal of Management
Sciences 2004; 32: 345-352.

[3] Aldowaisan T, Allahverdi A. New heuristics for no-wait flowshops to minimize
makespan. Computers & Operations Research 2003; 30: 1219-1231.

Minimizing total tardiness in no-wait flowshops 161

[4] Allahverdi A, Aldowaisan T. No-wait flowshops with bicriteria of makespan and
maximum lateness. European Journal of Operational Research 2004; 152: 132-147.

[5] Allahverdi A, Aldowaisan T. No-wait flowshops with bicriteria of makespan and total
completion time. Journal of the Operational Research Society 2002; 53: 1004-1015.

[6] Allahverdi, A., Gupta, J.N.D., and Aldowaisan, T. A review of scheduling research
involving setup considerations. OMEGA International Journal of Management
Sciences 1999; 27: 219-239.

[7] Allahverdi, A., Ng, C.T., Cheng, T.C.E., and Kovalyov, M.Y. A survey of scheduling
problems with setup times or costs. European Journal of Operational Research 2008;
187: 985-1032.

[8] Chang JL, Gong DW, Ma XP. A heuristic genetic algorithm for no-wait flowshop
scheduling problem. Journal of China University of Mining and Technology 2007; 17:
582-586.

[9] Chen CL, Neppalli RV, Aljaber N. Genetic Algorithms Applied to the Continuous
Flow Shop Problem. Computers & Industrial Engineering 1996; 30: 919-929.

[10] Framinan JM, Nagano MS. Evaluating the performance for makespan minimization in
no-wait flowshop sequencing. Journal of Materials Processing Technology 2008; 197:
1-9.

[11] Framinan, J.M., Leisten, R. Total tardiness minimization in permutation flow shops: a
simple approach based on a variable greedy algorithm. International Journal of
Production Research 2008; 46: 6479-6498.

[12] Hall NG, Sriskandarajah C. A survey of machine scheduling problems with blocking
and no-wait in process. Operations Research 1996; 44: 510-525.

[13] Lenstra JK, Rinnooy Kan, AHG., Brucker P. Complexity of machine scheduling
problems. Annals of Discrete Mathematics 1977; 1: 343-362.

[14] Nawaz M, Enscore E, Ham I. A heuristic algorithm for the m-machine, n-job flowshop
sequencing problem. OMEGA International Journal of Management Science 1983; 11:
91-95.

[15] Pan QK, Tasgetiren MF, Liang YC. A discrete particle swarm optimization algorithm
for the no-wait flowshop scheduling problem. Computers & Operations Research
2008; 35: 2807-2839.

[16] Pinedo M (1995) Scheduling; theory, algorithms, and systems. Prentice Hall,
Englewood Cliffs, New Jersey.

[17] Vallada, E., Ruiz, R. Genetic algorithms with path relinking for the minimum tardiness
permutation flowshop problem. OMEGA International Journal of Management
Science 2010; 38: 57-67.

[18] Vallada, E., Ruiz, R., Minella, G. Minimizing total tardiness in the m-machine
flowshop problem: A review and evaluation of heuristics and metaheuristics.
Computers and Operations Research 2008; 35: 1350-1373.

[19] Warburton RDH. EOQ extensions exploiting the Lambert W function. European
Journal of Industrial Engineering 2009; 3: 45-69.

Received January, 2012

162 T. Aldowaisan, A. Allahverdi

