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Abstract.  Overload management has become very important in public safety systems 
that analyse high performance multimedia data streams, especially in the case of detection 
of terrorist and criminal dangers. Efficient overload management improves the accuracy of 
automatic identification of persons suspected of terrorist or criminal activity without 
requiring interaction with them. We argue that in order to improve the quality of 
multimedia data stream processing in the public safety arena, the innovative concept of a 
Multimedia Data Stream Management System (MMDSMS) using load-shedding techniques 
should be introduced into the infrastructure to monitor and optimize the execution of 
multimedia data stream queries. In this paper, we present a novel content-centered load 
shedding framework, based on searching and matching algorithms, for analysing video 
tuples arriving within multimedia data streams. The framework tracks and registers all 
symptoms of overload, and either prevents overload before it occurs, or minimizes its 
effects. We have extended our Continuous Query Language (CQL) syntax to enable this 
load shedding technique. The effectiveness of the framework has been verified using both 
artificial and real data video streams collected from monitoring devices. 

Keywords: data streams, load shedding, data stream management system, overload 
management. 

1. Introduction 

Aftermath of the September 11 attacks, efforts to spot potential terrorist or criminal 
activities have widely intensified. This led to increased interest in systems able to identify 
suspects in public places such as airports, railway stations, stadiums and subways. 
Automatic face recognition of these people is the most natural way to determine identity.  
In practice, visual recognition is more effective than using biometric sensors, because 
identification can be performed without the suspicious person being aware of the 
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verification. Biometric feature such as a retinal pattern, fingerprint, or DNA sample needs 
physical interaction with the monitored target to gather.  

Facial recognition included the following phases: detection, tracking and classification 
[5][24][31]. In addition to recognizing individuals suspected of nefarious activities, systems 
implementing these steps seek to decrease the number of false positives for persons who are 
not real risks.  

We conclude that a very important capability of these data systems is the continuous 
processing of information from multiple data streams, such as video feeds, rather than from 
scalar data stored in relational databases. We argue that by running monitoring queries over 
multimedia data streams grabbed from devices installed in selected public places, security 
agencies can continuously uncover individuals suspected of nefarious activities in more 
efficient and productive ways [20]. We claim that in order to increase the efficiency of 
multimedia data stream processing in the public safety sector, the novel concept of a 
Multimedia Data Stream Management System (MMDSMS) using load-shedding techniques 
should be introduced into the monitoring infrastructure to improve the execution of 
multimedia data stream queries. Figure 1 presents such a monitoring architecture at an 
airport.

Camera

Figure 1. Public safety infrastructure continuously searching for individuals 
suspected of nefarious activities 

We propose the following data model for representing video tuples streamed from 
multimedia devices: 

• STREAM_ID – unique stream identifier 
• FEED_NAME – a label for the processed stream 
• FRAME – a video frame captured from the high resolution camera 
• DATA_TYPE – the multimedia data type 
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• TIME – the time of video frame arrival 

A set of reference faces is stored as multimedia picture instances in Multimedia 
Databases. A typical video tuple consists of several fields including: 

• PICTURE_ID – an unique image identifier 
• PICTURE_DESCRIPTION – a label for the image  
• PICTURE_DATA – a face picture 
• DATA_TYPE – the multimedia data type 

Given these elements, the schema of a video stream grabbed at an airport can be 
formally expressed in Multimedia Continuous Query Language (MCQL) as: 

CREATE STREAM airport_cam ( 
 integer STREAM_ID,  
 string FEED_NAME,  
 picture FRAME, 
 string DATA_TYPE,  
 timestamp TIME);   (2)

and the schema of the face reference relation as: 

CREATE TABLE  faces ( 
 string PICTURE_ID,  
 string PICTURE_DESCRIPTION,  
 image PICTURE_DATA,   
 string DATA_TYPE);   (3) 

Furthermore, the following MCQL query involving the similarity-based operator 
SIMILAR WITH [20] can be employed to track particular persons appearing in the video 
stream and identify those who are potentially suspected of nefarious activities by 
comparing their images against a reference faces stored in a multimedia database:  

SELECT f. picture_description  
FROM airport_cam ac, faces f  
WHERE f.picture_data  
SIMILAR ac.frame WITH 0.6;  (4)  

The SIMILAR WITH operator is expressed as: 

 picture1 SIMILAR picture2 WITH probability 

where 

 picture1 – first picture used for similarity comparison 
 picture2 – second picture used for similarity comparison 
 probability – the probability of similarity between the two compared  pictures 
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The monitoring query above is executed on a stream of transient multimedia tuples. 
When several multimedia streams are processed, the time needed for face recognition 
increases and the video frame analysis rate is decreased. The average number of identified 
faces reduced as resource contention grew, because the query engine evaluated join 
operations for each streamed frame even though the arrival rate was higher than the ability 
to process would allow. Consequently, when overload occurs, certain tuples can not be 
processed in time, leading to inaccurate query results. In order to manage accuracy under 
such circumstances, queries should consciously ignore some tuples so that monitoring 
query results are either not impacted or minimally impacted. Algorithms to discern those 
“less important” tuples are called load-shedding algorithms [28][29][30]. 

In order to increase accuracy of automatic human recognition in our query language, a 
new clause has been introduced to employ our content-based load-shedder in times of 
overload; namely, on overload content_analysis. The video stream can be defined in 
MCQL as: 

CREATE STREAM airport_cam ( 
 integer STREAM_ID,  
 string FEED_NAME,  
 image FRAME, 
 string DATA_TYPE,  
 timestamp TIME) 
ON OVERLOAD CONTENT_ANALYSIS;   (5)

In this paper, we proposed a novel load shedding algorithm, based on multimedia tuple 
content analysis and based on the prediction-based approach [21]. Our approach 
significantly improves the accuracy of multimedia data stream query results by means of a 
searching and matching algorithm to extract key frames from the video stream during result 
evaluation. The method tracks and registers all symptoms of overload, and either prevents 
overload before it occurs or reduces its effects.  

2. Related Work 

In order to generalize solutions to data stream query processing problems, the concept 
of a data stream management system was introduced [1][6][11] and a number of DSMSs 
have been developed. The Aurora model [1] deals with overload by using two load-
shedding techniques to drop tuples. The first technique mainly relies on the creation and 
analysis of quality of service (QoS) graphs based on tuple processing delay and drop 
percentage to determine appropriate shedding rates for those portions of data streams that 
are most tolerant to drops. The second technique, called semantic load shedding, analyzes 
value-based QoS graphs which assign importance to data tuples based on administrator-
defined criteria. Wherever possible, less relevant tuples (those believed not to influence the 
query accuracy) are dropped.  

STREAM [6][23] introduced the concept of query plans based on load shedding 
operators and relationships between tuples that vary over time. The query answer 
degradation minimization can be transformed into an optimization problem [8]. 
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TelegraphCQ [62] has data triage [25][26] to deal with load shedding in an adaptive 
manner. The main idea is to evaluate precise query answers for tuples that can be handled 
within a specified time window and to summarize the characteristics of any excess, less-
important tuples for which the query engine lacks processing resources. The summarization 
technique provides compression functions, which condense arriving tuples into compact 
representational sets of data. It also provides computational operators and rendering 
methods that analyze these summaries and approximate the sets of results that would have 
been generated by precise query processing [26]. When overload occurs, the data triage 
framework considers specified constraints on tuple delivery time delay to determine how 
many tuples to send to the summarizer, as well as which tuples to send. 

Other techniques are focused on controlling data delay QoS [65], or on using a feedback 
control loop to continuously monitor data stream management system state [15]. In the 
latter, information about the DSMS processing rate is transmitted to a controller and 
compared against reference values. The results of the comparison are passed to a load 
shedder so that data drop rules may be altered as necessary to bring the two in closer 
alignment. By dropping excess data, load-shedding techniques can significantly influence 
the accuracy of queries. 

A DSMS that does not handle overload situations may become unstable and cause 
uncontrolled delays during result evaluation. Our solution addresses a number of major 
problems, including detecting the point in time at which overload occurs, deciding how 
many tuples should be dropped, and predicting which tuples are unimportant to the result. 
Histograms [16][17], wavelets [10][22][33], and samples [2][3][7][14] may be employed to 
store dropped tuples. 

In [21] the prediction-based approach has been proposed, which significantly improves 
the accuracy of data stream query results by using several components: a Statistics 
Manager, a Prediction Module, and a Load Controller. For tuples arriving at the query 
engine, the Statistics Manager computes statistics such as selectivity, variance, mean for all 
tuples and mean for groups of tuples. Later, the Prediction Module predicts which tuples do 
(and do not) influence the query results. It monitors queries that are being evaluated by the 
query engine and generates tuple-dropping rules using syntax analysis (in the case of 
simple filtering queries) or statistical analysis (for aggregates). The dropping rules help 
minimize result degradation and ensure system stability. The Load Controller continuously 
monitors the state of the query engine and its input queues and adjusts the tuple-dropping 
rate based on rules generated by the Prediction module.  

In order to effectively process dynamic multimedia data streams and continuous 
queries, Multimedia Data Stream Management Systems (MMDSMS) have been recently 
introduced in a computation-oriented multimedia data stream model [12]. The recent 
research does not propose any load shedding algorithm. 

The rest of the paper is organized as follows. First, we describe the essential 
components of our framework. Next, we present analysis of our new content-based load 
shedding algorithm, key frame extraction, and multimedia continuous query execution 
using the similarity based join [20]. Finally, we provide the results of our experiments.  
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3. Architecture of the Content-based Load Shedder  

We designed our module to run on top of the prediction-based load shedding framework 
[21], and added new components to its architecture which support multimedia feeds [20]. 
These new components enhance the existing load shedding technique and incorporate a 
new multimedia data extractor into the query engine; however, the existing Prediction 
Module and Load Controller remain unchanged. The functional description of existing 
components has been presented in previous work [21]. Our content-based load shedder 
consists of the following components, as illustrated in Figure 2:  

Figure 2. Content-based load shedding architecture 

• Multimedia Content Manager - Computes similarity between frames to detect 
whether there is a change in scenery or not. Afterwards it delivers extracted key 
frames to the query engine for processing (e.g. face recognition).  When the 
similarity between two compared multimedia tuples exceeds the tuple-dropping 
threshold level ρ, the new tuple is discarded. The latest value of ρ is evaluated by 
the Prediction Module. 

• Prediction Module - Predicts which tuples do (and do not) influence the query 
results. The Prediction Module monitors queries that are being evaluated by the 
query engine and generates the tuple-dropping threshold level ρ mentioned above 
based on the analysis of incoming video queries. 

• Load Controller - Continuously monitors the state of the query engine and its input 
queues. The number of tuples buffered in the input queues is passed to the Load 
Controller to be compared against a reference level. If they are different, the 
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MMDSMS will adjust the tuple-dropping rate based on threshold level computed 
by the Prediction Module.  

3.1. Multimedia Content Manager 

The multimedia content manager computes similarity between frames to detect whether 
there is a change in scenery or not. The less-similar frames are called key-frames and 
provide representative content for a given sequence within a video feed. The problem of 
key frame extraction has been widely discussed and plenty of algorithms have been 
proposed [13][19][4][9][35]. In processing transient multimedia data streams in the 
Multimedia Data Stream Management System (MMDSMS), the fundamental goals for the 
selection process are effectiveness and low computational expense. In order to accelerate 
key frame extraction, the visual content-based approach has been employed; however, 
discussion of the exact extraction algorithm used is not within the scope of this paper. 

The similarity between two video tuples is defined as the difference of their visual 
content. Examples of visual content include color, shape and texture. For given frames of i
width by j height, the correspondence of their visual content is denoted as the difference of 
their color histograms in the HSV space. For a multimedia data stream defined as

{ }n32 f,,f,f,f=s ...1 , similarity can be expressed as a cost comparison of two 
consecutive images [37]: 

width

=i

height

=j
bae j))(i,Histj),(i,(Hist=C

0 0

min  (1) 

The similarity assessment is made on the basis of a threshold ρ, allowing control of the 
density of the comparison. Increasing the value of the ρ parameter means that compared 
frames can be more similar and still meet the qualification of being key frames. By 
analyzing the application of this method in the MMDSMS, it can be observed that the 
greater the value of ρ, the higher the number of multimedia tuples that must be processed 
by the query engine. An example of this processing might be face or shape recognition. 
Table 1 shows the differences in key frame extraction using various values of ρ against a 5-
minute video feed with a 30 frame/second rate. The overall number of frames in this feed is 
9000. 

Table 1. The number of key frames out of 9000 in the 5-minute video feed 

Density Number of K-frames 
ρ = 0.60 673 
ρ = 0.85 823 
ρ = 0.90 1284 
ρ = 0.95 2033 
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In the case of overload, the ρ threshold can be decreased so that the query engine 
processes a smaller number of tuples while still maintaining an acceptable level of 
accuracy. This parameter ρ is more commonly called the tuple-dropping threshold level. Its 
value will be calculated by the Prediction Module based on information provided by the 
Load Controller. Since the process of face recognition is greater than an order of magnitude 
more computationally complex than the extraction of key frames, the MMDSMS can 
achieve  much greater performance during overload by processing only key frames instead 
of all tuples.  We call the algorithm for performing this optimization content-based load 
shedding. 

3.2. Cost of Processing a Multimedia Query 

In contrast to traditional DSMSs where simple operators can be used to compare data, 
our MMDSMS employs video search and pattern matching algorithms to find matches. 
Figure 1 depicts the scenario of joining multimedia streams together. In order to calculate 
the monitoring query (4) result, which searches for individuals who potentially pose a 
threat, a full join is performed. The join operation between two video streams, A and B, can 
be realized as two separate tasks: a single join operation of A frames to B frames and a 
single join operation of B frames to A frames. In the first step, the join operator takes each 
A stream frame { }r2 a,,a,a …1  as it comes into the system and searches the B stream 

sliding window tuples for matching pictures. Let us denote this cost as SBC . Meanwhile 
this search is being executed, B stream frames are also arriving the system and the B stream 
sliding window must be updated to include the new frames and to delete any tuples that 
have fallen outside the window.  Let us denote the cost of updating the window for each 
incoming B frame as UBC .  This means that for all A stream frames Ar  and B stream 

frames Br  arriving in a given period of time, the A to B single join cost AC  at this time 
can be expressed as: 

UBBSBAA Cr+Cr=C ××

Similarly, the B to A single join cost in the same period of time can be defined as: 

UAASABB Cr+Cr=C ××

Putting it all together, the cost for full join during this time period is denoted as: 

)Cr+C(r+)Cr+C(r=C UAASABUBBSBAj ××××
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Within proposed MMDSMS, we have implemented two join techniques that can be 
utilized when combining multimedia data streams: nested loop join (NLJ) and hash join 
(HJ). The NLJ approach for single A-to-B joins, involves comparing each arriving A 
stream frame with each frame in stream B’s sliding window. This SBC  cost can be denoted 

as the number of frames in the sliding window (henceforth defined as BN ) multiplied by 

cost of comparing two frames (henceforth expressed fC ), or: 

fBSB CN=C ×

The cost of comparing two frames C f  can be represented as: 

−
=

otherwiseC+C
framekeyC+C+C

C
ea

mea
f

where aC  is the cost of a sliding window access, eC  is the cost of comparison of two 

subsequent images to obtain similarity and Cm  is the cost of search and pattern matching 
algorithms utilized to find matches between two frames. Additionally, since there is nothing 
special utilized in updating B’s sliding window other than adding frames to and deleting 
frames from a queue, the UBC  cost can be expressed as 2 times Ca . Putting it all 
together, the cost of a single NLJ join from stream A to stream B is defined as: 

aBfBAA Cr+CNr=C ×××× 2

3.3. Density of the parameter ρ 

Monitoring the multimedia tuples entering the MMDSMS allows us to track the 
resources used to process a multimedia data stream. For a given sliding window, the time 
remaining in the window as cer tt=t − , where et  is the sliding window end time and 

ct  is the current time. The MMDSMS uses all its resources when the total number of 

multimedia tuples entering the system in the remaining time rt   is equal to or greater than 

the remaining processing capability rN . Multimedia tuples added to the input queue also 

may not be processed by the query engine in time; therefore, rN  is additionally decreased 

by the number of multimedia tuples enqueued in the input queues. Based on [21], rN can 
be expressed as follows: 
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f

r
r N

C
t=N − ,

where qN  defines the number of multimedia tuples in the input queue, rt  defines time 

remaining in the window and the cost of comparing two frames fC  can be denoted as: 

−
=

otherwiseC+C
framekeyC+C+C

C
ea

mea
f

where Ca  is the cost of a sliding window access, eC  is the cost of comparison of two 

consecutive images to obtain similarity and mC  is the cost of search and pattern matching 
algorithms used for image processing such as face or shape recognition.  

In order to detect overload, the Load Controller continuously monitors multimedia tuple 
arrival over short periods of time. Let bt define the time to receive bN  tuples. The 

assumed rate of tuples for the remaining part of the window is denoted as bbb tN=R .
Correspondingly, the expected number of multimedia tuples entering at the MMDSMS by 
the end of the current window is expressed as bre Rt=N ∗ .Thus, the Load Controller 

should shed load when er N<N . Let ρN  express the number of multimedia tuples 

exceeding the current window processing capability: re NN=N −ρ . The threshold ρ for 

a given query plan can be defined as ρρρ NN= .
In cases where the MMDSMS is not capable to process tuples for most of the sliding 

window time, the excess multimedia tuples are enqueued and must be discarded when the 
window ends in order to fulfill result computation criteria. Notice that, from the point of 
view of the final answer, the shedder drops both useless and useful tuples. The goal of our 
content-based load shedding is to discard those multimedia tuples that will affect the final 
query answer the least.  

3.4. Determining the dropping ratio  

The Load Controller continuously tracks the threshold ρ using a feedback mechanism 
and checks whether the number of enqueued tuples qN  is rising.  If it is, the Load 

Controller automatically adjusts the threshold ρ by reducing the capacity of the remaining 
window rN . The global policy for the Load Controller is expressed as follows: 
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{ }ρ∗∗ Brq rt=)m(N min
Since a full join operation between two video streams, A and B, can be performed as two 
separate tasks – a single join operation of A frames to B frames and a single join operation 
of B frames to A frames –  the global policy is defined as follows: 

{ }ρ××××× )2(min aBfBAq Cr+CNr=)m(N

At any point of time during the current sliding window, the Load Controller may adjust the 
threshold ρ to limit the number of unprocessed tuples. Whenever the tuple rate is changing 
and er N<N  has been violated, some of the arriving data will be summarized to fulfill 

)m(Nq .
When the determination is performed to start shedding load, the Prediction Module has 

to decide whether to drop each multimedia tuple or to forward it to the query processor for 
further evaluation. From the beginning of the sliding window W, the volume of tuples 
entering the system continues to grow. The Load Controller tracks the query processor and 
input queues and computes the value of ρ if overload occurs. When a new multimedia tuple 
enters the system, its visual content similarity to the previous tuple is evaluated based on 
(1) and compared with ρ. Ιf the value is greater than the threshold, then it falls into the 
same category as the previous tuple [37] and can be discarded. 

4. Experimental Results 

The proposed approach has been verified against the real-world problem in public 
safety. Our MMDSMS has been deployed on hosts configured with two 2.2 GHz Intel 
Core*2 Duo central processing units (CPUs) and 3.0 GB of random access memory 
(RAM). Our tests have been performed against video from a high-density camera 
commonly used in the public safety sector. We have populated our reference face database 
using a set of sample faces from the AT&T Laboratories Cambridge Database of Faces. In 
order to activate the proposed content-based algorithm and improve accuracy of automatic 
human identification, the new on overload content_analysis has been implemented.  

Our MMDSMS first extracts facial information from the video frames and renders it 
into a normalized format before comparing it against a reference set of faces. This 
automated face recognition process consists of several phases such as: video tuple frame 
segmentation, which leads to the separation of “face-like” regions within a grabbed image; 
facial feature extraction from these regions; and face identification on the basis of extracted 
features. Since a “face” can change depending on angle of view, scene lighting, and a 
person’s mood (e.g., gloomy, cheerful), therefore facial feature extraction is a challenging 
problem. In order to generalize issues related to face detection/recognition, numerous 
algorithms have been proposed [34][36][27][18]. Our MMDSMS uses the principal 
component analysis (PCA) with eigenfaces algorithm to provide a video tuple matching 
similarity-based operator for join operations. It also employs the Viola-Jones method based 
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on Haar cascade face detection and appropriate face cascade classifiers for facial feature 
detection [32]. 

In order to measure multimedia data stream query processing accuracy, partial results of 
the query in progress are analyzed. The query accuracy denotes the effectiveness of the 
proposed algorithm and is measured by root mean square error (RMSE), expressed as 
follows: 

( )
j

iNiN
RMSE

j

oi
measexact

=

−
=

2][][
,

where Nmeas denotes the number of faces recognized by the tested algorithm and exactN
denotes the exact number of faces carried by multimedia tuples.  

Figure 3. Average number of recognized faces for the registered joins 

The error metric above has been evaluated for MMDSMS systems without load 
shedding, with simple frame drop load shedding, and with content-based load shedding. We 
first analyzed query time response under large overload. Next, we evaluated the query 
results for our monitoring scenario (4). The experiments showed that our content-based 
approach generated fewer errors for the monitoring query. 
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When multiple multimedia streams are processed, the time required for face 
identification increases and the video frame analysis rate is reduced. In our experiments, 
test runs of twelve nested loop joins between multimedia data stream frames and static 
reference pictures have been processed by the query engine simultaneously. Each test run 
has been executed three times, once with simple frame drop load shedding, once with 
content-based load shedding, and once without load shedding. Figure 3 above shows 
comparative graphs of these tests. 

In the non-load-shedding case, overload started after the 8th second and ended around 
the 23rd second. The average number of recognized faces decreased as resource contention 
grew, because the query engine performed join operations for each arriving frame even 
though the arrival rate was higher than processing capabilities would allow. 

Figure 4. Query result inaccuracy evaluated for the public safety monitoring query 

As shown in Figure 4, there is significant difference between the RMSE metrics for the 
techniques. In general, the higher the number of faces in the multimedia data stream, the 
greater the error introduced. In the simple frame drop load-shedding case, when overload 
starts after the 8th second, the input queue exceeds the remaining window capacity and 
tuples arriving after this limit has been reached are removed. This prevents resources from 
running out; however, important tuples may be (and in fact are) discarded. This approach 
reduces query accuracy. 

On the other hand, in content-based load shedding, the Load Controller monitors the 
query processor and input queues. Based on feedback information, the Load Controller 
checks whether the number of enqueued tuples is rising and automatically adjusts the value 
of ρ accordingly. The higher the number of enqueued tuples, the lower the value of the 
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threshold, as shown in Table 1. Thus, the most valuable tuples are those which have been 
identified as key-frames. Based on our previous assumption, such tuples should not be 
discarded since they maximize monitoring query (4) result accuracy. Hence, our content-
based load shedding algorithm performs considerably better when visual content analysis is 
employed, and the average number of recognized faces is higher. 

5. Conclusion

In this paper, we have described our novel content-based load shedding framework, 
based on searching and matching algorithms, for analysing video tuples arriving within 
multimedia data streams. The framework tracks and registers all symptoms of overload, and 
either prevents overload before it occurs, or minimizes its effects. We have shown that at 
any point in the current sliding window, our content-based load shedding module 
minimizes the number of unprocessed tuples by appropriately adjusting the drop threshold. 
As a result, our technique minimizes query result inaccuracy. Our Load Controller can 
continuously monitor changes in the video stream and can accurately decide whether to 
summarize incoming tuples or forward them to the query processor. We have extended our 
Multimedia Continuous Query Language (MCQL) syntax to enable this load shedding 
technique. The effectiveness of the framework has been verified using both artificial and 
real data video streams collected from monitoring devices commonly used in the public 
safety sector. We are currently adapting the proposed technique to support correlated 
aggregates over multimedia data streams; however, more extensive study is required to 
provide a comprehensive analysis.  
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