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The periaqueductal gray (PAG) is less referred in relationship with emotions than other parts 
of the brain (e.g. cortex, thalamus, amygdala), most probably because of the difficulty to reach and 
manipulate this small and deeply lying structure. After defining how to evaluate emotions, we have 
reviewed the literature and summarized data of the PAG contribution to the feeling of emotions 
focusing on the behavioral and neurochemical considerations. In humans, emotions can be char-
acterized by three main domains: the physiological changes, the communicative expressions, and 
the subjective experiences. In animals, the physiological changes can mainly be studied. Indeed, 
early studies have considered the PAG as an important center of the emotions-related autonomic 
and motoric processes. However, in vivo imaging have changed our view by highlighting the PAG 
as a significant player in emotions-related cognitive processes. The PAG lies on the crossroad of 
networks important in the regulation of emotions and therefore it should not be neglected. In vivo 
imaging represents a good tool for studying this structure in living organism and may reveal new 
information about its role beyond its importance in the neurovegetative regulation. 
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The periaqueductal gray (PAG) is a small deeply 
located mesencephalic brain structure, surrounding 
the aqueduct of Sylvius (Figure 1). It is located at the 
crossroads of different neural circuits regulating the 
autonomic functions. It is also involved in different 
behaviors such as social (O’Connell and Hofmann 
2011), maternal (Noriuchi et al. 2008), aggressive 
(Gregg and Siegel 2001), and sexual ones (Holstege 
and Huynh 2011). PAG roles have been studied main-
ly by observing the neurovegetative responses to its 
activation or inhibition, showing its involvement in 
vocalizations (Jurgens 1994), micturition (Takasaki et 
al. 2010; Stone et al. 2011), modulation of the respira-
tory (Farmer et al. 2014; Faull et al. 2015), and cardiac 

functions (Xavier et al. 2014). These latter responses 
are often measured to evaluate emotions in animals 
(Menant et al. 2016a), serving as the first evidence 
for the role of the PAG in the regulation of emotions 
(Bandler and Shipley 1994; Bandler et al. 2000). How-
ever, the question arose whether the PAG – beside its 
well-known role in the neural circuit of pain – may 
also contribute to the emotional component of the 
pain (Price 2002). The use of in vivo Magnetic Reso-
nance Imaging (MRI) methods have widened our view 
(Linnman and Borsook 2013) on the PAG complex 
involvement besides the emotional motoric response 
also in the emotional-cognitive processes (Mobbs et 
al. 2007; Wager et al. 2009; Buhle et al. 2013).
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Before examining the emotions-related literature 
of the PAG, we will first define what the emotions are.

From the definition of emotions toward its 
neuronal network

Throughout the literature, several definitions and 
theoretical concepts have been debated and proposed 
for emotions that have been described by numerous 
terms (Bindra 1970; Leventhal and Scherer 1987; Lev-
enthal and Patrick-Miller 2000). Some of them have 
used the term emotional qualia (subjective experi-
ences), based on the human perception and feeling 
(Russell and Mahrabian 1977; McNaughton 1989). 
Defined as a reaction to a particular event, similar 
emotional expression has been reported throughout 
species and described it as an evolutionary adaptive 
process (Darwin 1872). Some consider that primary 
and secondary emotions can be distinguished. Pri-
mary emotions, which are fear, joy, disgust, sadness, 
surprise, and anger, are innate and occur in the whole 
animal kingdom (Leventhal and Scherer 1987). Sec-
ondary emotions, which need “a level of complex, 
conscious reasoning” are learned and appear specifi-
cally in humans (Leventhal and Scherer 1987). Emo-
tions can be described with their several components, 
which are bound and correlated with each other and 
specific to the emotional qualia (Dantzer 2002a; 
Mauss and Robinson 2009). The three main compo-

nents used to define the emotions in humans include 
physiological changes, communicative expressions 
and subjective experiences, requiring cognitive pro-
cesses (Figure 2) (Dantzer 2002a).

Several theories have been proposed to describe the 
emotional processes (from perception to emotions), 
which differed by the level of the cognitive process 
integration (Figure 3). According to the James-Lange 
theory, after perceiving a stimulus that somehow af-
fects the person, disturbing physiological changes 
such as palpitations, shortness of breath, anxiety, 
etc. (also called arousal) occur (Cannon 1927). The 
acknowledgment of these symptoms at cortical lev-
el determines an emotional qualia (Schachter and 
Singer 1962). Thus, recognition of physical changes 
are the emotions. On the contrary, according to the 
Cannon-Bard theory (also known as thalamic theo-
ry of emotions) (Cannon 1927), the triggering event 
induces a nerve impulse, which goes directly to the 
thalamus, where the message divides. One part goes 
to cortex leading to subjective feelings, while the 
other part goes to the hypothalamus and triggers 
neurovegetative physical responses. Thus, interpreta-
tion of emotions at cortical level and bodily changes 
occur simultaneously (Schachter and Singer 1962). 
The two factors theory of emotions (also known as 
Schachter-Singer theory or appraisal theory) em-
phasize the importance of the cognitive process 
(Schachter and Singer 1962). More precisely, all the 

Figure 1. 3D presentations of the periaqueductal gray (PAG) in the mouse brain (red) generated with 
the help of https://scalablebrainatlas.incf.org/composer/.



224 The PAG in emotions

stimuli induce the same arousal and it is differenti-
ated only by its cognitive appraisal. Based on these 
concepts and theories, emotions can be defined as a 
mental process caused by an acute event that induces 
intense, sudden and transient responses in our body, 
which appear simultaneously and have relevant aim 
for the organism (adapted from Kirouac 1998). The 
last mentioned appraisal theory integrates the three 
emotional components (see Figure 2) and is widely 
adapted in studies with non-human species (Boissy 
et al. 2007; Veissier and Boissy 2007). Thus, for evalu-
ating experimentally-evoked emotions of an animal, 
the usual approach is to expose it to a standardized 
event that triggers emotions (Dantzer 2002b). Be-
cause of the lack of access to its subjective compo-
nent, emotions are evaluated through physiological 
responses such as neurovegetative and neuroendo-
crine changes, behavioral responses and brain activi-
ties. For example, the exposure to a predator in non-
human animals increases the cardiac and respiratory 
frequencies, enhances sympathetic activity, increases 
the levels of adrenocorticotropin and glucocorticoids 

(known as stress hormones), inhibit non-defensive 
behaviors (e.g. feeding behavior, sexual behavior) and 
induce flight or fight behavior or freezing (Apfelbach 
et al. 2005). These different kinds of emotional re-
sponses result from complex mental processes that 
could be summarized in three steps: the perception, 
the reaction and the cognitive control (Figure 2) under 
the control of the neural circuit of emotions (Menant 
2016a). The perception of the particular and acute 
event is due to the sensory cortex such as the visual 
cortex (Furl 2015). The reaction is firstly due to inte-
gration and interpretation of the particular and acute 
event depending on the subject (age, gender, life story 
etc.) (Menant 2016a), which includes, for example, 
the prefrontal cortex (PFC), anterior cingulate cortex 
(ACC), insula and amygdala (Roxo et al. 2011). Then, 
the reaction results in autonomic and endocrine re-
sponses, under the control of the medulla (Bodnar 
2012) and cerebellum (Snider and Maiti 1976), and 
the hypothalamic structures such as the lateral hy-
pothalamic area (LH) and the paraventricular (PVN) 
and ventromedial (VMH) nuclei (Bodnar 2012). Fi-

Figure 2. Schematic representation of the emotions circuit in non-human animals from the event perceived by the subject which 
trigger the loop of the cognitive-bodily changes. The distinct cognitive processes are mediated by specific brain structures which 
interact with each other and induce specific bodily changes which also influence the cognitive processes. Abbreviations: ACC – 
anterior cingulate cortex; LH – lateral hypothalamus; PAG – periaqueductal gray; PFC – prefrontal cortex; PVN – paraventricular 
nucleus of the hypothalamus; VMH – ventromedial hypothalamic nucleus.
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nally, the cognitive control is the step of reappraisal 
of the particular and acute event as well as the emo-
tional responses, which can lead to the cessation of 
emotional reaction. This phase is under the control of 
higher brain structures such as the frontal cortex, the 
amygdala or the insula (Figure 2).

Examining emotions. In the experimental con-
text, brain circuit of emotions can be studied in hu-
mans exposed to visual stimuli with different emo-
tional valences (Paradiso et al. 1999) or in animals 
submitted to spontaneous acute and particular situ-
ation (Guesdon et al. 2015). It can also be studied in 
a conditioned situations (Phelps and LeDoux 2005). 
The principle is based on the fear from receiving a 
painful stimulus. Indeed, in fear conditioning, ani-
mals associate a conditioned stimulus (context or oth-
er neutral stimulus such as light, sound etc.) with an 
unconditioned stimulus (nociceptive stimulus such as 
footshock) to induce a conditioned response. By this 
way, it is possible to induce reproducible emotional 

responses in the animal subjected to the conditioned 
stimulus. Using this experimental model, different 
strategies have been developed to identify and study 
the neuronal network of emotions, which overlaps 
with that of pain (Garcia-Larrea and Peyron 2013). 
In all of these experimental approaches the PAG has 
been identified as a player in the neuronal network of 
emotions. It is even noted that it is mainly implicated 
in negative emotional context (fear, panic, aggressive) 
(Bandler and Shipley 1994; Bandler et al. 2000; Vian-
na and Brandao 2003). In positive emotions the role 
of the PAG is mainly associated with its involvement 
in the vocal communication in accordance with the 
social context (Kyuhou and Gemba 1998) and could 
be inferred from its involvement in specific social be-
haviors (Lonstein et al. 1998; Adolphs 2001; Noriuchi 
et al. 2008; Shepherd and Freiwald 2018).

The aim of the present article is to summarize 
the data supporting the role the PAG in emotions, 
including the nociceptive component of pain and 

Figure 3. Comparison of the different theories for the generation of emotions. According to the 
James-Lange theory the perception of physical symptoms induces the feeling of different emotions at 
cortical level. According to the Cannon-Bard theory (also known as thalamic theory) interpretation 
of emotions at cortical level and physical changes occur simultaneously with the involvement of thala-
mus as an important relay site. The two-factor theory of emotions (also known as Schachter-Singer 
theory or appraisal theory) says that the feeling of emotions is the result of the perception of physical 
changes in our body in combination with our judgement of the situation based upon our past and 
present cognitive processes.
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its neurochemical factors. It should be noted that 
the role of the PAG could be reduced to stereotype 
responses and dependent on the descending projec-
tions to the brainstem and spinal cord (Motta et al. 
2017) in accordance with its role in emotions-related 
motoric and neurovegetative responses. However, 
this point of view may need to be reevaluated based 
on the in vivo imaging studies describing the PAG 
activation in several complex cognitive processes re-
lated to emotions (Maddock et al. 2003; Noriuchi et 
al. 2008; Motta et al. 2017). Therefore, we aimed to 
pay a special attention to understand how MRI stud-
ies changed our view about the role of the PAG in 
emotions from being a passive executive brain area to 
being an active player in the appraisal.

The periaqueductal gray (PAG) in emotions

Emotions-related motoric and neurovegetative 
responses to PAG manipulations. First evidence of 
the motoric role of the midbrain area including the 
PAG has been described in cats by lesions altering 
the facio-vocal activity (Kelly et al. 1946), inducing 
mutism (Skultety 1958; Adametz and O’Leary 1959; 
Randall 1964) and increasing the hunting postures 
(Randall 1964). In another study, stimulation of the 
PAG decreased the blood pressure, induced bradycar-
dia, and panting followed by apnoea in monkeys and 
cats (Turner 1954). In humans, studies have shown 
that the PAG stimulation could induce several physi-
ological responses and subjective negatives experi-
ences such as diffuse pain, the urge to urinate, fear 
(Nashold and Slaughter 1969), nausea, fright, pilo-
erection (Hosobuchi 1987), distress, anxiety, and 
weeping (Tasker 1982), and feelings of apprehension 
(Young et al. 1985).

All the authors concluded that the variation of 
responses depended on the size and localization of 
the lesion or stimulation site inside the PAG. This 
observation is supported by complex anatomical 
and functional organization of this structure report-
ed in several species (Menant et al. 2016b) and was 
the basic promise of the role of the PAG in coping 
style (Bandler and Shipley 1994; Bandler et al. 2000; 
Dampney 2018).

The PAG and negative emotions. The involvement 
of the PAG in negative emotions has been described 
in numerous reviews in relationship with functional 
effects (Bandler et al. 2000; Keay and Bandler 2002; 
Benarroch 2012) or neuroanatomical organization 
(Menant 2016a) and will be rapidly overviewed in 
this part in correlation with the PAG subdivisions 

(Figure 4, middle part). Tachography studies using 
MRI supported the presence of four subdivisions in 
the human PAG similarly to the findings in animals 
(Ezra et al. 2015). The development of imaging tech-
niques makes identification of functional subregion 
easier and lead to the conclusion that each subregion 
of the PAG may, both in human and non-human sub-
jects, participate in distinct functional circuitry (Sat-
pute et al. 2013).

In the dorsal part of the PAG (dPAG, including the 
dorsal and dorsolateral subdivisions), injections of 
excitatory amino acids (EAA), as the main stimula-
tory neurotransmitter, increased locomotion in rats 
(Morgan et al. 1998) and escape behavior in cats 
(Zhang et al. 1990) or decreased the tonic immobility 
duration in guinea pigs (Coutinho and Menescal-de-
Oliveira 2010) (Figure 4, left side). This stimulation 
also induced deep and rapid breathing in cats (Sub-
ramanian et al. 2008), or modifications in some au-
tonomic responses like decrease of the temperature 
in body extremities of rats (de Menezes et al. 2006). 
However, injection of EAA or deep brain stimulation 
in the dPAG had no effect on the mean arterial pres-
sure in rats (de Menezes et al. 2006) and on the heart 
rate in humans (Pereira et al. 2010). As a summary, 
activation of the dPAG is sufficient to induce emo-
tions-related autonomic and behavioral responses, 
however, the necessity of these subdivisions are not 
that clear. Indeed, although stimulation of the dPAG 
decreased the tonic immobility duration in guinea 
pigs (Coutinho and Menescal-de-Oliveira 2010) the 
lesion of this area did not modify the expression of 
freezing behavior in fear conditioned rats (Leman 
et al. 2003). Moreover, although the dPAG lesion 
decreased the basal blood pressure (Schenberg et al. 
1995; Sampaio et al. 1999), its stimulation had no ef-
fect on the arterial pressure (de Menezes et al. 2006).

In the ventral part of the PAG (vPAG; including the 
lateral and ventrolateral subdivisions), stimulation 
and lesion induced opposite fear reactions. In more 
details, injections of EAA increased immobility in 
cats (Zhang et al. 1990), guinea pigs (Monassi et al. 
1999; Coutinho and Menescal-de-Oliveira 2010) and 
rats (Morgan et al. 1998; Morgan and Carrive 2001), 
and lesions of the vPAG decreased freezing behaviour 
in rats exposed to a cat (De Oca et al. 1998) (Figure 4, 
left side). These results confirmed the sufficient and 
necessary involvement of the vPAG in fear responses. 
Moreover, injections of EAA in the vPAG induced 
abnormal pattern of breathing (apnoea), thought to 
be associated with emotions-related vocalizations 
in cats such as mew and hisses (Subramanian et al. 
2008). This stimulation also modulated heart rate in 
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humans (Pereira et al. 2010) and rats (Morgan and 
Carrive 2001; Walker and Carrive 2003) without 
modifications of the mean blood pressure (Morgan 
and Carrive 2001).

The importance of the neuronal connections be-
tween the different subdivisions of the PAG has also 
been studied in fear. Although lesion of the ventral 
parts decreased the duration of freezing in fear con-
ditioned test (De Oca et al. 1998), it did not influence 
the triggering and duration of the freezing behavior, 
respectively, after electrical and chemical (gamma-
aminobutyric acid (GABA) receptor antagonist) 
stimulation of the dPAG (Vianna et al. 2001). This re-
sult suggests that – despite existing anatomical con-
nections (Jansen et al. 1998) – the vPAG does not in-
fluence the freezing behavior regulated by the dorsal 
parts. However, lesion of the dorsal parts increased 
the duration of the freezing in fear conditioned test 
and innate fear, suggesting that this part could in-
hibit the freezing behaviors through controlling the 
ventral parts (De Oca et al. 1998).

For studying the activation of specific PAG subdi-
visions, the technique of c-Fos (an immediate early 
gene, whose presence indicates cellular activation) 
immunochemistry was also used. Activation of the 
PAG during the fear conditioning supported its in-

volvement in negative feelings. Later freezing behav-
ior in a previously fear associated context requires 
learning and memory. In this regard, the re-exposure 
of the rats to the context, where footshock was previ-
ously applied, induced c-Fos expression in their PAG, 
more precisely in the vPAG (Carrive et al. 1997), pro-
viding some support for the involvement of the PAG 
in emotions-related cognitive processes. Moreover, 
in fear conditioning test, rats expressed less freezing 
behaviors when they were lesioned in the vPAG af-
ter or before the training period (De Oca et al. 1998). 
Because the vPAG-lesioned rats are more sensitive to 
pain (Figure 4) and able to express freezing behavior 
in fear situations (exposition to a cat or to a new en-
vironment) (De Oca et al. 1998), the vPAG might be 
necessary for retrieval during learned fear. That is not 
the case for the dPAG, as rats lesioned in the dPAG 
before the training period expressed more freezing 
in the footshock associated context, but also when 
they were exposed to a cat (De Oca et al. 1998). Thus, 
the dPAG could regulate fear during innate negative 
events and not during memory recall. The different 
subdivisions of the PAG participate in different neu-
ronal circuits supported by their specific anatomical 
connections with the rest of the brain (Menant 2016a), 
which can differ between species (Menant et al. 2018).

Figure 4. Schematic representation of the responses induced by the stimulation of the periaqueductal 
gray (PAG) subdivisions and its functional connections with the amygdala nucleus in fear and pain 
based upon rat brain. Some fear responses induced by the PAG is mediate by the GABAergic system 
from the basolateral nucleus of the amygdala, whereas some pain responses induced by the PAG is 
mediate by the opioidergic system from the central amygdalar nucleus. Abbreviations: Aq – Aqueduc 
of Sylvius; BLA – basolateral amygdalar nucleus; BM – basomedial amygdalar nucleus; CeA – central 
amygdalar nucleus; LA – lateral amygdalar nucleus; M – medial amygdalar nucleus; d – dorsal PAG; 
l – lateral PAG; dl – dorsolateral PAG; vl – ventrolateral PAG; DRN – dorsal raphe nucleus.
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Altogether, activation of the dPAG induces ac-
tive responses, whereas the vPAG is responsible for 
immobility (Figure 4). As proposed by Bandler and 
co-workers (Bandler and Shipley 1994; Bandler et al. 
2000; Benarroch 2012) the dPAG induces active cop-
ing strategies associated to escapable context and the 
vPAG is responsible for the passive coping strategies 
associated to unescapable context.

The PAG and pain. Emotions and pain are closely 
linked. Indeed, “pain contains emotional feelings” 
and the emotional context could influence the inten-
sity of the pain sensation (Price 2002). The PAG plays 
a main role in the descending pain modulatory path-
way since it receives projections from cortices (cin-
gulate and insular), amygdala and hypothalamus and 
modulates the ascending pain transmission through 
its projections to the rostral ventromedial medulla 
(RVM) (Basbaum and Fields 1984; Loyd and Murphy 
2009). As for emotional responses, the PAG subdivi-
sions rather than the PAG as a whole have to be stud-
ied. Indeed, in rats, lesions of the dPAG increased the 
pain threshold, whereas lesions of the ventral parts 
decreased it after tonic, muscle pain-inducing intra-
muscular saline injection (Lei et al. 2014). In rodents, 
studies showed higher c-Fos expression in the vPAG 
after induction of a persistent (cutaneous and deep 
somatic) pain than after an intermittent (cutaneous) 
pain event. On the contrary, c-Fos expression was 
higher in the dPAG after induction of an intermittent 
than a persistent pain (Benarroch 2012); these two 
events being associated to an escapable and an ines-
capable situation, respectively (Figure 4, right side). 
At first glance, the PAG implication in pain modula-
tion could be only due to descending information to 
the medulla and spinal cord.

However, using electrophysiological approach, the 
existence of reciprocal and short-latency interactions 
between the PAG and the sensory thalamus was re-
ported, which modified the pain perception in male 
patients treated by deep brain stimulation (Wu et al. 
2014). Human MRI studies confirmed the existence 
of ascending projections from the PAG using proba-
bilistic tachography (Ezra et al. 2015). The additional 
knowledge obtained with this method was that de-
spite the similarities in the columnar structure of the 
PAG there appears to be different patterns of corti-
cal connectivity between humans and non-human 
animals. We recently described specific connections 
between the PAG areas and the rest of the brains 
in sheep that was different from other mammals 
(Menant et al. 2018). These differences could lead to 
alteration in the coping style, specific for each species 

(prey, predator, territorial, gregarious etc.), consider-
ing the neuroethology of the cognitive function as it 
was proposed for friendship (Brent et al. 2014). Nev-
ertheless, PAG subdivisions have afferent and efferent 
connections with PFC, cingulate cortex (Kyuhou and 
Gemba 1998) and amygdala (Hopkins and Holstege 
1978; LeDoux et al. 1988; Oka et al. 2008), which are 
known to be involved in memory processes; and in 
an emotional context there is a correlation between 
the activation of all of these brain regions. This sup-
ports Schenberg’s idea expressed during the sympo-
sium of the “Brazilian Society of Neuroscience and 
Behavior”, that “in the PAG there seems to be great 
overlapping systems” (Blanchard et al. 2001).

Motta et al. (2017) described three distinct ascend-
ing neuronal networks from the PAG which might 
have a role in risk assessment, fear learning or moti-
vational drive for appetitive seeking. In the later case 
the expressed behavior depended on social context, 
which suggest the PAG’s involvement in positive 
emotions.

The PAG and social behavior: involvement in 
positive emotions? As seen in the introduction, the 
PAG is involved in the emission of vocalization in 
several animal species (Jurgens 1994), some of these 
vocalizations being specific to socio-emotional con-
texts of the behaviors (Jurgens 1994; Davis et al. 1996; 
Kyuhou and Gemba 1998). The involvement of the 
PAG in social behavior changes along the rostro-
caudal axes rather than between ventral and dorsal 
parts (Satpute et al. 2013). For example, in guinea 
pigs, the electrical stimulation of the rostral part of 
the PAG induced “low whistle”, known to be a sepa-
ration call in this species, and the stimulation of the 
caudal part induced “purr”, known to be a mating 
call (Kyuhou and Gemba 1998), both vocalizations 
associated with social contexts. In lactating rats, the 
electrolytic lesion of the caudal PAG modified sev-
eral postures with socio-emotional behavioral conse-
quences: decreased fear responses associated with in-
creased attacks against male intruder; reduced sexual 
proceptivity and receptivity; and lead to ineffective 
nursing posture for milking ejection (Lonstein and 
Stern 1998; Lonstein et al. 1998). Using c-Fos immu-
nohistochemistry activation of the caudal part of the 
PAG varied in accordance with the expression of ma-
ternal behaviors (suckling, kyphosis) (Lonstein and 
Stern 1997). Human electrophysiological measure-
ments – recording differences between infant vocal- 
and sound control-stimulation from the PAG – sug-
gested that this structure allows rapid propagation 
of information with emotional valence (in this study 
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from infant cues) through cortical and subcortical 
brain regions (Parsons et al. 2017). Because all these 
behavioral responses are necessary to establish social 
relationship with others (Levy 2002; Sebe et al. 2008; 
Gaudin et al. 2018), and because these social bonds 
are associated with positive emotional state, we sup-
pose that the involvement of the PAG in emotions is 
not restricted to negative emotions.

Emotions-related neurochemical composition of 
the PAG

It is essential to consider the neurochemical factors 
insight the PAG subdivisions.

The result of the chemical stimulations suggests 
that the glutamatergic system mediates the freez-
ing responses associated to the dPAG (Vianna et al. 
2001).

On the other hand, local serotonin (5-HT) (Cle-
ments et al. 1985) injections into the vPAG decreased 
nociception (Bartsch et al. 2004), whereas injections 
into the dPAG decreased defensive behavior in rats 
(Beckett and Marsden 1997; Sela et al. 2011; Cam-
pos et al. 2013) and anxiety-like behaviors in mice 
(Nunes-de-Souza et al. 2011). We can assume that 
these specific roles of the subdivisions maybe due to 
different inputs from emotionally relevant brain ar-
eas such as the hypothalamic nuclei (Saavedra et al. 
1974), amygdala (Asan et al. 2013; Bombardi 2014) or 
PFC (de Almeida et al. 2008), rather than the diver-
gent localization of receptors seen in the case of the 
opioidergic system.

Indeed, the deviating role of the PAG subdivisions 
in regulation of pain has been supported by the di-
vergent presence of opioids such as β-endorphin (Pe-
sini et al. 2001) and their receptors (µ opioid receptor) 
(Moskowitz and Goodman 1985; Monteillet-Agius 
et al. 1998; Abbadie et al. 2000). The transcutane-
ous electrical nerve stimulation (TENS) is known to 
reduce pain sensitivity through the opioidergic sys-
tem. Rats have been used to study the pain threshold 
after induction of knee joint inflammation in com-
bination with reversible functional activation of the 
dPAG or vPAG. The results showed that during TENS 
the pain threshold of the injured rats is similar to 
the control rats when the dPAG is inactivated, but is 
lower when the vPAG is inactivated (DeSantana et al. 
2009). In line with this idea, rats, which responded 
less to heat stimulation, expressed more β-endorphin 
in the vPAG (Laprairie and Murphy 2009). These 
results support the notion that analgesia is mediate 
by the opioidergic system in the vPAG (Monteillet-
Agius et al. 1998; Abbadie et al. 2000; Wiedenmayer 

and Barr 2000) (Figure 4), that is consistent with its 
high µ-receptor density in rats (Monteillet-Agius et 
al. 1998; Abbadie et al. 2000). Moreover, the opioid 
system of the PAG is also deeply involved in maternal 
behavior, since morphine injection in the rostral PAG 
disrupts maternal care in nulliparous rats (Moura et 
al. 2010), and dams exhibit different pattern of opioid 
receptors’ expression in comparison with multipa-
rous rats (Teodorov et al. 2011).

The GABAergic system was studied in relation 
with the amygdala-PAG pathway to evaluate its im-
portance in emotions (Figure 4, left side). Injection 
of muscimole (GABA-A receptor agonist) in any 
amygdala nucleus decreased the time of freezing be-
havior both after electrical stimulation of the dPAG 
and exposure to conditioned fear test (Martinez et 
al. 2006). Moreover, c-Fos expression was increased 
in all subdivisions of the PAG after injection of mus-
cimole in the basolateral complex of the amygdala 
(BLA) when the animals were fear conditioned (Rea 
et al. 2011). These results suggest a functional con-
nection between the PAG and the amygdala, which 
has anatomical background (Rizvi et al. 1991; Oka 
et al. 2008; Chiou et al. 2014). This later connection 
seems to be specific for fear, as injection of musci-
mole in the BLA did not inhibit the pain response 
to hindpaw formalin injection (Rea et al. 2011). Al-
though we have to mention that the amygdala-PAG 
pathway might be also involved in pain in some ex-
tent, as in rats, injection of formalin in the hindpaw 
induced c-Fos expression in both the PAG and cen-
tral nucleus of the amygdala (CeA), and the electrical 
stimulation of the CeA increased c-Fos expression in 
the PAG (Nakamura et al. 2013) (Figure 4, right side). 
However, as the afore mentioned formalin injection 
induced a higher density of β-endorphin cells in the 
vPAG (Nakamura et al. 2013), which was associated 
to pain reduction (Laprairie and Murphy 2009) we 
might assume that the pain response may be trig-
gered not by GABAergic, but rather opioidergic 
pathways.

The oxytocinergic (OT) system is present in the 
PAG, which contains OT-fibres (Swanson and McK-
ellar 1979; Roeling et al. 1993) and OT-receptors (Yo-
shimura et al. 1993; Freeman et al. 2014). This system 
– specifically in the caudal PAG – is important for the 
anxiolytic effect of the motherhood. For example, the 
injection of an OT-antagonist into the caudal PAG of 
lactating dams increased anxiety-related behaviors 
and low dose of OT in stressed dams reduced their 
anxiety (Figueira et al. 2008). In this specific socio-
emotional context of the motherhood, dams have to 
care for their pups and express defensive behavior 
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against threats like e.g. predator. In these processes 
the PAG subdivisions have specific, albeit opposite 
roles (Sukikara et al. 2010).

In conclusion, as it seems essential to consider the 
PAG with its anatomical and functional connections 
for understanding its involvement in emotions, it is 
also necessary to consider the neurochemical fac-
tors of the PAG with special attention to the subdi-
visions.

Emotions and the PAG: How in vivo imaging 
changed our view?

Given how we have defined the emotions and the 
paradigm used to study the neuronal network of 
emotions in animals, it is easy to understand that the 
subjective component of emotions cannot be studied 
due to the absence of verbalization in animals. Even 
humans are known to lie about their emotions, but at 
least they could be asked about their feelings. When 
we do this during in vivo measurements of brain ac-
tivities, we can have deeper insight into the neuronal 
network of emotions, which cannot be obtain with 
any other method. The in vivo imagery also allowed 
to study the metabolism of brain structures using 
positron emission tomography (PET) scan, single 
photon emission computed tomography (SPECT), 
and magnetic resonance spectroscopy imaging 
(MRSI). Whereas the PET and SPECT methods re-
quired injections of radioactive tracers, MRSI does 
not. This makes the later method to be “unique tool 
to probe the biochemistry in vivo providing metabol-
ic information non-invasively” (Osorio-Garcia et al. 
2012). The development of high field strengths MRI 
machines and the design of the radio frequency coil 
improved the signal sensitivity of the MRSI method 
and allowed to distinguish small molecules (van der 
Graaf 2010) such as N-acetyl-aspartate, which is an 
indicator of brain pathology and pain (Baslow 2002). 
For example, using the 1H MRSI method in human, 
subjects with chronic daily headache had higher lev-
el of N-acetyl-aspartate-glutamate in the PAG than 
healthy subjects (Buonanotte et al. 2006), suggesting 
that the PAG could be involved in pain perception 
through the glutamatergic system. Animal studies 
may have suggested the involvement of glutamate in 
pain perception (Carstens et al. 1990), but for that 
invasive methods were necessary which might even 
influence the observed phenomenon. The MRSI 
method is the first tool, which allows the detection of 
neurochemical composition of a small structure like 
the PAG via a completely noninvasive way allowing 
its extensive use in human studies as well. Moreover, 

the in vivo imaging is the only approach that allows 
to study the involvement of the PAG connections in 
complex cognitive processes occurred in emotions, 
pain or social behaviors.

The PAG and negative emotions. Watching nega-
tive images (Buhle et al. 2013) or anticipating an anx-
ious speech (Wager et al. 2009) the PAG activity was 
increased in humans in association with increased 
heart rate confirming its involvement in the emo-
tions-related motoric processes (Wager et al. 2009). 
However, using functional MRI (fMRI) it has been 
also shown that the activity of the PAG depends on 
the strength of the fear-inducing situations suggest-
ing a more complex role. In humans, distal presence 
of a tarantula, an escapable situation, did not acti-
vate the PAG; however, its proximal presence, a non-
escapable situation, increased its activity (Mobbs et 
al. 2007). Whereby, the situation was more inescap-
able, higher was the activity of the PAG (Mobbs et 
al. 2007), which reflected the distance of the threat 
(Mobbs et al. 2010) and the probability of the nega-
tive event (Mobbs et al. 2007) judged by cognitive 
processes involving the PAG.

The impact of the emotional state on force control 
was evaluated by behavioral responses in the same 
time as physiological markers and brain activation. 
Negative emotions facilitated the force control and 
concluded – in accordance with results of brain ac-
tivation studies – that right frontal gyrus, amyg-
dala, and PAG are key-regions to mediate this effect 
(Blakemore et al. 2016). Because the PAG is activated 
in pain and emotional context, patients were submit-
ted to warm stimulation (low vs. high pain) and nega-
tive emotional images (negative vs. neutral). Higher 
PAG activation has been observed after high vs. low 
pain and after watching negative vs. neutral images, 
suggesting the involvement of the PAG in affective 
processes (Buhle et al. 2013). This idea is supported by 
brainstem (including PAG) activation during evalua-
tion of pleasant words compared to neutral ones con-
firmed by fMRI (Maddock et al. 2003).

MRI studies in humans were able to separate PAG 
subregions related to different emotions, similarly as 
it has been found with other techniques in animals 
(Satpute et al. 2013). Emotionally aversive images ac-
tivated the lateral parts of the PAG.

The PAG and pain. Several fMRI studies have 
reported that physical pain induced PAG activation 
regardless of the location of the induction site on the 
body [hand (Fairhurst et al. 2012; Buhle et al. 2013), 
somatic or visceral (Dunckley et al. 2005)] and the 
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characteristic of the stimulation [heat (Fairhurst 
et al. 2012; Buhle et al. 2013), electrical stimulation 
(Dunckley et al. 2005)].

In the aim to better understand the pain perception 
(La Cesa et al. 2014) and the management of pain in 
patients (Yu et al. 2017; Harper et al. 2018), anticipa-
tory phenomenon and placebo effect have been stud-
ied and the PAG has been identified as an important 
player of these complex cognitive processes. Indeed, 
PAG activity increased not only when subjects re-
ceived heat stimulation on their hand, but also when 
they were only warned and not stimulated (Fairhurst 
et al. 2007). Uncertainty specifically and potently in-
creased pain, which was correlated with the activity 
of the PAG measured by fMRI (Yoshida et al. 2013). 
Thus, the PAG was activated during anticipation of a 
negative event (Roy et al. 2014) suggesting its involve-
ment not only in analgesia, but also in the cognitive 
processes such as recalling events. The development 
of placebo effect would require learning and recall 
processes (Stewart-Williams and Podd 2004). Indeed, 
pain induction (thermal, shock or laser stimuli) led 
to placebo effect through modulation of the opioider-
gic–cholecystokininergic–dopaminergic pain net-
work including the PAG (Benedetti et al. 2011). More 
precisely, placebo effect increased the PAG activity 
leading to an increased threshold of pain sensitivity, 
finally to less pain sensation. The PAG activity was 
correlated to other brain regions known to be in-
volved in memory or pain such as the hypothalamus 
(Eippert et al. 2009), thalamus, ACC, insula (Wager 
et al. 2004; Bingel et al. 2006) and RVM (Eippert et 
al. 2009). Additionally, using MRI and tachography 
the functional connection between the above men-
tioned areas and the PAG was also confirmed (Ezra 
et al. 2015).

Altogether, in vivo imaging used in humans and 
interventional approaches performed in animals have 
demonstrated the importance of the PAG in nega-
tive affective contexts (negative emotions or pain). 
However, whereas animal researches demonstrated 
the PAG as a relay of cognitive information to the 
brainstem and spinal cord for stereotyped respons-
es, in vivo imaging allowed considering the PAG as 
a structure involved in complex cognitive processes 
transmitting information to cortical levels. Interest-
ingly, these approaches also allowed the reanalysis of 
the role of the PAG in the social cognition.

The PAG and social cognition. Social cognition 
could also be approached through examining em-
pathy (Adolphs 2001). Empathy is conceptualized by 
a behavior, a personality dimension, and an experi-

enced emotions concept (Reynolds and Scott 1999) 
and could be seen at the interface of emotions and 
social cognition. Empathy is essential to inhibit ag-
gressive behavior towards others and is seen as a pro-
social rather than an antisocial behavior (Decety et 
al. 2010). In human, children viewing other in pain-
ful situation vs. non-painful situation, activation of 
the whole neuronal circuit of pain including the PAG 
could be observed (Decety et al. 2008). In adults sub-
mitted to similar protocols, introduction of a blame 
game component influenced the PAG activation (De-
cety et al. 2010) suggesting that the level of empathy 
is in correlation with the PAG activation. Because the 
PAG is also involved in aggressive behaviors (Depau-
lis et al. 1989; Bandler et al. 2000), it is interesting 
to report another study performed by Decety et al. 
(2009) showing others in pain (accidental or inten-
tional), brain activation of adolescent with aggressive 
conduct disorders compared with healthy controls. 
All the subjects showed PAG activation after viewing 
accidental pain vs. no pain, whereas PAG activation 
did not differ between accidental or intentional pain. 
Moreover, no difference of PAG activation has been 
reported between adolescent with aggressive con-
ducted disorders and healthy controls.

Social cognition encompasses different phenomena 
as social perception, social recognition, social com-
munication, and social behaviors that may involve 
different brain structures and neuronal networks 
(Adolphs 2001; Brent et al. 2014). In this context, 
functional neural network of social communication 
has been examined by fMRI in macaque monkeys 
showing the involvement of the PAG (Shepherd and 
Freiwald 2018). In humans, mothers were exposed to 
video of their own child (or another one) submitted to 
a pleasant (playing) or distress (separation) situation. 
The study revealed activation of the PAG in mother 
viewing their own child vs. other child, whatever was 
the context (Noriuchi et al. 2008), indicating that the 
PAG could be involved in social object recognition or 
bond attachment. These results – together with other 
studies on animals showing the involvement of the 
PAG in maternal behaviors including defense (Moura 
et al. 2010; Sukikara et al. 2010; Klein et al. 2014; Bar-
ba-Muller et al. 2018) – support that the PAG might 
be viewed as an important brain structure of the 
caregiving parental brain (Young et al. 2017).

Conclusions

Taken together, the PAG is a brain structure coor-
dinating not only motoric and autonomic neuroveg-
etative outcomes, but it seems that is also involved in 
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a complex of cognitive processes. This is supported 
by its extensive anatomical and functional connec-
tions. The inclusion of MRI in these studies helped 
to change our view on the PAG that it is not only a 
passive executor but also an active participant in cog-
nitive processes.

However, we should be aware of the differences 
between species and different animal models. There-
fore, we have to consider pain, negative and positive 
emotions, and social cognition from an evolutionary 
point of view, as it has been proposed in the Research 
Domain Criteria (RDoC) system (Anderzhanova et 

al. 2017). Thus, comparison of species is of particu-
lar importance to better describe and understand the 
brain and its role in the cognitive functions, as it has 
been reviewed in more and more papers [parental 
brain (Bales 2017); friendship (Brent et al. 2014)]. This 
requires thorough knowledge of the behavior of dif-
ferent species using ethological approaches and to ex-
plore anatomical (Menant et al. 2018) and functional 
(Najafi et al. 2017) connections of different brain 
structures with the help of MRI and to develop post-
processing tools to get a more comprehensive picture 
of the various species.
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