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ABS TR AC T  

The Ustroń S.A. Health Resort (southern Poland) uses iodide-bromide mineral waters taken from Middle and Upper Devonian 
limestones and dolomites with a mineralisation range of 110-130 g/dm3 for curative purposes. Two boreholes - U-3 and U3-A 
drilled in the early 1970s were exploited. The aim of this paper is to estimate changes in mineral water quality of the Ustroń 
Health Resort by taking into consideration chloride content in the water from the U-3 borehole. The data has included the 
results of monthly analyses of chlorides from 2005 to 2015 during the tests carried out by the Mining Department of the 
Health Resort. The triple exponential smoothing (ETS) function and the Seasonal Autoregressive Integrated Moving Average 
(SARIMA) method of modelling time series were used for the calculations. The ability to properly forecast mineral water 
quality can result in a good status of the exploitation borehole and a limited number of failures in the exploitation system. 
Because of the good management of health resorts, it is possible to acquire more satisfied customers. The main goal of the 
article involves the real-time forecast accuracy, obtained results show that the proposed methods are effective for such 
situations. Presented methods made it possible to obtain a 24-month point and interval forecast. The results of these analyses 
indicate that the chloride content is forecast to be in the range of 72 to 83 g/l from 2015 to 2017. While comparing the two 
methods of analysis, a narrower range of forecast values and, therefore, greater accuracy were obtained for the ETS function. 
The good performance of the ETS model highlights its utility compared with complicated physically based numerical models. 
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1. Introduction 

 
Precise methods of forecasting data allow for a 

better assessment of physical phenomena changing. 
It has been shown through the forecasting of 
groundwater levels (MOHANTY ET AL., 2010) or 
seasonal runoff forecasting systems constructed 
from a statistical relationship between the model 
– assimilated precipitation and subsequent runoff 
(RAHIMI ET AL., 2014; VALIPOUR, 2015) which show 
that data-driven methods ensure the robustness 
of the model. 

There are many methods intended for 
forecasting, such as physically based numerical 
models, stochastic models, artificial neural network 
(MENHAJ, 2012), and fuzzy or rough sets theory 
(DUBOIS & PRADE, 1990). Several studies focusing 
on data – driven models have shown their 

accuracy and reliability in forecasting is based on 
Autoregressive Integrated Moving Average (ARIMA), 
seasonal autoregressive integrated moving average 
(SARIMA) and exponential smoothing models 
(TRATAR, 2013). 

The reliable assessment and forecasting of 
groundwater chemical status is extremely important 
in determining the physico-chemical properties 
of water used in health resorts for curative purposes. 
Among the many methods available for investigating 
environmental forecasts, integrated moving average 
and exponential smoothing have been used in 
groundwater chemical status assessments at the 
Ustroń Health Resort. 

Autoregressive integrated moving average 
and exponential smoothing are very useful models 
for environmental forecasting (KARAMOUZ & 

ARAGHINEJAD, 2012; MOHAMMADI ET AL., 2005). In this 
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study we have examined the sensitivity of 
SARIMA and Holt-Winters models to forecast the 
chloride content. 

Several studies have highlighted the limitations 
of these methods connected with analyzing non-
linear data patterns (ADAMOWSKI & CHAN, 2011). 
Having a full database, however, allows the use of 
these methods for forecasting. 

The time series analysis generally assumes that 
models such as ARIMA, consisting of three elements 
such as the autoregressive process, moving average 
process and the degree of integration, are more 
general than exponential smoothing which is de 
facto a special variant of the ARIMA model (HYNDMAN 

& ATHANASOPOULOS, 2014). Data driven models have 
not been examined to date for the forecasting of 
chemical status. 

 
2. Study area 
 

The study area is the Ustroń Health Resort 
located in the southern part of Poland (Fig. 1) 
within the Silesian Beskids, which are part of the 
Carpathians (KONDRACKI, 2011). Although Ustroń 
is still considered to be one of the youngest health 
resorts in Poland, its balneological traditions date 

back to the early nineteenth century (RAJCHEL ET 

AL., 2007). The resort has had a license to capture 
curative waters since 1994. Water exploitation is 
carried out there from two U-3 and U3-A boreholes 
drilled in 1971 and 1978 respectively (WALIGÓRA 

& SOŁTYSIAK, 2011). The drilling of the latter 
completed the exploration stage of curative 
waters in the region. The C-1 absorptive borehole, 
the first hole for injection post-treatment waters 
into rocks, was drilled in 1992. It has been assumed 
that the resource area equals the "Ustroń" mining 
area in the hydrogeological documentation drawn 
up so far (WALIGÓRA, 2012). It has an area of 5.4 km2 
(Fig. 1). 

The geological profile in the region of the 
Ustroń contains such forms as Precambrian mica 
gneiss, Devonian karst limestone and dolomite 
with a thickness between 460 to 550 m, 
Carboniferous complexes of claystones, slates, 
mudstones and sandstones with  thicknesses in 
the range of 53-298 m, flysch forms (alternate 
layers of slates, shales, limestones, marls, sandstones 
and mudstones) with thicknesses of more than 
1300 m, and quaternary sediments resulting 
from river accumulation or due to weathering 
(WALIGÓRA & SOŁTYSIAK, 2011). 

 

 
Fig. 1. Location of the study area 

 
In the region of the resort, there are four 

layers of aquifers: Neogene, Cretaceous-Paleogene, 
Carboniferous and Devonian (SOLECKI, 2007). 
The Neogene layer is associated with coarse 
sandstones and conglomerates belonging to the 
Dębowiec layers (CHOWANIEC, 1993). The Cretaceous-
Paleogene layer is full of crevasses and void 

fractions. Because of the great lithological diversity 
of the Silesian and Sub Silesian Nappes, the 
mineral waters have a mineralisation equal to 2 
and 3.2 g/l respectively. The Carboniferous 
water-bearing layer is poorly known and is not 
used due to the predominance of clay forms.  
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The crevasse-karst Devonian aquifer is the 
most important in this region. It is associated with 
Upper and Middle Devonian carbonates such as 
grey and dark- grey limestones with the depositions 
of dolomites, marls or dark shales. Within this 
layer, there is a level of mineral waters used in 
balneology with a mineralisation ranging from 
110 g/dm3 (the U-3) to 130 mg/dm3 (the U3-A) 
and the Cl Na-Ca, Fe, I type exploited from a depth 
of 1318 to 1728 m. The direction of the Devonian 
water migration is difficult to determine. According 
to WALIGÓRA (2012), the slow movement of these 
waters is through privileged zones, i.e. dislocation 
zones and karst zones, from south to the north. 
 
3. Methodology 
 

Maintaining good groundwater status is very 
important for environmental reasons. It is necessary 
to maintain stable physico-chemical conditions of 
curative waters for the purposes of balneotherapy. 
The performed physical and chemical analyses 
offer the possibility of forecasting changes in the 
concentration of the individual components and 
thus the possibility of preventing the potential 
negative consequences of the deterioration in 
water quality. Time series forecasting functions 
allow for the prediction of the future values based 
on historical data. For this purpose, various 
forecasting methods such as the Holt-Winters 
model or the ARMA/ARIMA model are used. 

Logarithm and then additive decomposition 
should be applied to the data, which is to be used 
in forecasting. This will allow for the determination 
of individual components in the series – the 
definition of seasonality and the determination of 
a trend line.  

Holt. There are two variations to the Holt 
Winters model – the additive and the multiplicative 

method. The additive method is preferred when 
the seasonal variations are roughly constant 
through the series and the multiplicative method 
is used when the seasonal variations are changing 
proportional to the level of the time series. The ETS 
function which is a special case of the Holt-Winters 
model uses advanced machine learning algorithms 
such as triple exponential smoothing. The ETS 
function in the R package allows you to choose 
the correct model from the 20 available. 

The selected model will allow for the 
determination of the monthly point and interval 
forecasts. The interval forecasts can be determined 
at different confidence levels (usually 0.95 and 
0.8). Such forecast values are verified using 6 
indicators such as: mean error, mean absolute 
error, root mean squared error, percentage error, 
mean absolute percentage error, mean absolute 
scaled error. 

The second method used for the forecasting 
purposes is the SARIMA (Seasonal Autoregressive 
Integrated Moving Average) model composed of 
three parameters: autoregression, degree of series 
integration and moving average (ASTERIOU & HALL, 
2011), which evaluate the impact of historical 
values and the volume of historical and current 
disturbances on current values. 

The autoregressive process (p) is a process in 
which each value is a linear combination of the 
preceding values. In the autoregressive process 
the autoregressive order is calculated to determine 
how many previous values have impacted on the 
current analysed value. The moving average 
process (d) is an average of recent anomalies and 
random components of the model. Reducing a 
non-stationary series to a stationary one is an 
integration of the process (q). The multiplicative 
SARIMA model (p, d, q) (P, D, Q)ω is defined as 
follows: 
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where: 
ɸ - parameter of seasonal autoregressive model 
B - difference operator 
B(Zt) - the Dth seasonal difference measure ω 
(1-Bɷ)D - the dth non- seasonal difference 
ʘ - seasonal moving average model 
φ - parameter of non- seasonal autoregressive 
model 

θ - parameter of non- seasonal moving average 
model 
p - order of non- seasonal autoregressive model 
q - order of non- seasonal moving average model 
P - order of seasonal autoregressive model 
Q - order of seasonal moving average model 
ɷ - periodic term 
d=(1-B)d – difference order 
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Choosing the most accurate SARIMA model is 
performed by using the procedure developed in 
1976 by Box and Jenkins. The procedure for selection 
of the optimal model includes identification, forecast 
and diagnosis. For this purpose, an autocorrelation 
(ACF) diagram and partial autocorrelation 
(PACF) graph are drawn (BALAGUER ET AL., 2008). 
The horizontal axis shows the delay time and the 
vertical one presents the amounts of ACF and 
PACF, respectively (EDIGER & AKAR, 2007).  

As a result of the forecast procedure two 
estimated parameters (MA1 and SMA1, where 
MA1 = moving average parameter of order 1, 
SMA1 = seasonal MA1) are obtained, so are the 
corresponding estimate errors (s.e.), which are 
used to verify the hypothesis about the importance 
of these estimates. Also, the values of information 
criteria such as AIC (Akaike Information Criterion) 
and BIC (Bayes Information Criterion) are 
obtained. These criteria are based on the log 
likelihood function. Both criteria are used to select 
the most accurate and easiest model.  

The analysis of residuals obtained from AIC 
and BIC should be performed for the model built 
in such a way. When a model has been selected 
correctly, standardised residuals behave as 
independent random variables with a mean of 0 
and variance equal to 1. The residuals and time 
ratio graph and the autocorrelation graph are 
performed, as well as the Ljung-Box test (LJUNG & 

BOX, 1978) which is carried out to check the 
validity of the model selection. 

Developing such a model allows for the 
execution of point and interval forecasts for 
several different levels of confidence. After this 

operation, the results are verified by calculating 
the errors, as is done after the ETS function. 
 
4. Results 

 
What is presented is the forecasted changes in 

chloride content in the curative waters of the 
Ustroń Health Resort from the U-3 borehole. 
The study period included the mean value of 
chloride content for each month for the period from 
January 2005 to January 2015 (Fig. 2). To assess 
changes in chloride concentration and to give a 
24-month forecast, two statistical methods – the 
Holt-Winters model and the SARIMA model 
were used. All calculations were made in the R 
programming environment (R Core Team 2015). 
The data was subjected to logarithm and additive 
decomposition. The individual components of the 
series: seasonality and trend line were determined 
in that way (Fig. 3). 

As observed between 2005 and 2009, there is 
a decreasing trend of chloride concentration in 
the U-3 borehole. Most changes in the whole 
study period took place between 2009 and 2013, 
and there was a growing trend since 2013. It is 
worth noting that slightly higher values of chloride 
concentrations occur in spring and summer 
months, and lower ones from November to 
January, and are connected with the plan of the 
deposit exploitation. The efficiency of the pumping 
system is lower in the winter period because of 
less demand for mineral water. Thus the 
mineralization will be lower as the pump efficiency 
decreases (WALIGÓRA, 2012).  

 
 

 

Fig. 2. Concentration of chlorides in the U-3 borehole in the period of January 2005 to January 2015 
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Fig. 3. The additive decomposition of the time series studied 

 
When choosing the ETS function in the R 

package, four models of exponential smoothing 
were tested, i.e. a simple exponential smoothing 
model, Holt's model, Winters' additive and 
multiplicative model. Finally, the last model was 

selected, as the one with the smallest number of 
mistakes and the best match, was chosen to be 
compared with the SARIMA model. The Winters' 
multiplicative model consists of three equations: 

 
(1)   

 
 
 

(2) 
 
 
 
 

(3) 
 
 
where: 
Lt-1 - the equivalent of the smoothed value 
obtained from a simple exponential smoothing 
model (the weighted arithmetic mean) 
Bt-1 - the evaluation of a growth trend of the 
moment or period t-1,  
St-1 - the assessment of the seasonal indicator for 
a moment or period t-1,  
r - the length of the seasonal cycle - the number of 
phases  
α, β, γ - smoothing parameters of the model with 
the values in the range of [0, 1]. 

 
Initial values were determined for each of the 

equations in the Winters' model: for the average 

level of a series (L), for the trend (B), and for the 
seasonal component (S) (L = 84.8648, B = -0.2074, 
and S = 0.9838, 1.0359, 0.9901, 1.0716, 0.98, 
1.0153, 1.073, 1.0282, 0.9621, 0.9316, 0.9699, 
0.9585) and smoothing parameters (α = 0.5112, 
β = 3e-04, γ = 1e-04). The values obtained were 
the lowest among the smoothing models tested. 

After selecting the model, it was used to 
forecast changes in chloride concentration. A period 
of 24 months was assumed for the period of the 
forecast. Point and interval forecasts were made. 
The latter was made at two levels of confidence: 
0.95 and 0.8. Forecasts of the changes in chloride 
content using the ETS function is shown in Fig. 4. 
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Fig. 4. Forecast of changes in chloride content in the period between February 2015 and February 2017  
using the ETS function 

 
Also, the accuracy of the estimation was verified 

by determining the following values: Mean error 
0.2145021, Mean absolute error 5.127926, Root 
mean squared error 7.316485, Percentage error -
0.285565, Mean absolute percentage error 6.71916, 
Mean absolute scaled error 0.7205705.  

The value of the average error should be close 
to zero. In this case, there is a slight underestimation. 
The MAE informs about the average aberrations 
of the actual realisations from the forecast ones 
for the forecasted variable (the absolute magnitude) 
in the period of forecast. The PE indicates what 
percentage of the actual realisation of the forecast 
variable is the forecast error. The MAPE error should 
rather be used to compare models and should not 

be used to determine a single forecast error 
(SZMUKTA-ZAWADZKA & ZAWADZKI, 2012). Secondly, 
the SARIMA model was used. The autocorrelation 
diagram (ACF) were produced (Fig. 5) and the 
partial autocorrelation graph – PACF (Fig. 6) 
(BALAGUER ET AL., 2008). 

The SARIMA model (1,1,1), (1,1,1) was used to 
project the chloride concentration forecast. As a 
result of the estimation procedure, there was 
obtained a forecast of two parameters ma1 = 0.3695 
and sma1 = -0.9241 and the corresponding estimate 
errors (s.e. = 0.1023; 0.0419). The value of 
information criteria AIC, BIC equal respectively: 
-226.39 and -218.05. 

 
 

 

Fig. 5. The autocorrelation chart of the ARIMA model 
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Fig. 6. The partial correlation chart of the ARIMA model 

 
To check if the model was matched accurately, 

a diagram of the values of residuals and time 
ratio, and autocorrelation function diagram were 
done. Thirdly, the Ljung-Box test was performed 
(Fig. 7) P-value of the Ljung-Box statistics is so 
high that the hypotheses of zero autocorrelations 
cannot be denied. 24 monthly point and interval 
forecasts at the same level of confidence as for the 
ETS function were made for the model constructed 
in such a way. The results are shown in Fig. 8. 

As can be seen when comparing the change 
models of chloride concentration in the U-3 
borehole using the ETS function and the SARIMA, 
better forecast and their narrower range were 
achieved for the first one. Higher forecast values 

of chloride concentration in the U-3 borehole 
were received by the SARIMA method. 

The resulting forecast values are not significantly 
different from the previous ones. This indicates 
the stability of the chemical composition of 
therapeutic waters from the boreholes in the 
Ustroń Health Resort. Both forecasting models 
indicate a slightly higher concentration of chlorides 
in the summer months and slightly lower in the 
winter, which is also noticeable now. Both full 
physical and chemical analyses as well as individual 
marks of chloride ions confirm the stable conditions 
of the chemical composition of water in the exploited 
holes. Both methods can be used to analyse changes 
in the chemical composition of groundwater.  

 
Fig. 7. Analysis of residuals of the model tested 



64 
 

 

Fig. 8. Forecast of the changes in chloride content in the period from February 2015 to February 2017  
using the SARIMA method 

 
 
5. Summary and conclusions 
 

The Ustroń Health Resort uses Devonian brines 
for therapeutic purposes with the mineralization 
of 130 g/l from the U-3 and U-3A boreholes. The 
brines are characterised by a high stability of 
physico-chemical composition. 

Conducted measurements of the chemical 
composition of the therapeutic waters of the Ustroń 
Health Resort show that higher concentrations of 
certain components, e.g. chlorides, are slightly 
higher in summer than in winter which is 
associated with  pump efficiency.  

In the case of water used in health treatment, 
it is important to assess the current changes in 
their chemical composition and performance of a 
forecast. For weekly data on the concentration of 
chlorides in the U-3 borehole, time series analyses 
were performed using the ETS function and the 
ARIMA method. The data covered the period from 
January 2005 to January 2015. The analysis 
shows that it is possible to use both methods in 
order to perform the forecast changes in the 
content of individual components of groundwater 
based on current monitoring data. 

The resulting models suggest a slight variation 
in the concentration of chlorides in the entire 
study period, and also in the forecast. Taking 
chlorides as an example and referring the results 
of both methods to general mineralisation of the 
waters tested, the stability and high quality of the 
chemical composition of the waters in the Ustroń 
Health Resort were confirmed. 
 
 

References 
 
Adamowski J., Chan H.F. 2011. A wavelet neural network 

conjunction model for groundwater level forecasting. 
J. Hydrol. 407: 28-40. 

Asteriou D., Hall S. 2011. ARIMA Models and the Box–Jenkins 
Methodology. Applied Econometrics: 265-286. 

Balaguer E., Palomares A., Sorie E., Martin- Guerrero J.D. 
2008. Predicting service request in support centers 
based on nonlinear dynamics, ARMA modeling and 
neural networks. Expert Syst. App. 34: 665-672. 

Box G.E.P., Jenkins G.M. 1976. Series Analysis Forecasting and 
Control. 1st ed. Holden-Day, San Francisco. 

Chowaniec J. 1993. Budowa geologiczna i warunki 
hydrogeologiczne okolic Ustronia z uwzględnieniem 
wyników otworu chłonnego Ustroń C-1. Ustroń Health 
Resort Archive, unpublished. 

Dubois D., Prade H. 1990. Rough fuzzy sets and fuzzy rough 
sets. Int. J. General Systems, 17 (2–3): 191–209. 

Ediger V., Akar S. 2007. ARIMA forecasting of primary 
energy demand by fuel in Turkey. Energy Policy, 35: 
1701-1708. 

Karamouz M., Araghinejad Sh. 2012. Advanced Hydrology. 
Amirkabir Univ. of Tech. Press. 

Kondracki J. 2011. Geografia regionalna Polski. PWN, Warszawa. 
Ljung G., Box G. 1978. On a Measure of Lack of Fit in Time 

Series Models. Biometrika, 66: 67–72. 
Malina A. 1994. The Forecasting of Economic Phenomena on 

the Basis of the Methods of Exponential Smoothing of 
Time Series. Cracow Rev. Econ. Manage., 440: 15-29. 

Menhaj M.B. 2012. Artificial Neural Network. Amirkabir 
Univ. of Tech. Press. 

Mohammadi K., Eslami H.R., Dayyani Sh. 2005. Comparison 
of regression ARIMA and ANN models for reservoir 
inflow forecasting using snowmelt equivalent. J. Agric. 
Sci. Tech., 7: 17-30. 

Piłatowska M. 2011. Porównanie kryteriów informacyjnych i 
predykcyjnych w wyborze modelu. J. Manage. Finance, 
4: 499-512. 

Piontek K. 2002. Modeling and forecasting financial instruments 
variability (PhD thesis). Wroc. Uniw. Econ., Wrocław. 



65 
 

Rajchel L., Śliwa T., Waligóra J. 2007. Uwagi o wodach leczniczych 
Ustronia. Współczesne problemy hydrogeologii, 13, 
Krynica-Kraków. 

R Core Team 2015. R: A language and environment for 
statistical computing. R Foundation for Statistical 
Computing, Vienna URL http://www.R-project.org/ 

Solecki T. 2007. Zastosowanie odwiertów chłonnych w ochronie 
środowiska na przykładzie uzdrowiska Ustroń. 
Wiertnictwo, nafta, gaz, 24: 465-473. 

Szmukta-Zawadzka M., Zawadzki J. 2012. O metodzie 
prognozowania brakujących danych w szeregach 
czasowych o wysokiej częstotliwości z lukami. 
Metody ilościowe w ekonomii, 13: 212-223. 

Tratar L.F. 2013. Improved Holt-Winters method: A case of 
overnight stays of tourists in Republic of Slovenia. 
Econ. bus. rev., 16: 5-17. 

Valipour M., Banihabib M., Behbahani S. 2013. Comparison of 
the ARMA, ARIMA and the autoregressive artificial 
neural networks model in forecasting the monthly 
inflow of Dez dam reservoir. J. Hydrology, 476: 433-441. 

Waligóra J. 2012. Projekt zagospodarowania złoża wody 
leczniczej „Ustroń” z utworów dewonu, w granicach 
obszaru górniczego „Ustroń”. Ustroń Health Resort 
Archive, unpublished. 

Waligóra J., Sołtysiak M. 2011. Zatłaczanie wód pozabiegowych 
w utwory serii węglanowej dewonu w uzdrowisku 
Ustroń. Biul. Państ. Inst. Geol., 445: 701-708. 

 
 
 
 
 
 
 
 
 


