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Abstract. This paper presents extensions of the IP model where part-machine
assignment and cell formation are addressed simultaneously and part machine utili-
sation is considered. More specifically, an integration of inter-cell movements of parts
and machine set-up costs within the objective function, and also a combination of
machine set-up costs associated with parts revisiting a cell when the part machine
operation sequence is taken into account are examined and an enhanced model is
formulated. Based upon this model’s requirements, an initial three stage approach
is proposed and a tabu search iterative procedure is designed to produce a solution.
The initial approach consists of the allocation of machines to cells, the allocation of
parts to machines in cells and the evaluation of the objective function’s value. Special
care has been taken when allocating parts to machine cells as part machine opera-
tion sequence is preserved making the system more complex but more realistic. The
proposed tabu search algorithm integrates short term memory and an overall itera-
tive searching strategy where two move types, single and exchange, are considered.
Computational experiments verified both the algorithm’s robustness where promising
solutions in reasonably short computational effort are produced and also the algo-
rithm’s effectiveness for large scale data sets.
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1 Introduction

Cellular manufacturing has been a prosperous research area for the last three decades
and received a lot of attention from academicians because of its strategic importance
to ‘modern’ industrial and manufacturing areas. The design of cellular manufacturing
systems has been called Cell Formation (CF). CF is the process of grouping parts with
similar design features or processing requirements into parts families and machines
into machine cells. Extensive reviews of CF problems can be found, for example, in
[49, 50], [39], [38] and [34].

Mathematical Programming formulations can be used in a number of circum-
stances involving a wide range of manufacturing data. Several types of integer pro-
gramming formulations for the cell formation problem have been proposed over the
past years. In most of these formulations parts are assigned to individual machines
and individual machines are allocated into cells simultaneously. A number of major
results in the literature have addressed the CF problem having as a main criterion the
minimisation of intercellular movements and have been discussed by: [35], [28], [29],
[48], [36], [54], [38], [47], [14], [2]. In addition, Vakharia and Wemmerlov [44] proposed
a cell formation method which integrated the issues of cell formation and within cell
material flows. However, none of the studies attempted to handle the minimisation
of intercellular movements when machine set-up costs, part/machine utilisation, mul-
tiple machines of the same type and part machine operation sequences are taken into
account. In our view, and of authors such as Selim [38] this is important and a con-
tribution of the current paper is to solve a more comprehensive CF model than has
hitherto been attempted. The aim of this will be to produce a more practical CF
system.

Applying mathematical programming models to solve the CF problem, which is
known to be a NP-hard problem [15], becomes difficult especially when large scale
data sets need to be taken into account. Extensive research has been devoted to
the CF problem with many methods developed on the basis of heuristic cluster-
ing techniques to obtain near-optimal or good solutions ([5], [32], [9], [23]). Due
to their reliable performance in solving other combinatorial optimisation problems,
metaheuristic algorithms such as simulated annealing [26], genetic algorithms [20]
and recently ant colony optimisation [13] provide another class of search methods
that have been adopted to efficiently solve the CF problem with very promising re-
sults obtained. Some of these methodologies can be found employed in [52], [21], [46],
[30], [33], [22] and [40]. In addition to these search methods Tabu Search (TS) [19],
[16] has proved to be a very successful metaheuristic with a number of applications
in the area of cellular manufacturing. More specifically a number of papers has been
produced each proposing different strategies for CF. For example, in Vakharia and
Chang [43] two heuristic methods for the CF problem were proposed based on sim-
ulated annealing and tabu search algorithms. The objective function of their model
was the minimisation of the total cost of machines required as well as materials han-
dling cost for loads transferred between cells. In Spiliopoulos and Sofianopoulou [41]
a three stage approach is proposed for the initial creation of cells where grouping of
parts is followed by an elimination of intercellular movements and the development of
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a TS algorithm later on to obtain a solution. In Wu, Low and Wu [51] two approaches
for generating initial solutions were proposed, each followed by a TS algorithm when
the main CF operation was the decomposition of the manufacturing shop into several
manufacturing cells so that the total part flow within cells could be maximised. As
with mathematical programming models, there is no proposed metaheuristic algo-
rithm in the literature combining features such as part machine operation sequence,
part/machine utilisation amounts and multiple machines of the same type. All of
the latter elements would produce a very realistic and robust system for CF which
could be tested for its robustness and effectiveness for large scale problem sizes via
an effective higher search methodology, i.e. a metaheuristic.

The aim of the paper is fourfold: first, to produce a comprehensive integer pro-
gramming (IP) model able to assign parts to machines and machines to cells simulta-
neously when part/machine utilisation is considered and to minimise jointly the cost
of intercellular movements, the set-up cost of machines and the cost of parts revis-
iting a cell for a later machine operation; second, to propose a three stage heuristic
approach for the creation of an initial solution following the IP model requirements;
third, to develop a tabu search algorithm for obtaining good solutions; fourth to test
the latter on a variety of data sets, especially medium to large problem sizes, and
prove its effectiveness.

2 Mathematical model: problem statement

The proposed model is an extension of a model developed by Foulds, French and Wil-
son [14], the first to simultaneously optimise cell formation, machine-cell allocation
and part machine cell allocation minimising intercellular movements when multiple
machines of the same type were considered. This model was formulated as an integer
program but solved heuristically achieving solutions to medium-sized problems within
short time limits. In the current study additional elements, such as part/machine set
up costs and also costs incurring when parts revisit a cell for a later machine operation
are added into the system. Please note that in this study each part is constrained to
strictly follow a machine operation sequence in order to be fully processed, reflecting
real production conditions. Further, the objective function is enhanced to simultane-
ously minimise the number of distinct allocations of parts to cells, the set-up costs
of machines and the number of times a part travels back to an already visited cell.
Although the model is able to determine which machines should be allocated to which
cells, because machines are only available in limited numbers it may turn out that
some parts do not receive all their processing in one cell and have to travel from cell
to cell in order to comply with the machine operation sequence. For notation of the
model see the corresponding Appendix.
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The complete formulation of the mathematical programming model is shown be-
low:

Min (
NP
j=1

NC
q=1

(Mj,q×wj,q)+
NM
i=1

NP
j=1

(SETUPi,j ×
NC
q=1

si,j,q)+
NC
q=1

NP
j=1

ZTY PESj
z=1

(Aj ×extraq,j,Lj,z
)) (1)

subject to
NC
q=1

yi,k,q = 1 ∀ i, k (2)

NC
q=1

xi,j,q = UTILi,j ∀ i, j (3)

xi,j,q ≤ si,j,q ∀ i, j, q (4)

xi,j,q ≥ UTILMIN × si,j,q ∀ i, j, q (5)

NP
j=1

xi,j,q ≤
KMi
k=1

yi,k,q ∀ i, q (6)

NM
i=1

KMi
k=1

yi,k,q ≤ vq × EMAX ∀ q (7)

NM
i=1

KMi
k=1

yi,k,q ≥ vq × EMIN ∀ q (8)

xi,j,q ≤ UTILi,j × wj,q ∀ i, j, q (9)

xi,j,q ≤ UTILMAX × xxi,j,q ∀ i, j, q (10)

xi,j,q ≥ UTILMIN × xxi,j,q ∀ i, j, q (11)

xxLj,z,j,q + xxLj,r,j,q −
r−1

zz=z+1

xxLj,zz,j,q ≤ extraq,j,Lj,z
+ 1 ∀ q, j, z, r (12)

vq+1 ≤ vq ∀ q (13)

NC
q=1

q × yi,k,q ≤
NC
q=1

q × yi,k+1,q ∀ i, k (14)

yi,k,q, vq, wj,q, extraq,j,i, xxi,j,q = 0 or 1; 0 ≤ xi,j,q ≤ 1; si,j,q integer (15)

Objective function, 1, combines a mixture of the following three requirements to:

• Minimise number of distinct cells used by each part

• Minimise number of times a part revisits a cell for a later machine operation, thereby, with the
above, minimising intercellular travel.

• Minimise set-up costs when allocating parts to machines

It is assumed that SETUPi,j is fixed for a given machine of type i and part j and defined independently
of the machine operation sequence. It would be possible to generalise and extend the model by introducing
the subscript z in SETUPi,j . For simplicity this has not been done.

Constraint (2) ensures that the kth machine of type i is assigned to exactly one cell. Constraint (3)
handles the requirements for processing part j on machine i: the number of machines or fraction thereof
required to process part j in cell q is equal to the utilisation of machine i required to process part j in cell
q. Constraint (4) ensures that the total number of machines (in terms of machine utilisation) required to
process part j in cell q is less than or equal to the integer number of machines of type i that will be used by
part j in cell q. Constraint (5) forces variable s to get the value 0 whenever x variable is 0, and also variable
x to assume values >= UTILMIN as soon as s is non-zero. Although not a strictly necessary constraint,
it was found to aid branch and bound. Constraint (6) ensures that the total number of machines of type
i used in cell q should be less than or equal to the number of machine instances of type i assigned to cell
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q. It will be assumed that no cell will contain more than EMAX machines. Constraints (7), (8) restricting
the number of machines in each cell are required because space in a cell will be limited (see for instance
[38]). Constraint (9) picks which cells are used by parts. Both constraints (10) and (11) ensure that
whenever a part uses a machine or a fraction thereof (xi,j,q >= UTILMIN) variable xxi,j,q is assigned
the value 1, otherwise it is assigned to 0. The key constraint (12) picks out the number of times a part

travels back to a cell for a later machine operation. A part j, whose zth machine operation is processed in
cell q, could revisit the cell q for a later machine operation i.e. (z + r)th, only when the second machine
operation (z + 1) is not processed within the same cell. In this case the value of extraq,j,Lj,z

is assigned

to 1. Constraint (13) ensures that cells are formed in successive numerical order. Constraint (14) assigns
duplicate machines when needed to lower numbered cells in successive numerical order. Constraints (13)
and (14) are included to eliminate certain symmetries and assist branch and bound - all cells are treated as
equivalent by an integer programming solver so (13) reduces the need to explore similar trial solutions for
every cell. Similarly, (14) reduces the need for the solver to explore trial solutions involving permutation
of identical machines.

It is assumed that the machine utilisation for processing a part j is equal to the processing time of
part j in machine i. For this reason no time element is considered for the current model. Further, for each
machine of type i only a maximum of 1.0 units of its capacity can be spent on processing a part j. If,
for example, the machine utilization of a certain part is more than 1.0 units then more than one machine
instance will be used for processing the current part.

Figure 1 provides a visual representation of the CF model which was solved by running XPRESS-MP [53],
a general purpose mathematical programming solver. The data used are presented in Table 1. Each item
in the square boxes, i.e. Mk

i , denotes the instance k of machine of type i currently used within a cell.
The elements in the arrows indicate machines usage by parts, e.g. 2(0.3) describes that part 2 is using
0.3 capacity units of the machine that the arrow is pointing at. As shown in this figure all parts follow a
certain route and it is worth noting that the dotted line represents the route of part 2 which revisits a cell
in order to be fully processed.

The IP model is appropriate for smaller problem instances, because they will be solvable, but not for
larger instances for which a heuristic approach is needed. The IP model will be used to compare with the
heuristic approach (see section 7).

3 Proposed initial heuristic approach

The proposed approach for the construction of an initial solution following the requirements of the math-
ematical model described in section 2 consists of the following phases:

1. Random initial allocation of machines to cells;

2. Allocation of parts to machine cells;

3. Objective function value evaluation.

Obtaining an initial solution is not straightforward, thus the steps are outlined in sections 3.1-3.3. Prior
to this the number of the cells created is determined. According to Foulds, French and Wilson [14] the
number of cells created could be any integer number between:

CELLMIN = (1/EMAX ×
NM
i=1

KMi)

and

CELLMAX = (1/EMIN ×
NM
i=1

KMi)

where KMi, as shown in the Appendix as well, is given by the formulae below.

KMi = 
NP
j=1

UTILi,j

However, it was found in practice, that in the majority of cases the best solutions are produced when
the number of cells is set to CELLMIN . For simplicity the same scheme is adopted here as well.
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3.1 Machine cell allocation

This first stage concerns the random grouping of machines into cells and the creation of a machine based cell

formation configuration system. Before describing the process of allocating machines to cells the strategy

employed for determining the capacity in terms of the number of machine instances that each cell should

consist of is described. Each cell should accommodate between EMIN and EMAX number of machines.

The capacity of the first chosen cell is randomly generated using a uniform distribution with parameters

[EMIN , EMAX ] and rounded to the nearest integer. For the second chosen cell its capacity is not randomly

generated but is produced from the equation below:

cell capacity = round(
sum of all machine instances− total previous capacity used

remaining cells to be filled (including current)
)

The same applies for the remaining cells in the system in order for their capacity to be found.
For better illustration of cell capacity determination an example follows next. Assume that
the total number of machine instances is twenty, EMIN is equal to four, EMAX is equal
to six and there are four cells waiting to be filled with machine instances. If for the first
cell the machine capacity randomly generated is equal to four then for the second cell its
capacity, according to the formulae above, will be equal to five. For the remaining two cells
their capacities will be five and six respectively. As can be observed, the total capacity in
magnitude is equal to the total number of machine instances in the system, thus all machine
instances have been accommodated in the existing cells.

In pseudo terms, the allocation of machines to cells is provided within steps 1-3 below.

1. Find all pairs consisting of machine types and their corresponding instances in the
system, list them in ascending order (i.e. machine type 1 and all its instances, machine
type 2 and all its instances etc.) and store them in a matrix named MACHCOORD;

2. Initialise a 3-D matrix named CELLMATRIX of size (NM×KMAX×NC) to hold
machine type, machine instance and cell type respectively. Allocate machines to cells:

(a) Choose cell to fill (store number to avoid filling this cell again);

(b) Find the capacity for the current cell (as shown earlier);

(c) Choose randomly a machine instance pair from MACHCOORD (delete pair
in order to avoid choosing this pair again) and update CELLMATRIX for
corresponding cell;

(d) Repeat the above step until the corresponding chosen cell is filled with a number
of machine instances equal to the capacity determined in 2(b);

(e) Repeat steps 2(a)-2(d) until all cells are filled;

3. Re-arrange the elements of the CELLMATRIX from step 2 so that duplicate ma-
chines are allocated to lowered numbered cells in successive numerical order.

For example, if the data displayed in Table 1 is used, a possible random allocation of
all machine instances of all types to the three cells could be as shown below. Please note
that first dimension refers to machine type, the second to machine instances and the third
to cells.
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CELLMATRIX(:, :, 1) =




0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 0 0 0 0 0
1 1 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



,

CELLMATRIX(:, :, 2) =




1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 1 0 0
1 1 0 0 0 0 0
1 0 0 0 0 0 0



,

CELLMATRIX(:, :, 3) =




0 0 0 0 0 0 0
0 1 1 1 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0




(16)

For example, a machine of type 5 has its instances allocated in the three cells as
follows:

CELLMATRIX(5, :, :) =



1 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1


 (17)

Machine instances 1, 2 and 3 are allocated in cell 1, machine instances 4 and 5 in
cell 2, whereas 6 and 7 are in cell 3.

3.2 Part machine cell allocation

The allocation of parts to machine cells forms the key stage of the proposed heuristic
algorithm as the ordered part machine sequence is taken into account imposing a great
restriction on the solution strategy to be developed. Each part is tied to its ordered
machine sequence, therefore for each part there is only one route to be followed in
order for its operation to be complete. Moreover, for each machine in the operation
sequence there is a certain utilisation amount to be used by current part. The above
restrictions in conjunction with the elements of the objective function, equation (1),
such as intercellular movements, set-up costs and later revisits of parts to already
visited cells, plus all remaining model constraints, were taken into account for the
design of allocating parts to machine cells.

The procedure of allocating parts to machine cells is outlined below.

1. Initialise a 3-D matrix named PARTMATRIX of size (NM ×KMAX ×NP )
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to hold for a certain machine instance the allocated part/machine instance util-
isation;

2. Sort the parts into ascending order of total processing requirements, i.e. for
each part sum up all relevant part/machine utilisation amounts and sort them
in ascending order;

3. Let j be the next non-allocated part to be allocated;

4. Identify part j’s machine operation sequence;

5. Determine a sequence of cells by identifying a maximum continuous machine
operation sequence within cells relative to the part machine sequence;

6. Let d be the first machine in current part’s machine sequence;

7. Let q be the first cell in sequence;

8. Check if first cell q in the cell sequence, determined in step 5, includes the
machine d of the corresponding part machine operation sequence. If it does,
find all the instances of current machine in candidate cell otherwise, check the
next cell in the cell sequence;

9. Let k be the first machine instance found;

10. Check current part/machine utilisation and also remaining capacity of the rele-
vant machine instance within current cell. Depending upon the values of both, a
number of cases are examined, as illustrated below, and allocation commences
(assume remaining capacity of a current machine instance is equal to a and
current part/machine utilisation is equal to b).

(a) a < 1 & b >= 1

(b) a < 1 & b < 1 & a <= b

(i) a+ b = 1 | (ii) a+ b > 1 | (iii) a+ b < 1

(c) a < 1 & a >= b

(i) a+ b = 1 | (ii) a+ b > 1 | (iii) a+ b < 1

For the cases where either current part/machine utilisation is greater than or equal to
one, i.e. case 10(a), or current part/machine utilisation plus the remaining capacity for
current machine instance pair is greater than one, i.e. cases 10(b)(ii) and 10(c)(ii),
a certain utilisation amount will be used for allocation. The value of the latter is
determined to be equal to one minus the remaining capacity. This utilisation amount
is used to update PARTMATRIX. The rest of the unused utilisation amount for the
current part/machine is stored in a temporary utilisation matrix and the procedure
continues with the allocation of current part to another instance of the same machine
type. This process will end when the corresponding entry in the temporary utilisation
matrix becomes zero. For the remaining cases involved in step 10, the allocation
process is straightforward where PARTMATRIX is updated with the part/machine
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utilisation initially given. Please note that for all cases, once current part machine
allocation relative to its machine operation sequence finishes, the procedure continues
with the next part in sequence, unless the length of its machine sequence has not been
reached yet, i.e. there are still machines for current part to be allocated to, so the
process will continue from there.

At each stage where PARTMATRIX is updated two additional elements are
also updated. The first named part moves stores for each part all its related cell
movements together with the corresponding machine instance pairs used relative to
the part machine operation sequence. Moreover, in order to have a full reference of the
part allocation where all allocated parts and the cells used together with the machine
instances pairs employed can be presented, a 4D binary matrix, named PCMATRIX
of size (NM ×KMAX ×NP ×NC) was developed. Both of the above elements will
be mainly used for the evaluation of the objective function described next but prior
to this an example is provided to illustrate the procedure for part allocation.

Assuming here the same data as shown in Table 1, and the machine cell allocation
as presented in matrices 16 the first part to allocated will be part 1 since this has the
least processing requirements, i.e. 0.4 units from machine of type 5. Part 1 is allocated
to the first instance of machine of type 5 since this the first instance to be checked
for its availability in cell 1. The actual allocation can be seen in PARTMATRIX
below.

PARTMATRIX(:, :, 1) =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0.4 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




(18)

PCMATRIX below confirms the allocation of part 1 in cell 1:

PCMATRIX(:, :, 1, 1) =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




(19)

Part 10 is next for allocation. Its sequence is M2, M6 thus a check takes place
to examine whether there is a cell that holds both machines in order to avoid any
unnecessary intercellular moves. From matrices (16) it can be seen that M2 instances
are located in cell 1 and cell 3, whereas the three instances of M6 in cell 2. Hence, an
intercellular move is unavoidable. The PARTMATRIX for part 10 looks as follows:

PARTMATRIX(:, :, 1) =




0 0 0 0 0 0 0
0.6 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0.3 0 0 0 0 0 0
0 0 0 0 0 0 0




(20)
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The PCMATRIX shows that part 10 is allocated in cells 1 and 2 using the first
instance of machine of type 2 and the first instance of machine of type 6 respectively:

PCMATRIX(:, :, 10, 1) =




0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



,

PCMATRIX(:, :, 10, 2) =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0




(21)

In a similar way part 3 will be allocated to the first instance of machine of type 3 in
cell 1 as that was available. For part 9, which is next in sequence to be allocated, things
are slightly different. Part 9 has a machine sequence, M3,M5,M2 and it requires 0.1
units fromM3, 0.1 a unit fromM5 and 0.1 units fromM2. Cell 1 holds all machines of
its corresponding sequence thus the process starts from cell 1. Part 9 is first allocated
to the first instance of machine of type 3 in cell 1. For M5 which is next, only 0.6
units are allocated to its first instance since 0.4 units are used already from part 1.
The remaining 0.4 units needed are allocated to the second instance of machine of
type 5 which happens to be available. Finally, 0.1 units of M2 are allocated in the
first instance of machine of type 2. This instance had available 0.4 units since only
0.6 units have been used from part 10 earlier. PARTMATRIX for part 9 will now
look as follows:

PARTMATRIX(:, :, 9) =




0 0 0 0 0 0 0
0.1 0 0 0 0 0 0
0.1 0 0 0 0 0 0
0 0 0 0 0 0 0
0.6 0.4 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




(22)

It is also worth noting that part moves, which was mentioned earlier, will now
look as follows:

part moves =




1 1 5 1
10 1 2 1
10 2 6 1
3 1 3 1
9 1 3 1
9 1 5 1
9 1 5 2
9 1 2 1




(23)
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For example part 2 (see rows two and three) has visited cells 1, 2 using the first
instance of machine of type 2 and the first instance of machine of type 6 in sequential
manner respectively.

The rest of the parts are allocated to cells in a similar way.

3.3 Objective value evaluation

For determining the value of the objective function for the solution obtained via the
part machine cell allocation a number of routines were implemented. For finding the
number of the distinct allocations of parts to cells, part moves was used. For every
part its corresponding segment (i.e. the cells occupied relative to the current part’s
machine operation sequence) in part moves, was found and a search was conducted.
For example, for a cell sequence of the form [3 1 1 3 3 1] which is relative to current
part’s machine operation sequence two distinct allocations were recorded since cells
3 and 1 were occupied by the current part.

For determining the total part/machine set-up cost, PCMATRIX was used to
find the number of machines instances of certain machine type used by current part
in each cell. The total set-up cost was finally determined by multiplying the latter
with the corresponding cost, i.e. SETUPi,j .

In a similar way, a routine was built to determine the number of later revisits of
parts to already visited cells. For each part the visited cells sequence was considered
and revisits to cells were accumulated when encountered. For example, for a cell
sequence of the form [3 1 1 3 3 1] two revisits of a certain part to cells are counted:
i) when part returns to cell 3 for an intermediate machine operation and ii) when part
revisits cell 1 for the final machine operation.

4 Main tabu search components

Tabu search is one of the most successful metaheuristics for application to combinato-
rial problems. The basic ideas of TS were introduced by Glover [16]. A description of
the method and its concepts can be found in Glover [17, 18], and Glover and Laguna
[19]. The basic idea of TS is the explicit use of search history, both to escape local
minima and to implement an explorative strategy.

TS can either employ short term memory and be characterised as a ‘simple’ search-
ing process, or long term memory and become more complex. For the purpose of this
paper short term memory will be utilised and act as the main framework for the TS
development. This framework will be employed within an iterative procedure where a
number of techniques or more minor heuristic approaches useful for producing overall
an effective algorithm will be proposed. Before proceeding with the actual presenta-
tion of the TS algorithm developed, a number of its key elements and tools will be
presented.
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4.1 Definition of a feasible solution

In the context of the proposed tabu search approach only feasible solutions are pro-
duced strictly ‘adopting’ all the requirements and specifications of the current MIMP
model for CF. More specifically, a feasible solution consists of an assignment of ma-
chines to cells and an assignment of parts to machine cells when the part machine
operation sequence is taken into account. While machines are allocated to cells certain
elements are stored, holding information about the capacity used for each cell and
to which cell each machine is allocated. These elements provide all the information
needed for the next step which is the allocation of parts to machine cells. The latter as
the most complex and key stage for the formation of the solution involves a significant
number of look-up tables to store information while every part preserving its machine
operation sequence is allocated to machines in cells. After parts are fully allocated,
which is indicated by the fact that when a temporary part/machine utilisation matrix
becomes empty, the calculation of the relevant costs within the objective function can
be carried out. The assignment of parts to cells allows for the calculation of the num-
ber of distinct cells used by each part and also the later revisits of parts to already
visited cells. Finally, depending upon the number of machines of a specific type used
by a part in a particular cell the machine set-up costs can also be determined leading
to the total cost calculation for CF.

4.2 Neighborhood generation - moves definition

In TS methods, each iteration of the search process focuses on finding a good neigh-
borhood solution with better quality than the current solution. For the current study
the neighborhood of a current solution is defined as the set of all feasible solutions
that can be reached by a move. Two types of moves (a) single and (b) exchange
will be considered for generating neighboring solutions for each configuration in the
system. Please note that only feasible moves are examined due to the structure of the
algorithm and the fact that there always exists a feasible schedule. The single move is
an operation that moves a machine instance pair, (i, k), from its current cell q (source
cell) to a new cell q (destination cell). The exchange move is an operation which
consists of two independent single moves. If a machine instance pair (i, k) is moved
from its source cell q to another cell q (first single move), then another machine of
type i1 of instance k will be moved from the destination cell q of the first move to
the source cell q of the first move (second single move) in exchange. Thus the two
moves generated are ((i, k), q) and ((i, k), q).

Whenever a different machine instance pair becomes the candidate for moving it
between cells another neighborhood with a certain set of solutions will be generated.
From each neighborhood a solution will be chosen based on some criteria, discussed

1Note that the machine of type i in destination cell q could be of the same type as the machine of
type i in the source cell q. However, these machines will have a different instance number. Also note
the way that this exchange might improve the current solution depending on the available capacity
of each of the machines involved and the candidate part/machine requirements while the allocation
process takes place.
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within section 4.4, to become the current one from where the search will continue
with the generation of a new neighborhood. This process continues until the number
of iterations is reached which is the stopping condition for the current TS algorithm.

4.3 Aspiration criterion

The aspiration criterion (AC) employed here resembles the typical and customar-
ily used global form of aspiration by objective, where the tabu status of a move is
overridden when the move improves the best value found so far.

4.4 Tabu list and tabu tenure

The short term memory employed is the history of recent moves (recency memory) and
aims primarily at preventing moving back to these moves, avoiding being trapped at
local optima or causing cycling. The most common implementation of the short term
memory is based upon the storage/update of the move attributes that were recently
visited. Each time a move is implemented two entries will be recorded in the tabu
list: the forward attribute of the move and the reverse of it. The forward attribute
involves the corresponding part, machine instance pair, and the new cell assignment
(destination cell), whereas the reverse involves the corresponding part, the machine
instance pair and the old cell assignment (source cell). The forward attribute is stored
in order to avoid considering this move for a substantial time interval, whereas the
reverse is stored in order to avoid cycling. Please note that for each of these entries
an additional entry, the tabu tenure, is added denoting their duration for remaining
tabu active. A move which is implemented is added to the tabu list and one unit
is subtracted from the tabu tenures of the remaining entries. Also the entries whose
tabu tenure is zero are deleted from the list.

After a number of experiments were carried out towards the creation of an effective
algorithm with a significant exploration of the search space, the tabu list size was
decided to be fixed with values ranging from five to fifteen depending upon the size of
the problem tested each time. This is in line with Glover [16]. More specifically, for
small to medium problem instances the size of the tabu list was kept relatively small,
i.e. five or similar, whereas for bigger problems, this value needed to be bigger, i.e.
ten or greater in order to force the proposed strategy to move into unexplored areas.
List sizes greater than fifteen were not found to be useful.

The question arising at this stage is which move should be implemented from
each generated neighborhood as the iterative procedure goes along. Initially, all the
solutions found within a neighborhood are sorted in ascending order of their corre-
sponding objective values. If the solution with the smallest objective value happens
to be less than the best value found so far then its corresponding move will become
admissible for implementation no matter the tabu status of its forward attribute due
to aspiration criterion. If this is not the case, then the procedure will continue locally,
within the current neighborhood, in search of the move to implement. The solution
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with the best objective value will be examined first to check whether the tabu status
of its forward attribute is still active. If this is happening then the search will continue
with the solution that follows next in the sorted sequence and so on till a move that
can become admissible is found.

5 Tabu search algorithm design

Before describing the complete TS iterative procedure a few comments will be made
about the structure of the algorithm. The algorithm consists of two different stages.
The first stage involves the neighborhood generation where for a certain part moves are
considered. More specifically, a candidate machine instance pair relative to the current
part’s machine operation sequence is moved from the source cell under consideration,
to the remaining cells (i.e. destination cells). The decision on which move type to
be considered depends upon the capacity of machine instances that both source and
destination cells have. Each move of the candidate machine instance pair entails
the creation of a unique solution within the neighborhood. For each solution, part
reallocation is performed to increase the possibilities of receiving a better solution
before evaluating the value of the objective function. Also a temporary tabu list is
updated storing all move attributes. The second stage is the main phase within the
search process where the principles of the tabu search algorithm are adopted and
decisions are made concerning the direction of the search. More specifically, a process
commences in the search for an admissible move from where the process continues
and a permanent tabu list is updated.

Please note that the algorithm commences by considering the number of parts and
more specifically the part that causes the majority of the intercellular movements in
the initial solution. The latter has been identified as an important element in the
objective function (1) (see for instance [38]). The better the distinct allocation of
parts to cells the better the value of the objective function for current CF problem.

5.1 Iterative procedure

The complete procedure of TS for CF is provided below.

1. Initialisation process;

2. Generate a feasible solution by the random approach of allocating machines to
cells and parts to machines cells;

3. Order the parts in ascending order of the intercellular movements caused;

4. For the first part in sequence find its corresponding segment in part moves and
more specifically the occupied cells and machine instance pairs relative to part’s
machine operation sequence;
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5. For the first machine instance pair identify source and destination cells in order
for a move to commence;

6. Determine the capacity of both current source and destination cells; if capacity
of destination cell is less than EMAX and capacity of source cell is less than or
equal to EMAX and greater than or equal to EMIN a single move is considered;
else an exchange;

7. After any of the move types is being considered and CELLMATRIX is up-
dated accordingly, reallocate parts to machine cells for the solution obtained
and evaluate objective function value;

8. Update the temporary tabu list by storing for current solution both forward
and reverse attributes of the corresponding move together with their maximum
value of tabu tenure;

9. Continue doing the process above till all solutions for current machine instance
pair configuration have been generated and the neighborhood has been formed;

10. From the current neighborhood sort the objective values of all solutions in as-
cending order;

11. If local best solution, is better than global best found so far, set global best to
be equal to local best no matter the tabu status of the forward attribute for
current move. This is happening due to the aspiration criterion; also update
part moves, the distinct allocations of parts to cells and the permanent tabu
list for the move just implemented;

12. Else continue searching locally for the move to accept as admissible whose tabu
status is not tabu active, i.e. whose forward attribute is not in the temporary
tabu list. Once this solution is found perform similar updates with step 11
and continue with step 5 by considering the next machine instance pair for
the current part. When all machine instance pairs for current part have been
considered and different neighborhoods have been generated move to step 4 and
the next part in sequence;

13. If the iteration limits have been reached, stop the run; otherwise go to step 3.

Step 4 as described above implies the search in part moves for the part currently
under consideration. For example if we refer to matrix (23) and assume 9 as the first
part to be considered within the iterative tabu search algorithm its segment will be:

part moves =



9 1 3 1
9 1 5 1
9 1 5 2
9 1 2 1


 (24)

The first neighborhood will be generated based on the first row which describes
that the first instance of machine of type 3 is in cell 1. Thus source cell will be cell
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1 and destination cells the remaining three. Depending on the capacity of all cells,
as described in step 6 above, a single or an interchange move will commence, e.g.
first instance of machine of type 3 might be send to cell 2 without any exchange,
but for moving it to cell 3 an exchange might be needed instead depending on the
capacity. Everytime a move is considered the machine cell allocation is updated, part
reallocation is also considered followed by an evaluation of the objective function.
Note also that everytime a move is performed part moves is also dynamically updated
to record the latest allocation of machines to cells for each part in relation to its part
machine operation sequence. The latter occurs since the part machine operation
sequence has a key role in all operations increasing the complexity.

6 Tabu search algorithm assessment

For assessing the computational performance of the proposed tabu search algorithm
a number of problem instances, twenty in total, was generated. The number of parts
and machines types involved in each of the data sets was adapted from problems
previously used in the literature where the majority of them are medium to large sized
problems. No available problem instances matching the current mathematical model
requirements, by providing values to all the necessary parameters, are available in the
existing literature, so additional data for each problem involved had to be generated
following the pattern used by other authors of modifying existing data sets. Table 2
shows the reference for each problem, the number of parts and the number of machines
included for each problem instance involved2.

For each problem instance, the part/machine utilisation (UTILi,j), the part/ma-
chine set-up costs (SETUPi,j) and the parts sequence (Lj,z) involved were randomly
generated. More specifically, the utilisation amount was generated using a uniform
distribution with parameters [0.0, 1.2] and values rounded to units of 0.1. The value
of the upper range was used in order to include a requirement for more than a unit
where a split needs to be performed. Values of UTILi,j are assumed to contain some
in built redundancy. The set-up cost of each machine to be used by a certain part was
also generated using a uniform distribution with parameters [0.00, 6.00], and values
rounded to units of 0.01. Please note that the range includes reasonable values without
the maximum being too extreme. For generating the machine operation sequence for
each part a different method had to be employed. For identifying for each part the
machine operations involved, the indices of the non-zero elements in UTILi,j were
found and stored. Before adding for each part the machine operations (corresponding
to these indices) to matrix Lj,z, a perturbation was carried out in order to increase
the possibilities of obtaining a randomly generated machine operation sequence for
each part. Further,Mj,q has a constant value of ten whereas, Aj a value of one. These
values were chosen on the basis of obtaining sensible results. Finally, EMIN was set
to four and EMAX was set to take values between six and seventeen depending upon
the size of the problem instance employed each time.

2Please note that data is available upon request.
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7 Computational results

The tabu search algorithm presented in this study was coded in MatLab(TM),3 whereas
the optimum or best known integer programming solutions, which required much
longer runs, were obtained from XPRESS-MP. Both Matlab and XPRESS-MP run on a
Linux machine (Intel (P4 Xeon) 3GHz, 1.00 GB of RAM) accessed remotely.

The computational results for all data sets are presented in Table 3. The elements
determined for each instance are: number of cells, total number of machine instances,
problem size, i.e. the product of the number of constraints and the number of decision
variables involved in the mathematical model and determined by XPRESS-MP, the best
known objective value obtained (including the optimum when reached) via XPRESS-MP,
and the corresponding CPU time. Also the best value of the objective function found
via TS and the required CPU time together with the value of the initial objective
value are recorded. Please note that for the best value generated via TS especially
when a large data set was employed a number of simulation runs was conducted for
exploring different solutions and choosing the best among them. For the reader’s
interest, the number of runs for all instances is also added in Table 3. Moreover, a
comparison is made between the value of the initial objective function and the best
value found and the percentage of improvement/deviation from the best known value
is recorded. The latter is a performance criterion for the tabu search and its efficient
exploration of the search space. In addition, the percentage deviation of each solution
obtained via TS from the optimum or best known value obtained via XPRESS-MP is
indicated. Furthermore, the mean CPU time and the mean deviation values are found
and presented at the bottom of the table. Finally, the numbers of parts and machine
types involved in each problem are also listed for completeness.

As can be seen from Table 3, when XPRESS-MP is employed the optimum solution
is only found in three problem instances (two, sixteen and twenty), whereas for the
rest of the instances it was not possible to obtain optimal solutions within a very
generous time limit, so the best known solutions4 were recorded. In the current study
this limit was set to be equal to thirty hours.

The results presented in Table 3 are encouraging compared to integer program-
ming methods proving that the tabu search algorithm is effective. More specifically,
the mean deviation value of the TS algorithm from the best known objective value
is nine percent. The required CPU time for all but two of the problem instances
does not exceed 1206 seconds overall (problem twelve is exceptionally hard to solve,
as the largest data set of all and needs a substantial CPU time in order for the iter-
ative procedure to end). For more than 50% of the problems the CPU time is less
than ten minutes. The integer programming solutions will in almost all cases be an
overestimate of the optimal solutions, hence the percentage deviations will also be an
overestimate. However, it is unlikely that there will be significant overestimates given

3MatLab is a trademark of the MathWorks, Inc., 1994-2007.
4Please note that when the best known solutions were recorded the optimality gap indicated via

XPRESS-MP was still large but this does not necessarily imply that solutions were still far from the
optimum as many unexplored nodes could turn out to be of no interest. Thus it was decided not to
tabulate the gap as it was large.
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the length of time the integer programming software ran without any improvements
to solutions. Thus the testing has indicated that the tabu search is able to provide:

• reasonably good quality solutions;

• solutions in reasonable amounts of CPU time;

• solutions that are a substantial improvement on heuristically generated initial
solutions.

In order to illustrate the behaviour of the TS iterative procedure problem instance
fourteen is employed where the deviation of the TS from the best known value is one
percent. Figure 2(a) shows the fluctuation of the objective values with respect to the
iterations involved when both moves admissible and non-admissible are considered.
Further, Figure 2(b) presents for the same problem instance a portion on the trend
of the objective values when only the admissible moves are recorded.

It can be seen from Figure 2(a) that the total number of iterations needed are
approximately 2600. Moreover, the best objective value of magnitude 743.19 units,
as specified on Table 3, is first obtained at iteration number 2326 and then appears
again at later iterations. Although a rapid descent flow of the objective values is
shown in Figure 2(a) a significant number of solutions is investigated in the search
space increasing the possibilities of receiving a better TS deviation from the best
known objective value. Moreover, since the search does not always continue from the
best solution found, unless the AC is met, this leads to the investigation of areas that
might not sound very promising but could lead later on to very useful results.

The deviation between the initial objective value and the best cost obtained is
30% which is very significant indicating that within the iterative procedure and the
neighborhood generation for each candidate machine instance pair, exploration of
many areas occurs implying the investigation of many non-visited solutions. For
achieving the latter, the utilisation of short term memory and more specifically the
use of a tabu list played an important role.

An important element in the operation of the tabu search iterative procedure is
its robustness when an initial solution is fed into it. More specifically, once the initial
solution is generated the iterative procedure commences and it finishes when the total
number of iterations is reached producing a certain output. If another initial solution
is fed into the iterative procedure, another solution will be produced whose deviation
from the best known value will not differ much from the deviation obtained via the first
attempt. Figure 2(c) illustrates the latter where a different initial solution is generated
for problem instance fourteen and the iterative procedure is run only once. Note that
both the total number of iterations and the value of tabu tenure remain the same.
It can be seen from Figure 2(c) that the total number of iterations is approximately
2600, as before. The deviation of the TS from the best known solutions is 3%, when
the value of the initial solution is 1134.1 and the best cost found is 752.37. These
aspects of robustness were found to hold for all problem instances.

Overall, different runs with different initial solutions produce solutions whose de-
viation values do not differ much in magnitude from each other. In the case, of course,
that the problem is too big such as problem instance twelve, multiple runs, i.e fifteen,
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were conducted for exploration of different initial solutions together with suitable ad-
justments to either the number of iterations or the value of the tabu tenure leading to
the best possible value among all. Figure 3 illustrates the fluctuation of the objective
values involved for problem instance twelve (the largest data set tested).

As can be seen from Table 3, in general computational times rise as problem size
measured by TMI increases with problem instance 20 the fastest to solve and problem
instance 12 the slowest. It was found that quality of solution did not necessarily
decrease in proportion to increase in TMI or NM , but that problem instances where
the ratio TMI/NM was highest were usually lowest in solution quality.

Finally, a few comments on the part machine operation sequence. As already men-
tioned Foulds, French and Wilson [14] considered a less complex type of CF problem
with no inclusion of the part machine operation sequence. The latter produced a
simpler system to be solved using a heuristic algorithm. For the current study the
part machine sequence was one of the most important features to be included and
to be taken into account for almost all the heuristic approaches implemented within
the initial search. Later in the design of the tabu search, the part machine operation
sequence acted as a key element since with every move of a specific machine instance
pair certain updates were taking place for the part machine cell allocation relative
to the part machine sequence of all parts involved. Although, the part machine op-
eration sequence made the initial solution more complex and the tabu search more
difficult to converge to a value very close to the best known value after exploring a
number of areas in the search space, it incorporated realism and produced a more
practical CF system.

8 Summary

This paper presented a sophisticated mixed integer linear programming model for the
cell formation problem where machines are grouped into cells and parts into machine
cells simultaneously when the part machine operation sequence is taken into account
to meet real conditions. Based on the mathematical model a three stage heuristic ap-
proach was proposed to produce a randomly generated initial solution ready to be fed
into an iterative algorithm that searches the space in a higher level. This was achieved
with the proposal of a tabu search algorithm for the cell formation problem having
as a main aim the creation of a stable and robust system able to cope with the incor-
poration of the part machine sequence. Finally, a number of problem instances was
generated to assess the algorithm’s performance. The computational results proved
to be promising thus increasing the possibilities that all the tools developed could
become useful tools for production planners.

The solution times and quality based on the current algorithms can be experi-
mented on further. Also the developed model and algorithms can be further extended
with the combination of the tabu search algorithm with another heuristic or meta-
heuristic approach to form a hybrid search approach for the cell formation problem.
Moreover, the part allocation phase within the initial solution can also be extended to
allow for some flexibility on the choice of the machines to be used by certain parts for
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allocation instead of following a certain path. This implies the creation of a system
based on relative feedback produced at each stage.

Appendix

Indices Description
i machine type index: i = 1, . . . , NM
j part index: j = 1, . . . , NP
q cell index: q = 1, . . . , NC
k machine instance index: k = 1, . . . ,KMi

z, r machine operation indices: z, r = 1, . . . , ZTY PESj

Input Parameters Description
EMIN minimum number of machines allowed in a cell
EMAX maximum number of machines allowed in a cell
NC number of cells to be created in the system
NP number of parts involved
NM number of machine types in the system
Mj,q weighting factor if part j is allocated to cell q
Aj weighting factor for part j traveling back to an already visited

cell
UTILi,j utilisation of machine i by part j
KMi number of machines instances for each machine type i, deter-

mined as:

KMi = 
NP

j=1 UTILi,j
SETUPi,j set-up cost of machine i needed to process part j
ZTY PESj number of different operations (machine types) required by

part j
Lj,z for part j the machine used for the zth machine operation in

sequence
UTILMIN minimum amount of utilisation in UTILi,j matrix

(UTILMIN is non zero)
UTILMAX largest amount of machine utilisation used
KMAX the maximum number of machine instances recorded

for all machine types in KMi

TMI total number of machine instances in the system
CELLMIN minimum number of cells
CELLMAX maximum number of cells
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Decision Variables Description
xi,j,q amount of processing by machines of type i for part j in cell q
yi,k,q =1 if kth machine instance of type i is assigned to cell q, 0

otherwise
wj,q =1 if part j is processed in cell q, 0 otherwise
vq =1 if cell q is formed, 0 otherwise
si,j,q number of machines of type i used by part j in cell q
extraq,j,Lj,z

=1 if after the zth operation of part j in cell q the part leaves
cell q
but returns later, 0 otherwise

xxLj,z,j,q =1 if part j is processed in cell q for zth machine operation, 0
otherwise
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(a) Objective Function Value Evolution: All Moves

(b) Implemented Moves: Portion of Figure 2(a) between Iterations 2000-2500

(c) Objective Function Value Evolution when Initial Solution Differs

Figure 2: Problem instance 14
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Figure 3: Problem instance 12
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