
Abstract
Over the last 60 years, several models have been developed governing different 

zones of fatigue crack growth from the threshold zone to final failure. The best known 
model is the Paris law and a number of its based on mechanical, metallurgical and 
loading parameters governing the propagation of cracks. This paper presents an 
analytical model developed to predict the fatigue crack propagation rate in the Paris 
regime, for different material properties, yield strength (σy), Young’s modulus (E) and 
cyclic hardening parameters (K’, n’) and their influence by variability. The cyclic plastic 
deformation at a crack tip or any other cyclic hardening rule may be used to reach this 
objective, for to investigate this influence, these properties of the model are calibrated 
using available experimental data in the literature. This FCGR model was validated on 
Al-alloys specimens under constant amplitude load and shows good agreement with the 
experimental results.

Keywords: cyclic plastic strain, elastic properties, cyclic hardening parameters, Young’s 
modulus, variability, crack tip, fatigue crack growth, constants of the Paris law, Al-alloys.

1. Introduction
The fatigue crack growth resistance of a material depends upon a number 

of factors, such as its composition, mechanical properties and heat treatment 
conditions, external loading and the environment. Several theoretical models 
have been proposed to predict the fatigue crack growth (FCG) process using 
solid mechanics-based theoretical tools and fundamental mechanical properties.

The understanding of the mechanisms governing fatigue crack growth has 
made significant advances since Paris [1] proposed a law that relates the crack 
growth rate da / dN and the stress intensity factor range K∆ :
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� (1)

Experimentally, the exponent m given in the Paris law can vary between 
2 and 6 for most metals and alloys [2]. In Paris law there is no evidence of 
the mechanical parameters effects. Several authors have attempted to integrate 
other parameters such as the R-ratio min max( / )R σ σ= , critical stress intensity 
factor ICK , etc. Walker [3] reported on the effect of the R-ratio on crack 
propagation for aluminum alloys, concluding that increasing R resulted in an 
increased growth rate. For according the model of Walker [3], the influence of 
the mean stress and R-ratio on fatigue crack propagation in aluminum alloys 
was suggested by [4]. Paris and Walker equation works well in the Paris region 
of crack growth, but does not address the asymptotic behavior in the unstable 
region. To address this behavior, Forman [5] proposed a new relationship that 
reflects the fracture by incorporating the stress ratio and the critical stress 
intensity factor ICK  given by:

� (2)

As  maxK  approaches ICK , the denominator approaches zero and /da dN  
tends toward infinity. This equation has been verified many times for aluminum 
alloys [3], [6]–[8].

Elber [9] was the first researcher to introduce the concept of crack closure in 
fatigue crack growth. This concept reveals the premature contact of the crack 
faces during the unloading portion of the loading cycle while some tensile load 
is still applied. Elber found that the fatigue crack growth rate was a function of 
a new factor he called effective stress intensity factor range effK∆ . 

In general, the phenomenon of crack closure has been widely accepted 
as a critical mechanism influencing many aspects of the behavior of fatigue 
cracks in metallic materials, including variable amplitude loading [10],  
R-ratio effects, crack size, microstructure [11], cyclic plastic strain [12], 
thermo-mechanical [13], environment [14], residual stress [15] and the 
magnitude of the fatigue threshold [16]. The higher fatigue crack growth rates 
and lower thresholds in the alloy of Magnesium may be attributed to a much 
smoother fracture surface morphology and lower roughness-induced crack 
closure and crack deflection [17]. The effects of grain size, also spanning the 
fatigue crack growth [18]. 

Besides this mechanically based concept, other approaches based on energy 
consideration [19]–[21] or on micro mechanisms acting at the crack tip have 
been developed. In these approaches some authors attempted to express the
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crack growth rate by explaining the effects of different parameters by means of 
theoretical models based on the low cycle fatigue and cyclic strain hardening 
[19], [22]. 

Noroozi et al. [23], [24] proposed the FCG equation in terms of a unified two-
parameter driving force assuming predominately plastic material deformation at 
the crack tip while modeling the high fatigue crack growth rate, and the elastic 
behavior for the near threshold fatigue crack growth. Fatigue crack growth 
expressions derived for the two different material behaviors [23], [24]. 

Duggan [25] focused on the deformation of a volume element located at the 
crack-tip. This volume element is only subjected to elastic deformations and so 
the effect of softening or of hardening is disregarded. Duggan [25] has assumed 
that propagation occurs when the Manson-Coffin and Miner laws are satisfied 
at the same time. He expressed the crack growth rate in terms of the elastic 
modulus E, toughness ICK , and ductility ( ' , ' )f fσ ε  coefficient and exponent:

 	�  (3)

Radon [26] proposed a crack growth model for the near threshold region 
( )thK∆  which incorporates mechanical, cyclic and fatigue properties of the 
material, and a cyclic plastic strain  ( )pε∆  based on the failure criterion. He also 
introduced an effective stress intensity factor range  (DKeff ) which characterizes 
the crack tip opening displacement and the strains immediately ahead of the 
crack tip. The cyclic plastic strain range  ( )pε∆  at the crack front is given by 
the expression:

 	�
� (4)

Where: σy, E and n’ are the yield strength, Young’s modulus and cyclic 
hardening exponent, respectively.

Radon [26] obtained a simple model of cyclic crack propagation in the 
threshold region and developed an expression for the crack growth rate, given 
below:

 	�
� (5)
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Lal et al. [27] developed a model that integrates some notions, such as the 
effective strain intensity factor defined by Elber. These authors calculated the 
monotonous and cyclic plasticized zones:

 	�  (6)

This relationship is obtained from the calculation performed under a simple 
traction replacing the monotonous work hardening exponent by the cyclic 
hardening exponent and K by ΔK.

If we apply Elber’s hypothesis, Lal et al. [27] presumed that a single part 
of a cycle was necessary to close the crack, and thus to create the plasticized 
zone, the other part of the cycle inducing the grounding of the crack lips. Then 
they used the definition of the monotonous plastic zone that was calculated 
previously, and by replacing ΔK with ΔKeff they obtained the dimensions of the 
cyclic plasticized zone: 

 	�  (7)

Using the hypothesis suggested by Tomkins [28], the fatigue crack growth 
model is described as the function of  pε∆ and  pcr :

 	�  (8)

Where the Tomkins model often used for low cycle fatigue tests under 
significant plasticity could not explain the results for the variation in crack 
length nor the variation in loading parameters.

In order to calculate 
pε∆ , they used the equation ''.( / 2)n

N pKσ ε∆ = ∆ which 
describes the hysteresis loops, where:  

Nσ∆  is the variation of stress in the 
ligament. They expressed the plastic deformation as an amplitude function of 
the stress intensity factor:

 	�  (9)

The propagation rate is then equal to:

 	�  (10)
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Two of the parameters of equation (10): (a) and (w), are geometric and easily 
measurable. The other three  , , 'eU Kσ  and n’ depend on the material. The rate 
decreases when the elasticity limit increases, and it increases if R increases, 
which matches the experimental results. The parameters , 'e Kσ  and n’ might be 
easily calculated, but U (except for some aluminum alloys) is less well known. 
However, there is not enough experimental evidence to determine the variation 
of the rate as a function of crack length. This equation has been verified for many 
materials (aluminum, mild steel, stainless steel and copper) and the calculated 
and measured values of the parameters C and m of Paris’ law agree with it.

Models based on the calculation of the crack tip with hardening have been 
developed by many researchers [19], [26], [27], [29], [30]. These models rely 
on calculating the plasticized monotonic and cyclical areas created by the 
cyclical stress; it is generally assumed that the crack propagation is proportional 
to the energy lost in the plasticized zones. All these models use hysteresis loops 
to evaluate plastic deformation. The macroscopic behavior characterized by 
the hysteresis loop is introduced into these models to describe the microscopic 
behavior at the crack tip.

In a recent study, Shi et al. [30], [31] have developed an analytical fatigue 
crack growth rate model based on the crack closure expression, effective 
cyclic plastic zone and the low cycle fatigue properties. Comparative results 
demonstrate that the fatigue crack growth rate estimated by the theoretical 
model closely approximates the experimental results. The predicted model is 
limited to isotropic materials.

Tzamtzis et al. [32] have developed a model to predict the fatigue crack 
propagation rate under mode I loading in 2024 aluminum alloy. The model 
considers local cyclic hardening behavior in the heat affected zone (HAZ) to 
analyze crack growth. The analytical results showed that cyclic hardening at the 
crack tip can be used successfully with this model to predict FCG in a material 
at overage condition associated with a location in the Friction Stir Welding heat 
affected zone (HAZ).

�
� (11)

where, parameters ICK , c, ' fε , E  , , can be determined experimentally.

All these models cannot be applied generally; each describes a situation under 
the influence of certain intrinsic parameters (Young’s modulus, grain size, yield 
strength, toughness) and extrinsic (specimen dimensions, and environmental
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effects). They become unsuitable as soon as a parameter of the experience 
varies. The most of the proposed models of fatigue growth remain essentially 
empirical, and hence their constants often vary more than expected.

In this paper, we propose an analytical model relating the fatigue crack 
propagation rate in the Paris regime with different material properties effects at 
the crack tip, such as cyclic hardening (K’, n’) parameters and elastics properties 
(E, σy), and their influence by variability, based on the properties calibrated 
using available experimental data in the literature. This study introduces the 
hardening parameter (K’, n’) directly in the Paris law parameters (C, m), which 
the authors consider as an advantage. The details are presented below.

2. Analytical model
This work focuses on a model of fatigue crack growth, using the assumptions 

of plastic strain at the fatigue crack tip and the Tomkins model [28]. We have 
developed a model for fatigue crack growth that varies according to elastic  
(E, σy) and cyclic hardening (K’, n’) properties. 

The modeling of fatigue crack growth requires good understanding of the 
evolution of the behavior of a material under cyclic loading. Thus, the cyclic 
plastic stress/strain response at fatigue crack tips was studied [33], [34], as 
described in Figure 1.

Fig. 1. Evolution for stress vertical component (a) and strain (b) versus crack growth

The cyclic plastic zone size at a crack tip can be written as [35] :
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Replacing ΔK obtained from equation (9) and introducing into (12), 
expression of the radius of the plastic zone is:

� (13)

Substituting equation (13) into equation (8), the crack propagation is 
given by:

� (14)

Introducing equation (4) into equation (14), the relation can be written in the 
form similar to the Paris law Eq.(1) multiplied by factor β:

� (15)

where the constantsβ, C and m are defined as: 

� (16)
 

�
� (17)
 

�
�  (18)

3. Application and interpretation
The theoretical model developed represents the fatigue crack growth based 

on cyclic hardening parameters (K’, n’) and elastics proprieties (E, σy) due to 
the plasticity at the crack tip. Table 1 shows these different parameters found 
in the literature for two A-alloys studied (2024 T3 and 7075 T6), which were 
used in the model to obtain the validation and comparison with experimental 
results [36], [37]. In addition, the variability of the elastics properties and cyclic 
hardening parameters is evaluated to show their influence on fatigue crack 
growth.
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Table 1. Material and cyclic properties of Al-alloys
Alloys E [GPa] σy [MPa] K’ [MPa] n’ Refs

2024 T3

70.3
73 
73.1
72

429
320 
445
460

843
427 
576
590

0.109
0.065 
0.042
0.040

[38]
[39]
[32]
 [40]

7075 T6

72.2
71 
71
70.6
71
71.7
71

394
466
517
540
469
468.85
469

521
864.1 
913
790
977
737.81
781

0.045
0.0866 
0.090
0.062
0,106
0.056
0.088

[38]
[39]
[40]
[41]
[42]
[43]
[30]

In order to validate the developed model, two applications were given when 
the compact type C(T) and center-cracked-tension M(T) specimens are used 
according to ASTM [44] code (E647-00) as shown in Figure 2, with the same 
applied loading defined in experimental tests [36], [37]. 

Fig. 2. Schematic of specimens, a) C(T), b) M(T)

The stress intensity factor range DK is computed using the applied force as 
follows:

(3.1)	
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The amplitude loading is given by, ( )max minP P P∆ = − , B and w are 
respectively the thickness and width of the tested specimens. The geometrical 
parameters and applied loads for specimens are defined in Table 2. 

Table 2. Experimental conditions obtained for tested Al-alloys sample 
Al-alloy B [mm] w [mm] Pmax [N] Pmin [N] Specimen Refs

2024 T3 3.2 60.00 2700.0 270.00 C(T) [37]

7075 T6 3.18 102.03 1902.0 190.20 M(T) [36]

Firstly, the theoretical evaluation of the plastic zone size in the vicinity of 
the crack tip is handicapped by the distorted picture of the stress field in front of 
the fatigue crack. In these respects, the proposed approach has the advantage of 
being an ‘‘interpolation procedure to variability’’ between the elastic properties 
(yield strength  yσ , Young’s modulus E) and cyclic hardening parameters  
( ', 'K n ) within the fatigue crack growth rate, hence avoids the risk associated 
with the inevitable ‘‘extrapolation’’ nature of many other phenomenological 
but essentially empirical models. These works correctly modeled suggest a 
qualitative experimental verification, but the model, in the present form, remains 
essentially speculative.

In the tests of the model for fatigue crack growth rate (Eq. 15) developed by 
this work, it is of interest to take into account the crack growth effects caused 
by the different material properties such as Young’s modulus E, yield strength 
 yσ  and cyclic hardening parameters ( ', 'K n ). The values of the materials 
properties listed in Table 1 are plotted against the experimental curves results 
[36], [37] for the alloys studied, 7075-T6 and 2024-T3, respectively. Figures 
4 to 7 show that the experimental and computed values lie near a line drawn 
through the origin experimental data [36], [37] suggesting a good agreement 
between them, These plots confirms that fatigue crack growth in the constant 
ΔK occurred in the Paris regime at an R-ratio of 0.1 consistent with the results of 
[36], [37] for Al-alloys studied 7075-T6 and 2024-T3, respectively. However, 
our approach in this study is very direct and perhaps explains the influence of 
variability for different material properties in a more straightforward way. This 
variability of the parameters ( ', ', ,yK n Eσ ) allowed to predict their influence on 
fatigue crack growth, will be explained below. 

The factor β (Eq. 16) is dependent on the normalized crack size and the cyclic 
strain hardening exponent (n’) this factor will be called crack size constant, so 
is observed by [27]. Figure 3 gives the variation of the factor β as a function 
of crack growth for various values of (n’). It is observed that for all values of
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 cyclic hardening exponent (n’), a decreasing of the factor β along the crack 
propagation (a). Moreover, seems that when (n’< 0.050), the factor β becomes 
stable approximate along the crack (a) about (1.3≥β ≥1.1) does effect little the 
crack propagation rate. So when (n’ > 0.050), this factor take an important value 
that the first, about (1.7≥β ≥ 1.2) is found the crack growth rates increase when 
cyclic hardening exponent (n’) increases. This behavior is in good agreement 
with the computed curve for identical conditions for Paris’s law shown in the 
following figures. 

a)  � b) 
Fig. 3. Variation of factor β versus crack size with variability of cyclic hardening n’,  

a) 2024 T3, b) 7075 T6

3.1. Influence of cyclic hardening coefficient (K′)
Figures 4a-b show the variability of the cyclic hardening coefficient (K′) on 

the evolution of the fatigue crack growth versus the stress intensity factor range 
(∆K) compared with experimental results [36], [37] for alloys studied 7075-T6 
and 2024-T3, respectively. The influence of the cyclic hardening coefficient  (K′) 
is well marked on the evolution of the fatigue crack growth. It is noticed that the 
fatigue crack growth increases when the cyclic hardening coefficient increases. 
Several studies have been remarked this phenomenon [30], [32], [33], [37], [45].

a)  � b) 
Fig. 4. Fatigue crack growth rate versus stress intensity factor range, variability  

of cyclic hardening K′, a) 2024 T3, b) 7075-T6
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3.2. Influence of cyclic hardening exponent (n’) 
Other, at the crack tip, in the course of a fatigue cycle, the cyclic plastic zone 

size effect thermal-mechanical modified material behavior, presents an important 
hardening. There exist evident influences of the cyclic hardening exponent (n’) 
on the evolution of fatigue crack growth versus stress intensity factor range ΔK. 
Tow Al-alloys (2024-T3 and 7075-T6) with various cyclic hardening exponent 
(n’) level also analyzed using our proposed model compared with experimental 
results [36], [37], shown in figure 5a-b, that the fatigue crack growth rates  
da / dN are a linear function versus the stress intensity factor range ΔK for almost 
all cyclic hardening exponent (n’). This can be expected if the crack propagates 
according to the Paris law with respect to the cyclic hardening exponent (n’). 
The influences to variability clearly of the cyclic hardening exponent (n’) increase 
when fatigue crack growth rate decrease. The hardening effect can be attributed 
to the influence of plastic strain at some point at the crack front to lead a higher 
magnitude of plastic strain which governing the evolution of crack growth da / 
dN versus crack length [30], [32], [33], [37], [45].

For 7075-T6 Al-alloy and at the same stress intensity factor ΔK.=13MPa.m1/2,  
the FCGR decreases from 12.9E-7 m/cycle to 3.09E-7 m/cycle with an increase 
in the cyclic hardening exponent (n’) from 0.045 to 1.106 (about 50% of 
reduction in cyclic hardening exponent). But for 2024 T3, the FCGR decreases 
from 1.66E-7 m/cycle to 0.42E-7 m/cycle. In the present study, the developed 
model (FCGRs model) enclose the experimental using plastic strain energy and 
the hardening effect contrary to the study conducted by [20], [46]–[48] when 
the developed models enclose the experimental result with introduce plastic 
strain energy and the crack closure effect. The variability of the cyclic hardening 
exponent show a moderate effect on fatigue crack growth rates (FCGR) is 
significant for 7075 T6 Al-Alloy comparatively to 2024 T3 Al-Alloy. 

a)  � b) 
Fig. 5. Fatigue crack growth rate versus stress intensity factor range, variability of 

cyclic hardening exponent (n′), a) 2024 T3, b) 7075 T6
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3.3. Influence of cyclic yield strength (σy)
Figure 6a-b show the fatigue crack growth rate versus the stress intensity 

factor range with different values of yield strength into relationship (Eq.15). 
The influence to variability it seems clearly suitable thus the velocity of fatigue 
crack growth increase when the yield strength decreases [17], [32], [45], [47], 
[49]. However, we can say that the yield strength is an important parameter into 
this model for the fatigue crack growth rate (Eq.15). It confirms that the yield 
strength has stronger influence on the fatigue crack growth.

a)  � b) 
Fig. 6. Fatigue crack growth rate versus stress intensity factor range, variability  

of yield strength σy, a) 2024 T3, b) 7075 T6

3.4. Influence of Young’s modulus (E)
The fatigue crack growth rates for Aluminum alloys are much more rapid 

than those in steel for a given ΔK [35], [36], [45]–[47]. Figures 7a-b show the 
fatigue crack growth rate as a function the stress intensity range ΔK at different 
values of Young’s modulus compared with the experimental results [36], [37] 
for the studied Al-alloys, 7075-T6 and 2024-T3, respectively. 

a)  � b) 
Fig. 7. Fatigue crack growth rate versus stress intensity factor range, variability  

of cyclic Young’s modulus E, a) 2024 T3, b) 7075 T6
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It is shown that there exist weakly influence by variability to this parameter such 
as the fatigue crack growth rate increases slowly when the Young’s modulus 
decreases [45], [47], [49]. Others, observed the fatigue threshold models predict 
a strong influence of the elastic modulus [50], [51].

According to the differentiation between two types of behavior of Al-alloys 
introduced above table 2, the comparison of values of the material constants 
C and m between the obtained from this model (Eq.17 and 18) for different 
material properties studied (K’, n’, σy, E) with the average values of literature 
realized a comparison acceptable for same R-ratio R=0.1, as shown table 3.

Table 3. Modeling and experimental values of parameters of Paris law
Modeling values Experimental values

Alloys n’ C [m/cycle] m R C [m/cycle] m R Refs

2024 
T3

0.040
0.042
0.065 
0.109

6.2815E-10
5.9242E-10
3.0259E-10
8.4245E-11

2.0769
2.0806
2.1221
2.1966

0.1
7.5100E-10

2.6029E-10

2.01

2.65

0.1

0.1

[37]

[52]

7075 T6

0.045
0.056
0.062
0.086 
0.088
0.090
0.106

4.1364E-09
3.0011E-09
2.5199E-09
1.2328E-09
1.1837E-09
1.1170E-09
7.0248E-10

2.0861
2.1061
2.1168
2.1594
2.1618
2.1651
2.1917

0.1
1.5739E-09

1.6500E-10

2.19

3.00

0.1

0.1

[36]

[4]

Others, explained a decrease in the value of the exponent (m) of the Paris 
law when the yield strength (σy) increased [35], [53], [54]. So the exponent 
(m) changes slightly at different temperatures, while constant (C) for the Paris 
law changes with the temperature [55]. The analysis of these results shown in 
Table 3 also reveals an increase in the values of (m) when the cyclic hardening 
exponent (n’) increases, and strictly inverted of constant (C) of Paris law. Figure 
8 shows the evolution of the constant (C) for the Paris law versus the cyclic 
hardening coefficient (K’), we have remarked the variability of the coefficient 
(K’) increase, when the constant (C) increases. 
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Fig 9. Constant of Paris law C versus cyclic hardening coefficient K’

Using the relationship (Eq.17), the influence of elastic properties (Yield 
strength σy and Young’s modulus E) on the constant C of the Paris law is shown 
in Fig. 9. The constant C is plotted against the yield strength in (Fig. 9-a) explain 
that when the variability of yield strength (σy) increase, when the constant C 
decrease. 

The Paris exponent (m) decreases when increasing the Young’s modulus, is 
remarked by [51], the (Fig 10-b) shows the evaluation of the constant C versus 
the Young’s modulus, seems linear, as approximate stable, the variability of 
Young’s modulus is influenced little the constant C.

a)  b)  

a)  � b) 
Fig. 10. Constant C of Paris law versus, a) yield strength, b) Young’s modulus
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4. Conclusion 
This paper focuses a contribution in development of analytical model for 

fatigue crack growth in Paris stage as a function of different materials properties 
(Yield strength, Young’s modulus and cyclic hardening parameters) based on the 
cyclic plastic deformation at the crack tip. The experimental data are presented 
in this paper for the validation of the developed model.

The main advantage of the developed model over the literature model is 
the direct dependence of the Paris law constants (C and m) on mechanical 
properties and hardening parameters. Also, a separate parameter is included in 
the Paris law characterized by the constant (b) depending only on the hardening 
parameter (n’) and the ratio (a/w) used in the correction function of geometry 
specimen (see equations 15 and 16). The developed model is applied to stable 
stage (Paris region) comparatively to other models such as Duggan, Forman and 
Tzamtzis models, which include the instable stage of crack growth.

Thus, from this study, the mechanical properties and hardening parameters 
effects are investigated on fatigue crack growth rate and the following 
conclusions can be drawn:
 � The experimental data use for validation is enclosed by the developed 

model with good agreement. 
 � The fatigue crack growth rate increase in an increasing the hardening 

parameter (K’) and their effect is shown clearly in the evolution of 
constant (C) in the Paris law.

 � The variability of cyclic hardening exponent (n’) shows a moderate effect 
on FCGRs where the effect of hardening exponent (n’) is significant on 
FCGRs of 7075 T6 Al-Alloy comparatively to 2024 T3 Al-Alloy. 

 � Fatigue crack growth rate increases with deceasing the yield strength.
 � Slow increasing of FCGRs is noticed with a decreasing in Young’s 

modulus.
 � The constants (C, m) of the Paris law depend strongly on the cyclic 

hardening exponent.
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