Introduction of an Individual Aircraft Tracking Program for the Polish SU-22

Open access

Abstract

The Su-22 fighter-bomber is a military aircraft used in the Polish Air Force (PLAF) since the mid 1980’s. By decision of the Ministry of National Defence Republic of Poland, the assumed service life for this type of aircraft was prolonged up to 3200 flight hours based on the Full Scale Fatigue Test (FSFT) results. The FSFT was conducted using the real load profile defined during the Operational Load Monitoring Program (OLM) and the 3200 hour service life was also based on this load profile.

In order to assure safe operation of all the 18 Su-22 aircraft, the Individual Aircraft Tracking program was introduced. The program was based on the results of the FSFT as well as the analysis of the flight parameters recorded by the THETYS onboard flight recorder.

In this paper, the authors present the methodology, assumed fatigue hypothesis and preliminary results of the IAT program for the Polish Su-22.

[1] P. Reymer, A. Leski, W. Zieliński, K. Jankowski, Full Scale Fatigue Test concept of a Su-22 fighter bomber, Fatigue of Aircraft Structures, vol. 6, pp. 79-87, Warszawa 2015.

[2] A. Leśniczak, P. Reymer, Warunki Techniczne WT-129/31/2014, Warunki techniczne nr WT-129/31/2014 do wykonania próby zmęczeniowej samolotu Su-22 UM3K nr 68507, ITWL, Warszawa, 2014.

[3] Ł. Kornas, Sprawozdanie SP-32/31/2016, Opracowanie i analiza wyników badań nieniszczących (etap I, II, III, IV) samolotu Su-22UM3K nr 68507 po zrealizowaniu pełnoskalowej próby zmęczeniowej, ITWL, Warszawa, 2016.

[4] Miner, M. A. ‘Cumulative damage in fatigue’, J. appl. Mech., Trans. Am. Soc. mech. Engrs 1945 67, A-159

[5] Мыльников, В.В. Связь параметра сопротивления усталости с повреждаемостью поверхности стали 30ХГСН2А // Сборник научных трудов Sworld. 2012. Т. 10. № 3. С. 56÷61.

[6] В.В. Мыльников, М.В. Мыльникова, Е.А. Чернышов, Д.И. Шетулов, Е.С. Беляев. Анализ изменения показателей сопротивления усталости сталей и титановыхсплавов в зависимости от физическихпроцессов, протекающих на их поверхности. Russian Journal of Nonferrousmetals. – 2010. – Vol. 51. – № 3. – pp. 237÷242.

[7] Ромашев М.А. Изменение структуры и повреждаемости поверхности стали в процессе циклического нагружения и их взаимосвязь с показателями сопротивления усталости. Успехи современного естествознания. – 2015. – № 1 (часть 1) – С. 67÷70. УДК 620.178.539.43.

[8] Smith, K. N., P. Watson, and T. H. Topper, A Stress-Strain Function for the Fatigue of Metals,” Journal of Materials, ASTM, Vol. 5, No. 4, Dec. 1970, pp. 767-778.

[9] K. Jankowski, W. Zieliński, P. Reymer, Sprawozdanie SP-62/31/2015, Analiza wyników skalowania kanałów tensometrycznych samolotu Su-22UM3K nr 67310, ITWL, Warszawa, 2015.

[10] M. Woch, Ł. Obrycki, Sprawozdanie SP-40/31/2015, Analiza wartości przeciążeń pionowych samolotów Su-22M4 oraz Su-22UM3Kw różnych fazach lotu na podstawie zapisów pokładowych rejestratorów parametrów lotu TESTER U3Ł, ITWL, Warszawa, 2015.

Fatigue of Aircraft Structures

The Journal of Institute of Aviation

Journal Information

SCImago Journal Rank (SJR) 2017: 0.102

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 117 117 16
PDF Downloads 73 73 7