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Abstract 
A probabilistic approach to the description of fatigue crack growth and fatigue life estimation 

of a component subjected to variable amplitude loading is presented in the paper. The core of the 
model is a differential equation originated from the Paris formula. In order to consider the 
influence of overload-underload cycles existing in an exploitive load spectrum on crack growth 
rate for an aeronautical aluminum alloy sheet, the modified Willenborg retardation model was 
applied. 

 
1. INTRODUCTION 

 
The operational spectrum of a structure is a typical variable amplitude spectrum. Exploitive 

loading induces in the materials physical phenomena that influence crack growth behavior. This is 
known as the effect of load interaction, which means the importance of both initial crack length at 
a given moment and the load time history for the crack growth in the materials. There exist 
numerous physical mechanisms that accompany the crack extension under single or multiple 
overloads and underloads imposed cyclically or randomly in the base line load. The most 
frequently mentioned mechanisms are either plastically induced crack closure and crack rate 
retardation associated with the plastic zone ahead of a crack tip that it was induced by a tensile 
overload cycle. Compressive underload cycle, on the other hand, leads to the crack tip sharpening 
and the crack rate increasing. The distribution of residual stresses in the plastic zone, the thickness 
of a particular component as well as mechanical properties of the material are determining factors 
that contribute to irregular fatigue crack growth. Therefore, it is of considerable interest to 
quantitatively predict the experimental tendency in crack growth behavior due to changes in load, 
material and geometry of a component. For this goal, certain empirical prediction models (Elber, 
Wheeler, Willenborg) as well as numerical simulations of crack growth under variable amplitude 
load derived by the codes FASTRAN, NASGRO, CORPUS and AFGROW find application. The 
calculative model for predicting crack growth rate in the 2024-T3 aluminum alloy under block 
program loading of the low-high-low type can be found in [1]. 

The influence of the shape of the loading spectrum on the crack rate is analyzed by means of 
the electron microscopes SEM and TEM. A local crack growth rate is estimated on the basis of 
striation spacing measurement. The details of the microfractographic analysis concerning the 
2024-T3 alloy and its correlation with the fatigue crack growth rate under single and multiple 
overloads-underloads can be found in [2]. 

In the present paper, a probabilistic approach to predicting fatigue crack growth rate under 
variable amplitude loading with imposing multiple overload-underload cycles was developed on 
the basis of the modified Willenborg model. 
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2. PROBABILISTIC METHOD OF FATIGUE LIFE ESTIMATION 
 
For predicting fatigue crack growth rate in a component subjected to random loading, a 

probabilistic model is proposed. The reasons for applying the probabilistic approach are as 
follows: 

• inhomogeneity of the real material, 
• scatter of mechanical properties of the material, 
• randomness of cracking process, 
• technological conditions (quality of manufacturing). 
There, it is required that the model and the real object are physically identical as regards the 

time and point of crack initiation, crack propagation period and fatigue lifetime of a component. 
Generally, exploitive loading contains a wide spectrum of stress cycles such as base line cycles, 
overloads and underloads, which appear in different order. The application of single or multiple 
tensile overloads causes significant decrease in the crack growth rate for a large number of cycles 
subsequent to the value of overload. It results from the compressive residual stresses acting in the 
plastic zone ahead of the crack tip. Application of compressive underloads has a detrimental effect 
on crack initiation and crack growth. The crack growth rate shows increasing trend and fatigue life 
will be reduced. 

In order to calculate the retardation effect on the crack rate due to overload-underload cycles, 
the improved Wheeler model known as the Willenborg model was applied. Both these models are 
based on the assumption that crack growth is controlled not only by the plastic zone but also by 
residual deformation left in the wake of the crack as it grows through the previously deformed 
material [3]. In the Willenborg model, there was introduced a reduced stress σred, which is needed 
to get through the plastic zone rp,ol  created by the tensile-overload cycle. In the case of an 
underload half-cycle with compressive stress, either the current plastic zone of the radius rp,i  or the 
overload plastic zone of the  radius rp,ol ahead of the crack tip are reduced by the radius rcp . In 
accordance with [3], the plastic zone radius rcp , which results from the interaction of an elastic 
material in the vicinity of growing crack, is determined by the equation (1): 

22 *
min,

02 02

1 1
2 2

ULUL
cp

K KKr
D R D Rπ π

 − Δ= =     ⋅ ⋅ ⋅ ⋅   
 (1)  

Where: D = 2 (plane stress state) or 6 (plane strain state), minmin( , )CA
thK K K∗ = ; min

CAK  is the 
minimum stress intensity factor in a base CA cycle; Kth is the threshold stress intensity factor; 
Kmin,UL is the minimum K associated with the underload (UL); R0,2 is the yield stress. 

The crack growth retardation effect continues as long as the following relation is true: 
, , , ,( ) ( )i p i cp i ol p OL cp ULa r r a r r+ − < + −  (2) 

strictly speaking, the crack growth is delayed as long as the current crack of the length ai enlarged 
by the current monotonic plastic zone of the radius (rp,i - rcp,i ) does not go beyond the overload 
crack of the length aOL enlarged by the plastic zone of the radius (rp,OL - rcp,UL ). Therefore, the 
retardation factor Cp is given by the equation:  

, , 1( )

n

pi cpi
p

OL p OL cp UL

r r
C

a r r a
 −

=   + − − 
 (3) 

The stress redistribution occurs ahead of the crack tip as a result of a tensile reaction of an elastic 
material surrounding the growing crack and the compressive stresses acting in the monotonic 
plastic zone ahead of this crack. Assuming that the reduced stresses σred operate in the plastic 
zone, the condition for the crack growth retardation in the Willenborg model is as follows: 
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 (4) 

The stress required for getting through the plastic zone is determined by the equation:  

( ),0,22 ol OL cp UL i
red

k i

a r r aR
M a

σ
+ − −⋅

= ⋅  (5) 

where Mk is the geometrical factor. 
In the model, it is assumed that the value of compressive stresses σc existing in the overload plastic 
zone is equal to the reduced stress σred  minus the maximum applied overload stress, that is σc = 
σred - σmax,OL. The values of σmax,i and σmin,i are reduced by the compressive stress σc in each load 
cycle. In a fatigue cycle, the values of effective maximum σmax eff,,j and minimum stresses σmin eff,,j 
equal respectively to: 

max , max, max,

min , min, min, max,

2eff j j c j red

eff j j c j j red

σ σ σ σ σ
σ σ σ σ σ σ

= − = −

= − = + −
 (6) 

The values of the above effective stresses must be positive numbers, otherwise it should be 
assumed that the value is zero. 
The effect of the stress ratio R on crack growth rate should be taken into account while calculating 
effective stress changes according to the equation: 

( ), max , 1  eff j eff j jR γσ σΔ = ⋅ −    1j q=  ,   0jR ≥  (7) 

where σmax eff,j and Rj are the maximum effective stress and the stress ratio for j-th stress block, 
respectively. The value of the stress modification factor γ is 0.68 for aluminum alloys under 
variable-amplitude loading with the stress ratio R ≥ 0. 
Let’s assume that the crack growth rate follows by the Paris formula under each stress cycle:  

, ,j k j eff j jK M aσ πΔ = ⋅Δ ⋅ ⋅  (8) 

where Δ Kj is the stress intensity factor  for the length aj of the crack. 
 
Further assumptions are as follows:  
1. load spectrum consists of Nc cycles,  

1

L

c j
j

N n
=

=  

where nj denotes the number of cycles having a given stress range ∆σj, 
2. load cycles can be ordered in L stress levels ∆σj, j =1,2,…,L. Each load level has the same 

maximum and minimum stress, 
3. the values of both stress ranges and the frequency of stress level appearing in the spectrum are 

performed in the table 1. 
 Tab. 1. 

 
 
where P1+P2+…+PL=1 , and Pj are the probability of a given stress cycle occurrence in a load 
spectrum 
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4.  let’s assume that the crack advances according to the Paris formula: 

( )m
j

da U C K
dN

= ⋅ ⋅ Δ  (9) 

where ∆Kj is the range of stress intensity factor determined by equation (8), C, m are material 
constants, a is crack length; N - number of load cycles. 
Empirical function U of crack closure contribution to crack growth relates to stress ratio R  

20,55 0,33 0,12U R R= + + . 
Taking into account equations (8) and (9) then Paris formula can be expressed in the form: 

2 2
,( )

m m
m m
K eff j

da UC M a
dN

σ π= Δ  (10) 

where: Mk is geometrical coefficient and the stress ∆σeff, j is defined by relation (7). 
Substituting the relation N=λ t to equation (10) we arrive to the Paris formula expressed as 
function of time: 

2
,

2( )
m

m m
K eff j

mda U C M a
dt

λ σ π= ⋅ ⋅ ⋅ ⋅ Δ ⋅ ⋅  (11) 

where λ means the frequency of load cycle appearing in a spectrum and t is a time of the loading 
action. 

In order to clearly perform the probabilistic method of estimating both the fatigue crack growth 
and fatigue life of a component under variable amplitude loading, four main steps will be 
distinguished. 

 
Step 1 
Dynamics of crack growth expressed by difference equation 
 

Stochastic nature of crack growth is expressed by a function Ua,t representing the probability 
that at the time t  the crack length is a  [4]. For this, the dynamics of crack growth was described 
by difference equation: 

1 21 , 2 , ,, ...
La a t a a t L a a ta t tU PU PU P U−Δ −Δ −Δ+Δ = + + +  (12) 

where the crack length increment Δa results from the action of stress ∆σeff, j occurring with the 
probability Pj. 
Difference equation (12) in functional notation took the following form: 

1
( , ) ( , )

L

i i
i

u a t t Pu a a t
=

+ Δ = − Δ  (13) 

where ( , )u a t  means the crack length density function depending on time t. 
 

 
Step 2 
Transformation of difference equation into the Fokker-Planck  differential equation  
 
Finite difference equation (13) was transformed into differential equation by expanding it into 
Taylor series : 

2
2

2

( , )( , ) ( , ) ;

( , ) 1 ( , )( , ) ( , ) ( )
2i i i

u a tu a t t u a t t
t

u a t u a tu a a t u a t a a
a a

∂+ Δ = + Δ
∂

∂ ∂− Δ = − Δ + Δ
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 for i = 1, 2,..., L (14) 
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Equations (14) after transformation have following form: 

1 1 2 2

2
2 2 2

1 1 2 2 2
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a

λ
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∂ ∂

∂+ Δ + Δ + + Δ
∂

 (15) 

Transformation to functional notation and the Taylor series expansion deliver the Fokker-Planck 
type equation (16)  

2

2

( , ) ( , ) 1 ( , )( ) ( )
2

u a t u a t u a ta a
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α β∂ ∂ ∂= − +
∂ ∂ ∂

 (16) 

where ( ),u a t  is  the crack length density function depending on time. 
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For 2m ≠  coefficient ( )aα  in equation (16) has following form: 
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(18) 

where: 
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Coefficient ( )aβ  in equation (16) has following form: 
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Integrating of equation (11) allows us to deliver the crack length a which is presented in equations 
(18) and (20) for the assumption 2m ≠ : 
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Equation (21) applied to equation (18) allowed determination of the coefficient ( )aα  
dependent on time t : 

2
222 22( ) [( ) ] [( [( ) ] )]

2

mm
m m m m m
K eff o K eff

m mmt UC M E a UC M E tα λ π σ λ σ π
−

−−= Δ ⋅ + Δ  (22) 

Equation (21) applied to equation (20) allowed obtaining the form for the coefficient ( )aβ
dependent on time t : 

22
2 2 2 2 22 22( ) [( ) ] {[ [( ) ] ] }]

2

m
m m m m m mm

K eff o K eff

mmt U C M E a UC M E tβ λ π σ λ σ π
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Step 3 
Crack length density function as a solution of the Fokker-Planck type differential equation 
 
Taking equations (22) and (23) into account, then equation (16) takes the form of: 

2

2

( , ) ( , ) 1 ( , )( ) ( )
2

u a t u a t u a tt t
t a a

α β∂ ∂= − +
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 (24) 

We are looking for a special solution of equation (24) which satisfies the following conditions: if 
0t →  the solution is convergent with the Dirac function, ( ), 0u a t →  for 0a ≠  and ( ),u a t → ∞  

in such a way that the integral of function u  is equal one for 0t > . 
Solution of equation (24) is the requested crack-length density function dependent on time: 

2( ( ))
2 ( )1( , )

2 ( )

a B t
A tu a t

A t
e

π

−−
=  (25) 

where: 
• ( )B t  is an average value of crack length for the time t ,  

• ( )A t  is a variance of crack length for the time t .  
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Computational formulae take the following forms: 

0
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0

( ) ( )
t

A t z dzβ=   (27) 

Calculating the integral (26) one can receive: 
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Hence, ( )B t  - an average value of crack length for the time t  has the expression: 
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Calculating the integral (27) one can obtain: 
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Hence, ( )A t  - a variance of crack length for the time t  has the expression: 
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Step 4 
Estimation of fatigue life of a component with the use of the function of failure risk 
 

With the crack-length density function (25), one can determine the risk of failure which can 
occur in a component as a consequence of a crack developing up to a critical length in the time t: 

( ) ( , )
cra

Q t u a t da
∞

=   (30) 
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The critical crack length can be determined as follows: 
2

2 2
C

cr
k cr

Ka
M σ π

=  (31) 

where:  
2

0(1 exp ( ) ),C ICK K B A g g= ⋅ + ⋅ − ⋅  
( )2

0 2,5 IC eg K R= ⋅ , 
symbols denote, respectively: 
g  - thickness of a sheet, 

ICK - material toughness, 

eR - yield stress, 
,A B - material constants. 
When the (required) ( )reqQ t  is determined, some value of time should be found – such as to 

make the left side of equation (30) equal the right one. The value of “t” found in this way will be 
this sought fatigue life for the assumed level of the risk failure ( )reqQ t . On the contrary, the 
reliability function R(t)req = 1-Q(t)req denotes the assumed level of probability that the current 
crack length a  will not exceed a critical value of crack length cra . 

 
3. EXPERIMENTAL VERIFICATION OF PROBABILISTIC METHOD FOR FATIGUE 
LIFE ESTIMATION 

 
The probabilistic method was verified in this chapter by predicting the crack behavior and 

fatigue life estimation for aeronautical aluminum alloy sheet subjected to variable amplitude load 
program. Aluminum alloy 2024-T3 is used for lower skin aircraft wing structure. The material that 
was used in the experiment was 3mm thick sheet plated with pure aluminum on both sides (Alclad 
aluminum alloy sheets). The film of the plate had the thickness of 0,12mm. According to the 
manufacturer’s certificate, the chemical composition of the 2024 alloy contains the following alloy 
elements: Cu (4,23%), Mg (1,37%), Mn (0,50%), Fe (0,18%), Zn (0,16%), Si (0,09%). The ranges 
of the mechanical properties of the alloy are presented in table 2. 

 
 Tab. 2. 

 
 

The T3 designation indicates the aluminum alloy’s solution heat treating (495oC, 50hours), cold 
rolling and natural aging at 195oC. The specimens of 400 mm length and 100 mm width were cut 
out from the sheet. Subsequently, a through-thickness central hole of 5 mm in diameter, was cut 
inside each specimen. The hole had on each side a through-thickness saw cut of 2.5 mm length and 
an initial pre-crack of 2.5 mm length, the total length of the initial crack was equaled to 2a=20 
mm. The hole served as crack initiator. Two series of specimens were made: LT-type specimens 
were cut out parallel while TL-type specimens were cut out perpendicularly to the sheet rolling 
direction. 
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Fig. 1. Geometry of specimens 

Fatigue tests on the specimens were carried out at room temperature under load control variable 
stress amplitude in accordance with the diagram given in Fig 2. 

 

 
Fig. 2. Load spectrum LPL (flight by flight) 

 
One sequence of the spectrum represents 10 aircraft flights and total number of cycles in the 

spectrum’s sequence is 240. It consists of nine subspectrum called Flight-A and one subspectrum 
called Flight-B. 

The characteristic of the above-mentioned variable amplitude load spectrum has been presented 
in table 3. The table contains maximum stress σmax, minimum stress σmin and mean stress σśred 
values for established 13 load levels. Furthermore, table contains ranges of stress values σΔ  
together with probability of its appearance in used load spectrum. 
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 Tab. 3. 

 
 
The effect of multiple overload/underload (OL/UL) cycles existing in the used spectrum on the 

crack growth rate in 2024-T3 aluminum alloy sheet was examined on the basis of the fatigue tests 
results. Exemplary courses of crack propagation rates in LT-type and TL-type specimens are 
illustrated on the following figures: 

•Crack growth rate against number of load spectrum sequences – Fig.3; 
•Crack length against number of load spectrum sequences – Fig.4; 
•Crack growth rate against crack length – Fig.5. 

 
Fig. 3. Experimental curves for LT and TL samples of crack growth rate against number of load 

spectrum sequences 
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Fig. 4. Experimental curves for LT and TL samples of crack length against number of load spectrum 

sequences 

 
Fig. 5. Experimental curves for LT and TL samples of crack growth rate against crack length 

 
The research revealed that real fatigue life of specimens has a range of values: 

• 160,  5N sequences=  for TL samples; 
• 190 210N sequences=   for LT samples. 
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On the basis of experimental results  the verification of the presented above probabilistic 
method for calculating the fatigue life was carried out and compared with experimental fatigue 
life. 

Fatigue test results of 2024-T3 aluminum alloy sheet made possible to plot the curve of crack 
growth rate versus stress intensity factor and on the basis of this curve the coefficients of Paris 
formulae were calculated:  

14

3,58 
3,4 10

m
C −

=

= ⋅
 

Data contained in table 3 made possible to calculate values of the following moments: 
6

1 1 2 2[( ) ] ( ) ( ) ... ( ) 6,96 10 [ ]m m m m m
L LE P P P MPaσ σ σ σΔ = Δ + Δ + + Δ = ⋅  (32) 

2 2 2 2 14 2
1 1 2 2[( ) ] ( ) ( ) ... ( ) 4,75 10 [ ]m m m m m

L LE P P P MPaσ σ σ σΔ = Δ + Δ + + Δ = ⋅  (33) 

Estimation of fatigue life was made for the crack growing from initial crack length 0 10a mm=  
to admissible crack length 27da mm= . In the next step the correction coefficient kM  was 
calculated (taking into consideration finite specimen dimensions) using empirical formula (34) [3] 
for the specified specimen’s geometry of the CCT type (fig.1). 

 

2 4

1 0,025 0,06 sec
2k

a a aM
W W W

π  ⋅     = − + ⋅      ⋅         
(34) 

where W is one half width of a plate. 
Next step concerned the equations that were used for calculating the average crack length 

( )B N  and the variance ( )A N , respectively: 
2

2
2

222( ) [ [( ) ] ]
2

m
m m

o K o

m
mmB N a C M E N aπ σ

−
−−= + Δ −  (35) 

2 2
22 22
22 22

2

2
2

[( ) ]( ) [( [( ) ] ) ]
[( ) ]

m m mm mm
m m m m
K o K omm

mEA N CM a C M E N a
E

σπ π σ
σ

+− +
−

+

−Δ= + Δ −
Δ

(36) 

where: N  is the number of load cycles. 

As the result of calculation there were received the following functions: 

( ) 6 1,26582[0,162181 2,06 10 ] 10B N N− −= − ⋅ ⋅ −  (37) 

( ) 6 6 3,53169,18 10 [(0,162181 2,06 10 ) 616,595]A N N− − −= ⋅ − ⋅ ⋅ −  (38) 
Finally, there  was used the formula for estimating the risk of failure occurrence in a component 

as a consequence of a crack developing up to the length beyond admissible crack length da : 

 

2( ( ))
2 ( )1( )

2 ( )
d

a B N
A N

dop
a

Q N da
A N

e
π

−∞ −
=   (39) 

For the assumed value of the risk of failure *
( ) 0, 000001Q N

dop
=  we try to find such a number of load 

cycles N, which fulfills the above equation (make the left side of equation (39) equal the right 
one).  

As the result of the calculation, value N=41400 cycles is the searched fatigue life (expressed by 
the number of cycles) for the assumed level of failure’s risk *

( ) 0, 000001Q N
dop

= .  

The same value of fatigue life expressed by the number of load sequences takes value N=172,5 
sequences. 

For the presentation of the specimen’s reliability course, fig. 6 describes its reliability 
( ) 1 ( )R N Q N= −  as a function of load sequences number. 
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Next, Fig. 7. presents the curve of predicted average crack length in the time ( )B N  as the 
function of the number of load sequences obtained using equation (37). 

 

 
Fig. 6. Course of specimen’s reliability function versus number of load sequences 

 

 
Fig. 7. Curve of predicted average crack length B(N) dependent on number of load sequences 

 
The result of fatigue life calculation ( 172,5N sequences= ) proves that its value is contained in 

the range of the fatigue lives observed in the experiment ( 160,5 210N sequences=  ). On the 
basis of this verification one can put forward a proposal that the presented probabilistic method of 
fatigue life prediction under variable amplitude loading may be practically used for the structure’s 
element fatigue life estimation. 
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4. SUMMARY 
 
The probabilistic method presented in this paper facilitates a simplified description of fatigue 

crack growth under variable amplitude loading and the estimation of fatigue life. Fundamental to 
the description is a finite difference equation with the coefficients originated from the Paris 
formula, which models the dynamics of crack growth. The characteristic features of crack growth 
under overload-underload cycles existed in an exploitive loading were modelled by using the 
modified Willenborg retardation model. The presented probabilistic method has a good 
confirmation by experimental research of crack behaviour and fatigue life estimation for an 
aeronautical aluminium alloy sheet 2024-T3 subjected to variable amplitude load program. This 
method needs an extension over the crack initiation period. 
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